5 Cálculo Diferencial em IR n

Tamanho: px
Começar a partir da página:

Download "5 Cálculo Diferencial em IR n"

Transcrição

1 5 Cálculo Derecal e IR Irodução Cosdereos a órula que os dá a área de u raulo: b h A b h Coo podeos vercar a área de u râulo depede de duas varáves: base b e alura h. Podeos caracerar esa ução coo sedo A : R b h b h a que é ua ução real de duas varáves reas. R Deção Sea correspodêca al que D R. Ua ução real de varáves reas é ua ode: : D R... doío da ução: D R... coradoío da ução: D {... :... D} ' varáves depedees: varável depedee:. Eeplo Calcule o doío da ução. Ora é ua ução que depede de duas varáves e loo D R. Por deção ve: { R : } { R : } { R : } D

2 Ua ve que esaos a esudar uções de váras varáves e aededo à deção de dervada a sedo alar para esas uções e dervada parcal. Deção Sea R R D :. A dervada parcal de e orde a é a ução: h h h l. Eeplo Deere as dervadas parcas da ução o poo de coordeadas. Dado que esa é ua ução de duas varáves eos duas dervadas parcas: ode usaos as reras de dervação. Eercíco Calcule as dervadas parcas da ução. Noação... Quado calculaos sca que cosderaos varável e as resaes varáves são cosderadas cosaes.

3 Sedo... ua ução que depede de varáves abé... são uções que depede das varáves. Ass a sedo alar e dervadas de orde superor. Vaos cosderar o caso de ua ução que depede de duas varáves e calculeoas odas as dervadas parcas desa ução aé à orde. Teos: Dervadas de ª orde: ; Dervadas de ª orde: ode se desa dervadas sas. De odo aáloo se dera as dervadas de orde superor à ª. Noação Os dos pos de oação ê coveções derees para dcar a orde de dervação ass: drea a para esquerda :orde da esquerda a para drea :orde da

4 Eeplo Calcule as dervadas de ª orde da ução l Dervadas de ª orde: Dervadas de ª orde: l ;.. Acréscos e Derecas Sea.... Cosdereos... o acrésco as varáves depedees. Ao acrésco correspode o acrésco a varável depedee sedo. Deção Sea... ua ução real de varáves reas. O vecor de derecas d d d... d as varáves depedees é dedo por d.e. d d... d co o vecor dos acréscos as varáves depedees. O derecal d a varável depedee é dedo por d d d... d. Aededo à deção aeror e sabedo que d quado d d. cocluos que

5 Eeplo Calcule o derecal oal para wu. Sabeos que: d d d du u. Eão: dw w w w w u d u d u d u du u Eeplo Usado derecas calcule u valor aproado para o acrésco de - quado vara de - para -... d.. d.. 7 oo: d d d Teorea da dervada da ução coposa Rera da Cadea Teorea... ução derecável de varáves... ução de varáves... co dervadas parcas coíuas Eão

6 Eeplo Sea usrs r co sl e re. Calcule u. Ora: e e e s r r u s s u u l l.. Coroláro... ução derecável de varáves... ução de ua varável co dervada coíua. Eão:... Eeplo Sea ul co e Calcule u. u u u. 5.. Dervadas parcas. Noção de Gradee e de Hessaa Deção Sea IR IR D : e D.... O vecor Gradee e a ar Hessaa H são dedos respecvaee por

7 7 e K. Teorea de Schwar: Sea IR IR D : al que... e ese ua bola abera cerada e D e são coíuas e eão e. Noa: ese eorea arae a ualdade das dervadas sas sob deeradas codções.

8 8 Eercíco : Calcule o radee e a hessaa das uções.:.: l l.: 5.. Ereos de Fuções ão Codcoadas Deção : A é deda posva eava se { } IR A T \. Propredade: A ar sérca é deda posva eava sse T D A ode - ar raular eror: a... D - ar daoal: a... Eeplo :.: A A A é deda posva

9 9.: 9 B B 9 B é deda Propredade: A ar sérca deda posva eava eão a... Cora-recíproco: A ar sérca: a... eão A ão esá deda posva e eava. Eeplo : A ar deda Deção. Chaaos eor prcpal de orde k k de ua ar quadrada A de orde k ao eor cua daoal é cosuída pelos preros k eleeos da daoal prcpal de A.

10 Eeplo : Sea A. ; ; A Eercíco : Ideque os eores prcpas das seues ares.:.: Ouro éodo para averuar a aurea de ua ar sérca orde é o seue: A de Cosderado a cadea dos eores prcpas da ar A: ; k... A é deda posva. k k k... K... A ; é deda eava.... Se se vercar ua desas ordeações aé cera orde as a parr daí odos os eores são ulos eão ada se coclu. E odos os resaes casos a ar A é deda.

11 Eercