TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA

Tamanho: px
Começar a partir da página:

Download "TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA"

Transcrição

1 Edrdo Loo Lo Crl TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO OS ESTAOS E FUNÇÃO E TRANSFERÊNCIA. Moição e eeidde Eie iee d for de repreer diâi de ie: Epço do Edo SS; Fção de Trferêi TF. O o d d for de repreer o ie diâio é hil. Oorre eeidde de pr repreeção do ie de for pr or depededo do qe é foreido e do qe e deej fzer.. Trforção de SS pr TF do ie LIT for do epço do edo: A B C Perg-e, ql Fção de Trferêi orrepodee? Aplido Trford de Lple eqção d diâi do edo, L { } L { A B } Aido odiçõe iiii igi zero por defiição FT e odiçõe iii igi zero, e-e: X AX BU Rerrjdo, I A X BU Ioldo X 4 I A BU X 5 Aplido Trford de lple d eqção d íd do ie,

2 Edrdo Loo Lo Crl L { } L { C } 6 o Y CX U 7 Siido eq. 5 eq. 7, e-e: I A BU U Y C [ C I A B ] U Y 8 9 Lerdo qe FT é relção ere íd e erd do ie, o ej, Y/U, I A B C Oerçõe: é riz de Fçõe de Trferêi o dieão p p úero de íd e úero de erd; Cd eleeo ij d riz deree diâi d íd i e fção d erd j do ie por eeplo, deree relção diâi ere íd e erd do ie; Se o ie ier oee erd e íd é elr. Eie éodo iple pr llr FT pr ie de qlqer orde qe ão eige állo de ier de riz, oee deerie de rize: ij I A B j de Ci ij de [ I A] ode C i é i-éi lih d riz C e B j é j-éi ol d riz B e ij é o eleeo i,j d riz.. No-e qe e o ie for SISO C é riz lih e B é riz ol. O deoidore de odo o eleeo d riz de FT,, ão igi eqção reríi do ie.

3 Edrdo Loo Lo Crl. Cállo de deerie e de riz ier Mriz ier: O állo lgério d ier de riz e epre é proeo iple de relizr O úio o ode o állo d riz I A é iple é pr ie de orde. A I [ ] A Pr ie de orde ior do qe doi opção é r o éodo de Crer io rlhoo. eerie de riz: Soee ílo de reordr, o deerie de riz de dieão é lldo pel egie fórl: de O deerie de riz de dieão é lldo pel regr de Srr: de 4 O deerie de riz de dieão é lldo pel o do ofore d riz: M de A A L M L L O L M A 5 ode A ij é o ofor do eleeo ij, ddo por: A ij i j de ij 6

4 Edrdo Loo Lo Crl 4 ij é o eor opleer relio o eleeo ij, qe e oé d riz origil reirdo-e lih i e ol j por eeplo, pr o eleeo, e-e L M O M M L L 7 Oer-e qe qlqer lih o ol d riz pode er ilizd pr o állo do deerie prir de e ofore. 4. Eeplo Eeplo : Sie SISO de orde : do o ie for de epço do edo o egie rize: A B [ ] C [ ] Nee o e-e íd p e erd Sie SISO úi FT deree relção diâi ere erd e íd do ie. Aplido eq., de de Pr llr o deerie do erdor pode-e r o ofore d 4ª ol d riz qe ó poi eleeo diferee de zero, i: 4 de de

5 Edrdo Loo Lo Crl 5 de O qe rel egie FT: Eeplo : Sie MIMO de orde : do o ie for de epço do edo o egie rize: A B C Nee o e-e d íd p e d erd Sie MIMO 4 FT deree relçõe diâi ere erd e íd do ie. Aplido eq. pr íd e erd : 4 de de Aplido eq. pr íd e erd :

6 Edrdo Loo Lo Crl 6 4 de de Aplido eq. pr íd e erd : 4 de de Aplido eq. pr íd e erd : 4 de de A riz de FT fi, 5. Trforção de TF pr SS Eie i for de relizr rforção de ie repreedo por FT pr for SS.

7 Edrdo Loo Lo Crl 7 Não eie úi for SS pr repreer FT: O eor de edo ão é úio pr ie diâio eie iúer poiilidde de defiir o eor de edo pr eo ie diâio; Cd eor de edo i gerr for diferee de SS pr e FT. Trê o diferee: Nerdor oe: K,. 8 Orde do erdor < orde do deoidor: K K, o <. 9 Orde do erdor orde do deoidor: K K, o. Co : Eeplo de ie de ª orde filee eedido pr orde. U Y Mliplido e rz, [ ] U Y Clldo ier d Trford de Lple oé-e eqção difereil do ie: Eolhedo o eor de edo [ ] A eqçõe diâi do ie for SS fi:

8 Edrdo Loo Lo Crl 8 [ ] [ ] E for de ie é oheid oo For Coroláel. Co : Eeplo de ie de ª orde. e N e. Ereedo relção ere erd e íd Y/U d egie for: U Y U Y pode-e defiir, N Y ; e U. A relção e U é rford oo o o, o ej: B A A relção N Y ipli qe:

9 Edrdo Loo Lo Crl 9 [ ] C Poro, A B [ ] C [ ] Co : Eeplo de ie de ª orde. e. Fzedo, o Tirdo íio úliplo o e eliido, Igldo o ero de e poêi e, e-e:. ; ; ;

10 Edrdo Loo Lo Crl A prir de pode-e hr for SS oo o o hdo e FT diior o ero de lieção dire. Poro, A B [ ] C [ ] 6. Eeplo Eeplo : do FT oeh for SS eqilee. Te-e U, qe liplido e rz rel e, [ ] U Clldo rford ier oé-e: qe for SS fi, Agor do o erdor, Y o qe ipli e: Y o

11 Edrdo Loo Lo Crl [ ] Poro, A B [ ] C [ ] Eeplo : do FT oeh for SS eqilee. iidido o erdor pelo deoidor, Poro, Coo o eeplo, prir de pode-e hr for SS, reldo e: Adiiodo o ero de lieção dire eqção de íd e-e: [ ] Poro, A B [ ] C [ ] 7. Eeríio

12 Edrdo Loo Lo Crl Coer o odelo do ie io d fo e SS pr FT. A B [ ] C Oeh riz de fçõe de rferêi do ie io ddo for do epço do edo: Sej o ie opoo por -ol-oreedor, jo odelo, repreedo for do epço do edo, é ddo pel egie eepreõe: [ ] f A erd dee ie é forç f e íd é poição d. Oeh fção de rferêi do ie. 4 Sej o odelo de oor elério de orree oí repreed pel egie eqçõe difereii: K Ri d di L i K J T ω ω ω ω θ A erd dee ie é eão eléri, e íd ão poição θ, eloidde ω e orree eléri i. Oeh fção de rferêi do ie. 5 Sej ie opoo por d e rê ol liere, j diâi é repreed pel egie eqçõe difereii: [ ] [ ] f f

13 Edrdo Loo Lo Crl A erd dee ie ão forç f e f, e íd ão poiçõe d d e. Oeh riz de fçõe de rferêi do ie. 6 d riz de FT io qe repree diâi de ie LIT Pede-e: Ql o úero de erd e de íd do ie? Udo o Ml oeh o ie for SS. 7 Sej riz de fçõe de rferêi qe repree diâi de ie o doíio opleo: Pede-e: Ql o úero de erd e de íd? Oeh o ie derio for do epço do edo. 8 Udo o Ml lle riz de FT do ie ddo io for SS.,5,5,5,5,5,5,5,5,5,5,5 Priipi odo do Ml ere ilizdo: ;

14 Edrdo Loo Lo Crl f; f. 4

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar:

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar: F6D - CONTROLE E SERVOMECAMISMOS II Prof. Crlo Rimdo Erig Lim SOLUÇÃO DAS EQUAÇÕES DE ESTADO. - Solção d eqção elr e d eqção mriil A eqção de edo A B ode er ed olção d eqção elr: Por Lle: A B X AX BU A

Leia mais

Representação em Espaço de Estados Introdução

Representação em Espaço de Estados Introdução Egehri Eleroéi 7ª Al e Corolo Ieligee Eço e eo Rereeção em Eço e Eo Iroção A rereeção em eço e eo é e o eevolvimeo e m iem e eqçõe ifereii e ª orem Ee io e rereeção ermie o rojeo e iem e orolo om iiêi

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

5 Modelos de funções de transferência: Conversão de modelo de variáveis de estado para função de transferência usando o Scilab.

5 Modelos de funções de transferência: Conversão de modelo de variáveis de estado para função de transferência usando o Scilab. 5 Moelo e fçõe e trferêc: overão e oelo e vráve e eto pr fção e trferêc o o Scl. 5. Moelo e fçõe e trferêc Moelo eo e eqçõe ferec, eo qo lere co coefcete cotte, e tor trlhoo e ere plo, qo teo te copleo

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

Capítulo 3 PSICROMETRIA APLICADA A PROCESSOS DE CONDICIONAMENTO DE AR. h [kj/kg ar seco ] m! v [m 3 / kg ar seco ] w [kg vapor/ kg ar seco ]

Capítulo 3 PSICROMETRIA APLICADA A PROCESSOS DE CONDICIONAMENTO DE AR. h [kj/kg ar seco ] m! v [m 3 / kg ar seco ] w [kg vapor/ kg ar seco ] No de Aul de Se Téro II 9 íulo PSIROETRIA APLIADA A PROESSOS DE ONDIIONAENTO DE AR onderçõe: A roredde e ão or undde de r eo. kj kj [kj/ r eo ] kw [ / r eo ] Q [ or/ r eo ].-ur de Do Jo de Ar ob.: O roeo

Leia mais

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos Fórls de qdrr do po Gss ssocds os polôos slres: propreddes e exeplos Algcoe Sr Rg Depo de Cêcs de Copção e Esísc IILCE UNESP 554- São José do Ro Preo SP E-l: rg@lceespr Del Olver Veroe Uversdde Federl

Leia mais

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo Capíulo 3 SLITs Siseas Lieares e Ivariaes o Tepo 3. Irodução 3.2 Repreação e odelo de esado 3.3 Siseas SISO 3.4 Siseas MIMO uli-diesioais 3.5 Modelo de espaço de esados coíuos 3.6 Resposa ipulsiva e covolução

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; -

Leia mais

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5

b) AB = 28cm; razão = 4 c) AB = 36cm; razão = 5 e) AB = 72cm; razão = 5 S RESPOSTS ESTÃO NO FINL DOS EXERÍIOS. Segeo Popoioi. Qui pe de egeo ão ioeuávei? = ; D = 9 =. Logo ão oeuávei poque D 9 zão ee ele é u úeo iol. = ; D = = ; D = = ; D = 6. O egeo, D, EF e GH, e ode, ão

Leia mais

POTENCIAÇÃO RADICIAÇÃO

POTENCIAÇÃO RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição. Estos dividido-o e dus prtes pr elhor opreesão. ª PARTE: POTENCIAÇÃO. DEFINIÇÃO DE POTENCIAÇÃO

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 MATRIZ DE MUDANÇA DE BASE

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 5 MATRIZ DE MUDANÇA DE BASE INTRODUÇÃO AO ESTUDO DA ÁGERA INERAR iz Friso rz Deprmeo e emái Uesp/r AÍTUO ATRIZ DE UDANÇA DE ASE oforme se esbelee o pílo om exeção o espço lo V { qe ão possi bse oos os emis espços eoriis possem ifiis

Leia mais

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t)

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t) 1 CPÍTULO 1 CINEMÁTIC VETORIL D PRTÍCUL Feqüeemee eg lei e Newo é eci fom cláic qe elcio foç ele com celeção pícl. O eo ciemáic pícl em como objeio obe elçõe memáic ee ge poição, elocie e celeção, m eemio

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

Lista de exercícios 3. Considere o modelo de transformação estrutural descrito pelas seguintes equações:

Lista de exercícios 3. Considere o modelo de transformação estrutural descrito pelas seguintes equações: Eono do Deenvolveno Prof. Fernndo Veloo 04. de exerío 3 Queão Condere o odelo de rnforção eruurl dero pel egune equçõe: df d f Q f 0 0 d d df d f Q f 0 0 () d d w pv C C C Cy, p 0 0 y p y pc C (5) y w

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Escola Politécnica Universidade de São Paulo

Escola Politécnica Universidade de São Paulo Ecol Poliécic Uiveridde de São Pulo PSI323 Circuio Elérico II Bloco 3 Fuçõe de rede e Regime Permee Seoidl Prof Deie Cooi PSI323- Prof Deie Bloco 3 DESCRIÇÃO ENTRADA-SAÍDA DE UM CIRCUITO R, LINEAR E INVARIANTE

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

O processo de escolha de uma amostra da população é denominado de amostragem.

O processo de escolha de uma amostra da população é denominado de amostragem. O proeo de eolha de uma amora da população é deomiado de amoragem Méodo de e iferir obre uma população a parir do oheimeo de pelo meo uma amora dea população Eudo da relaçõe eória exiee ere uma população

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

PSI3483. Ondas Eletromagnéticas em Meios Guiados

PSI3483. Ondas Eletromagnéticas em Meios Guiados PSI3483 Ods letrogétis e Meios Guidos Guis de Ods - Coeito Gui de Ods Retgulr Gui de Ods Cilídrios PSI3483 - Ods leltrogétis e Meios Guidos - 17 Guis de ods struturs os De teril odutor Co seção trsversl

Leia mais

Representação De Modelos de Sistemas Dinâmicos:

Representação De Modelos de Sistemas Dinâmicos: Representação de Modelos de Sisteas Dinâicos: Equação I/O; Função de Transferência 03 Representação De Modelos de Sisteas Dinâicos: - Equação Input-Output (I/O) - Função de Transferência INTRODUÇÃO Vereos,

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS D AULA Geoetr Alít e Álger Ler Vetores o sço Professor: Lz Ferdo Nes Dr. 08/Se_0 Geoetr Alít e Álger Ler Íde Vetores o sço Trdesol.... Defção.... Oerções o etores.... Proeção ortogol de etor sore

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

b a c v g g g t a n m p o i a a a m i o t f m p b a m p e l x m x o a a i o r a r n r c h a a s l u u u v m u c a a s n u g r l l i a a e l

b a c v g g g t a n m p o i a a a m i o t f m p b a m p e l x m x o a a i o r a r n r c h a a s l u u u v m u c a a s n u g r l l i a a e l x x x z f f h h q h f z X x x x z f f h h q h f z Pó C S C Cí Nzó Lüí Aí Aó G Oá Xé Ró Lóz Bó X Mqé V Mí Lz Méz Fáz Gz Nz B Có E P C, S. L. D R Hz C ISBN13 978-84-694-1518-4 DL C 634-2011 X : TOP X : TOP

Leia mais

O.o. S ~ S ~.g 'Q) = ~] ~ ~ ~.~ ~ ~~.~! ~.~ i: ~~ J ~ ~ ;a~~.gg~o~ 'Os05 eg~~ Q) = = ~ ~.g ~ ~ ~ I~ e.a ~~.g ~ ~ ~ e,~

O.o. S ~ S ~.g 'Q) = ~] ~ ~ ~.~ ~ ~~.~! ~.~ i: ~~ J ~ ~ ;a~~.gg~o~ 'Os05 eg~~ Q) = = ~ ~.g ~ ~ ~ I~ e.a ~~.g ~ ~ ~ e,~ ; 6 rn cu rn J!lrn t:r'. g.ss.. c rnrno 1'4, rn -] - 'C rl t:r'1'4 rns c t:r' rn 1'4., 5-:g S,rl rl rn 'CrnU cu.(j 0 rl-. c c 'C.. c c..ocu S.. rn. g. "Q» 'Cë rn 0. 0 - c,, 1'4, rn t:r'.s - rnrng. cu.g

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO

11.4 ANÁLISE TRIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 GRAUS DE LIBERDADE POR PISO .4 ANÁLISE RIDIMENSIONAL DE EDIFÍCIOS - MODELO DE 3 RAUS DE LIBERDADE POR PISO RIIDEZ INFINIA NO PLANO 3 grus e lbere / so v u z.4. ANÁLISE ESÁICA. DESLOCAMENOS, FORÇAS E EUAÇÕES DE EUILÍBRIO u v Desloceo

Leia mais

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear

4 SISTEMAS DE EQUAÇÕES LINEARES. 4.1 Equação Linear SISTEMAS DE EQUAÇÕES INEARES. Eqção ier U eqção do tipo = qe epress vriável e fção d vriável e d costte, é chd eqção lier. A plvr lier é tilid tedo e vist qe o gráfico dess eqção é lih ret. D es for, eqção

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

Computação Gráfica Interativa - Gattass 01/10/15

Computação Gráfica Interativa - Gattass 01/10/15 Coção Gáf I - G 0/0/5 Aoo d Ro d Ro P o o P o o Ição oção O q á f? A q dâ do oo? R T Coção Gáf I - G 0/0/5 So Oão Efo Po Gd d I ê do do o Idd do oo oo Foof D Pooo o éo XX! R T Coção Gáf I - G 0/0/5 C o

Leia mais

Sistemas Multivariaveis: conceitos fundamentais

Sistemas Multivariaveis: conceitos fundamentais Departaento de Engenharia Quíica e de Petróleo UFF Diciplina: TEQ- CONTROLE DE PROCESSOS Sitea Multivariavei: conceito fundaentai Prof a Ninoka Bojorge Sitea ultivariávei São itea co vária entrada e aída,

Leia mais

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física)

Duração: 1h30 Resp: Prof. João Carlos Fernandes (Dep. Física) ecânic e Ond O Curo LEC º TESTE 0/0 º Seetre -04-0 8h0 Durção: h0 ep: Prof João Crlo ernnde (Dep íic) TAGUS PAK Nº: Noe: POBLEA (4 vlore) U etudnte de O potou co u igo que conegui delocr u loco de kg pen

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Revisão de Potenciação e Radiciação

Revisão de Potenciação e Radiciação Revisão de Poteição e Rdiição Agrdeietos à Prof : Alessdr Stdler Fvro Misik Defiição de Poteição A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo, sedo u

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva NÁLISE NUMÉRIC Sistems Lieres () º P. ENG. DE Biomédic FUNORTE / Prof. Rodrigo Beeiro Siv Sistems Lieres Coceitos Fdmetis Mtriz (m ) Eemetos: ij ode i =...m e j =... m m m m Sistems Lieres Coceitos Fdmetis

Leia mais

ões Lineares todos de resolução Métodos de resolu Sistemas de Equações Lineares Sistemas de Equa as em uma treliça lculo das forças em uma treli

ões Lineares todos de resolução Métodos de resolu Sistemas de Equações Lineares Sistemas de Equa as em uma treliça lculo das forças em uma treli CCI- CCI- teátic Coptciol Rízes de Sistes ieres Crlos lerto loso Sches Eliição de Gss Gss-Jord Decoposição U Gss-Jcoi Gss-Seidel Itrodção étodos diretos Regr de Crer Eliição de Gss Gss-Jord Decoposição

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para

5 - VETORES. Usamos a notação de matriz-coluna v. ou a identificação v = (x, y, z), para 5 - VETORES 5.- Crcterizção U etor pode ser etedido coo estrtr de ddos ford por cojto de lores o otros eleetos de eso tipo o es estrtr. Sibolicete, deotos etores por letrs iúscls e egrito (por eeplo,,

Leia mais

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma.

Pêndulo de Torção. Objetivo: Introdução teórica. Estudar a dependência do memento de inércia de um corpo com relação à sua forma. FEP Pêndulo de Torção nstituto de Físic d Universidde de São Pulo Pêndulo de Torção Objetivo: Estudr deendênci do eento de inérci de u coro co relção à su for. ntrodução teóric O torque é definido coo:

Leia mais

AULA 4 ACIONAMENTO E CONTROLE COM MÁQUINAS CC

AULA 4 ACIONAMENTO E CONTROLE COM MÁQUINAS CC AULA 4 ACONAMENTO E CONTROLE COM MÁQUNAS CC ASPECTOS DE CONTROLE EM MALHA FECHADA SSTEMA DE CONTROLE DE VELOCDADE COMPLETO POTÊNCA T W REFERÊNCA DE VELOCDADE CONTROLADOR LÓGCA E CONVERSOR V MOTOR - MECANSMO

Leia mais

5 Cálculo Diferencial em IR n

5 Cálculo Diferencial em IR n 5 Cálculo Derecal e IR Irodução Cosdereos a órula que os dá a área de u raulo: b h A b h Coo podeos vercar a área de u râulo depede de duas varáves: base b e alura h. Podeos caracerar esa ução coo sedo

Leia mais

INSTRUCTION MANUAL REGULATED LAB DC POWER SUPPLY PSL SERIES

INSTRUCTION MANUAL REGULATED LAB DC POWER SUPPLY PSL SERIES STRUCT MAUAL RGULATD LAB DC PWR SUPPLY PSL SRS 2A Ans Street, Medwbnk SW 2114 Sydney, Austri. Te: +129809 5022 x: +129809 5077 emi: ses@mtex.m.u Web Site: www.mtex.m.u AB: 35 003 420 077 . L v ' ( D t

Leia mais

Por Ponto. Por intervalo

Por Ponto. Por intervalo rof Lorí Viali, Dr viali@maufrgbr hp://wwwufrgbr/~viali/ Uma A eimação em por objeivo foreer iformaçõe obre parâmero populaioai, edo omo bae uma amora aleaória eraída da população de ieree θ ETIMAÇÃO AMOTRA

Leia mais

bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E ", e, o B o ' r F o 0 P. t r P

bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E , e, o B o ' r F o 0 P. t r P bl O\ o G o b< oppbo I do cto>- pc+> c x g o P. P P o F S G t r O P ' O P l t C t > B o t ' l o i d P g F l P P c f F E ", e, o B o ' r F o 0 P. t r P. p o 5 ' - r P r d b F F l < O c+ c+ Gr p,..t'd C

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri 1. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA 5 5 FÍSICA FUNDAMENTAL o Seere de Prof. Maurício Fabbri a Série de Exercício - Cineáica Pare I Moieno unidienional. DESCRIÇÃO MATEMÁTICA DO MOVIMENTO E SISTEMA DE REFERÊNCIA (I) O oieno de u corpo é regirado

Leia mais

Resposta de Modelos Dinâmicos Variáveis de estado

Resposta de Modelos Dinâmicos Variáveis de estado epot de Modelo Dinâmio Vriávei de etdo Outro Proeo de Seprção Prof Ninok Bojorge Deprtmento de Engenri uími e de Petróleo UFF ontrole Feedbk... ontinução ontroldor G tudor G V POESSO G P G Senor Introdução

Leia mais

PL - Casos Especiais

PL - Casos Especiais PL - Csos Especiis MINIMIAÇÃO Eiste fors de solução: ) Método Siple: i Vriável pr etrr bse: quel que reduz (o ivés de uetr) fução iiteste de otilidde: verificr se pode diiuir o se uetr o vlor de lgu vriável

Leia mais

RELAÇÃO DE TURMA I D L. E. P o r t. H i s t. G e o g r.

RELAÇÃO DE TURMA I D L. E. P o r t. H i s t. G e o g r. O UÁ U ÇÃO U 7º v 07/08 l d Bá º m º 0 B BO X X X X X X X X X X - X 004638 0 É BO X X X X X X X X X X - X 004639 03 BO O BUÃO 7 X X X X X X X X X X X - 00434 04 O O O X X X X X X X X X X - X 00470 05 O

Leia mais

tr EU H."i Ed <Ft En ,-t;dt.'j oa 5 F.> ?-.ES >.= ii EN -</9Fl _FU ca pla a- c)-e a-t- .Pi ce* ir. F. FT* te l^' ooo\ Q.a tr o^q Et C) slb Ca rr vti

tr EU H.i Ed <Ft En ,-t;dt.'j oa 5 F.> ?-.ES >.= ii EN -</9Fl _FU ca pla a- c)-e a-t- .Pi ce* ir. F. FT* te l^' ooo\ Q.a tr o^q Et C) slb Ca rr vti ?/ :; : 5 G VJ. iiu'. \..c G 3.;i.. f) \J + '= il 'i rl c pl _ ii >.= h:,;.'j e < n."i r r. 1! ' nr 9 ^^, r.!. l k J J l = r*r ( r f = 9 >,i r!.?. b r r &'= b 9 c l f l^' T*.i ir.. Gr

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado

07/11/2016 UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS DA TERRA DEPARTAMENTO DE GEOMÁTICA AJUSTAMENTO II GA110. Prof. Alvaro Muriel Lima Machado 7//6 UNIVERSIDDE FEDERL DO PRNÁ SEOR DE IÊNIS D ERR DEPRMENO DE GEOMÁI JUSMENO II G Pof. lvo Miel Lim Mchdo jtmeto com Ijçõe Lih com zeo mtiz Só obevçõe Lih com zeo mtiz B Sem obevçõe Eqçõe de codição

Leia mais

Fig. 1. Problema 1. m = T g +a = 5kg.

Fig. 1. Problema 1. m = T g +a = 5kg. ÍSICA - LISA - 09/. U bloco está suspenso e u elevdor que sobe co celerção de /s (figur ). Nests condições tensão n cord (peso prente) é de 60 N. Clcule ss do bloco e seu peso rel (5 kg; 50 N). ig.. roble.

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

Capítulo V ESPAÇOS EUCLIDIANOS

Capítulo V ESPAÇOS EUCLIDIANOS Cpítlo V EPAÇO EUCLIDIANO Cpítlo V Espços Eclidios Cpítlo V Prodto Esclr em Espços Vectoriis Chm-se prodto esclr o espço ectoril E m plicção E E R qe todo o pr rel ( ) de ectores de E ssoci m úmero rel

Leia mais

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) :

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) : Epço Eo Eqo or corolo covcol - rlção r í-r, o fção rfrêc, o corolo moro - crção qçõ o m m rmo qçõ frc ªorm q pom r com m qção frcl ª orm form mrcl. O o oção mrcl mplfc m mo rprção mmác m qçõ. O mo úmro

Leia mais

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial

Plano de Aulas. Matemática. Módulo 18 Introdução à geometria espacial lno de ul Memáic Módulo 18 Inodução à geomei epcil Reolução do eecício popoo Reomd do conceio ÍTULO 1 1 ) Não. b) Sim. O ê pono deeminm o plno que o conêm. c) Não peence. d) Infinio pono. O pono, e I e

Leia mais

Modelo Matemático de Armaduras Longitudinais e Transversais em Pilares como Placa Ortotrópica

Modelo Matemático de Armaduras Longitudinais e Transversais em Pilares como Placa Ortotrópica odeo emáico de Armdr Logidii e Trveri em Pire como Pc Ororópic See Soz de Oiveir Boi Proeor Ad epo de Ciêci do erii, VR, FF, 755-5, Vo Redod, RJ -mi: ee@vm..r R Ro e Siv Proeor Aocido epo de gehri Civi,

Leia mais

'!"( )*+%, ( -. ) #) 01)0) 2! ' 3.!1(,,, ".6 )) -2 7! 6)) " ) 6 #$ ))!" 6) 8 "9 :# $ ( -;!: (2. ) # )

'!( )*+%, ( -. ) #) 01)0) 2! ' 3.!1(,,, .6 )) -2 7! 6))  ) 6 #$ ))! 6) 8 9 :# $ ( -;!: (2. ) # ) !" #$%&& #% 1 !"# $%& '!"( )*+%, ( -. ) #) /)01 01)0) 2! ' 3.!1(,,, " 44425"2.6 )) -2 7! 6)) " ) 6 #$ ))!" 6) 4442$ ))2 8 "9 :# $ ( -;!: (2. ) # ) 44425"2 ))!)) 2() )! ()?"?@! A ))B " > - > )A! 2CDE)

Leia mais

1. Realimentação de Estado: sistemas MIMO

1. Realimentação de Estado: sistemas MIMO Realimentação de Estado: sistemas MIMO 1. Realimentação de Estado: sistemas MIMO 2. Estimadores de Estado: sistemas MIMO pag.1 Teoria de Sistemas Lineares Aula 20 Realimentação de Estado: sistemas MIMO

Leia mais

s t r r t r tr és r t t t

s t r r t r tr és r t t t s rã ê s r s t r r t r tr és r t t t ss rt çã r t çã r str r r t r ár r t Pr ss r 1 r rs s Pr s t r t úr Pr t r st rr Pr t r ã s Pr t r ár r t Novembro, 2015 s t r r t r tr és r t t t 2r t s rã ê s rs

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

LINEARIZAÇÃO DE SISTEMAS DINÂMICOS

LINEARIZAÇÃO DE SISTEMAS DINÂMICOS Edardo obo sosa Cabra INEARIZAÇÃ DE SISTEAS DINÂICS oação e ecessdade Grade are das eoras de rojeo de sseas de coroe ora deseodas ara sseas eares oré racaee odos os sseas reas são ão-eares qe azer? Pode-se

Leia mais

Vestibular Unificado PUC-SP/2014 (Verão) Por Instituição / Curso / Turno

Vestibular Unificado PUC-SP/2014 (Verão) Por Instituição / Curso / Turno 11 AE11 ADMINISTRACAO MATUTINO PUC-SP (MONTE ALEGRE) 0 11 AE13 ADMINISTRACAO NOTURNO PUC-SP (MONTE ALEGRE) 0 13 AE11 ADMINISTRACAO MATUTINO PUC-SP (BARUERI) 16 AE13 ADMINISTRACAO NOTURNO PUC-SP (IPIRANGA)

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálclo Nérico Resolção Néric de Sistes ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@nivsf.ed.br ATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUÉRICO DA UFCG - www.dsc.fcg.ed.br/~cn/ Sistes ineres itos

Leia mais

1. Estatística Descritiva

1. Estatística Descritiva . Esaísca Descrva Tabelas de Frequêcas a. Dados qualavos ou quaavos quado os valores se reee Frequêca absolua sles (F ) úero de vezes que cada valor dso da varável observada se reee (,, ). Te-se que: F

Leia mais

! "#" $ %&& ' ( )%*)&&&& "+,)-. )/00*&&& 1+,)-. )/00*&2) (5 (6 7 36 " #89 : /&*&

! # $ %&& ' ( )%*)&&&& +,)-. )/00*&&& 1+,)-. )/00*&2) (5 (6 7 36  #89 : /&*& ! "#" %&& ' )%*)&&&& "+,)-. )/00*&&& 1+,)-. )/00*&2) 3 4 5 6 7 36 " #89 : /&*& #" + " ;9" 9 E" " """

Leia mais

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2).

MATEMÁTICA. 01. Sejam os conjuntos P 1, P 2, S 1 e S 2 tais que (P 2 S 1) P 1, (P 1 S 2) P 2 e (S 1 S 2) (P 1 P 2). Demonstre que (S 1 S 2) (P 1 P 2). GGE RESOE - VESTIBULAR IME MATEMÁTICA) MATEMÁTICA Sj o ojuo S S qu S ) S ) S S ) ) or qu S S ) ) : Sj S S Coo S S ão ou l r o rol oo uor r grl) qu oo S ão logo oo qurío orr F F F F F ) Crufrê ro -) ro

Leia mais

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos:

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos: Crso de iâica das Esrras 5 III ESTRUTURAS COM VÁRIOS GRAUS E LIBERAE III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas

Leia mais

P R E G Ã O P R E S E N C I A L N 145/2010

P R E G Ã O P R E S E N C I A L N 145/2010 P R E G Ã O P R E S E N C I A L N 145/2010 D A T A D E A B E R T U R A : 2 9 d e d e z e m b r o d e 2 0 1 0 H O R Á R I O : 9:0 0 h o r a s L O C A L D A S E S S Ã O P Ú B L I C A: S a l a d a C P L/

Leia mais

Unidade VI - Estabilidade de Sistemas de Controle com Retroação

Unidade VI - Estabilidade de Sistemas de Controle com Retroação Uidde VI - Etilidde de Sitem de Cotrole com Retroção Coceito de Etilidde; Critério de Etilidde de Routh-Hurwitz; A Etilidde Reltiv de Sitem de Cotrole com Retroção; A Etilidde de Sitem com Vriávei de Etdo;

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Mecânica

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Mecânica Univeridade Federal do Rio Grande do Sl Eola de Engenaria Deparaeno de Engenaria Meânia ENG 02 Máqina de Flxo I Tra A Prof. Alexandre Vaginki de Pala (depala@frg.br) Reolção da qeõe (2) e () da lia de

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

UNIVERSIDADE FEDERAL DE SÃO CARLOS CAMPUS SOROCABA PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO DIOGO BANDEIRA DE SOUZA

UNIVERSIDADE FEDERAL DE SÃO CARLOS CAMPUS SOROCABA PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO DIOGO BANDEIRA DE SOUZA UNIVERSIDADE FEDERAL DE SÃO CARLOS CAMPUS SOROCABA PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÃO DIOGO BANDEIRA DE SOUZA O CONCEITO DE PRÁXIS EDUCATIVA E PRÁXIS EDUCACIONAL NO CURRÍCULO DAS ESCOLAS ESTADUAIS DE

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

12 ru e d e R ib e a u v illé. T é l. :03.88.57.51.7 1 / Fa x : Ed it é le 13 /05/2016 à 17 :23 Page : 1 / 12

12 ru e d e R ib e a u v illé. T é l. :03.88.57.51.7 1 / Fa x : Ed it é le 13 /05/2016 à 17 :23 Page : 1 / 12 R A M F A R A N D O L E 12 ru e d e R ib e a u v illé 6 7 7 3 0 C H A T E N O IS R e s p o n s a b le s d u R e la is : B ie g e l H. - R o e s c h C. T é l. :03.88.57.51.7 1 / Fa x : * * * * * * * * *

Leia mais

LOGARÍTMOS 1- DEFINIÇÃO. log2 5

LOGARÍTMOS 1- DEFINIÇÃO. log2 5 -(MACK) O vlor de o, é : 00 LOGARÍTMOS - DEFINIÇÃO ) -/ b)-/6 c) /6 d) / e) -(UFPA) O vlor do ( 5 5 ) é: ) b) - c) 0 d) e) 0,5 -( MACK) Se y= 5 :. ( 0,0),etão 00 y vle : 5 )5 b) c)7 d) e)6 - ( MACK) O

Leia mais

GRAVITAÇÃO UNIVERSAL

GRAVITAÇÃO UNIVERSAL GVIÇÃO UNIVESL z- u ci féric u fr chubo rio, l qu u uprfíci ngnci uprfíci xrn fr chubo p plo cnro priii fr chubo r D coro co Li Grição Unirl, qul rá forç co qu fr chubo rirá u pqun fr locliz à iânci, o

Leia mais

< ()& : 555>?

< ()& : 555>? P Ú s Pr s t Pr t Pr r str Pr ss t át P q çõ s r ç s çõ s s é s r r t r Pr r sé rt r P Ú s Pr s t Pr t Pr r str Pr ss t át P q çõ s r ç s çõ s s é s r ss rt çã r s t rt s r q s t s r t çã tít str t r r

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

Estados e suas equações

Estados e suas equações UI4_eo- ntunh Not e etuo uefíie teoinâi 5//7 g. / to e u equçõe águ óli ou líqui o C: = / te, /kg. o o e águ: /(.),4[. /(kgole.k)]7k/([kgole/kg]) /kg UI4_eo- ntunh Not e etuo uefíie teoinâi 5//7 g. / Oee

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

Intervalos de confiança

Intervalos de confiança 0 Itervalo de cofiaça 6.. A etiação por itervalo Noralete o proceo de ivetigação de u parâetro eceitao ir alé da ua etiativa potual ˆ. O fato de ão e cohecer o valor de pode cauar ua ieguraça e levar a

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes

Modelo vetorial: análise de redes. Análise de redes. Algoritmos de análise de redes. Análise de redes. Análise de redes Sisteas de Iforação Geográfica II ula lexadre Goçalves DECivil - IST alexg@civil.ist.utl.pt Modelo vetorial: aálise de redes 1. : probleas 1. Caihos de eor custo. Árvores. lgoritos. valiação da rede 1.

Leia mais

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013

Física III Escola Politécnica GABARITO DA PS 27 de junho de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA PS 27 de junho de 2013 Questão 1 Um crg pontul Q > 0 se encontr no centro de um esfer dielétric mciç de rio R e constnte dielétric κ. Não há crgs

Leia mais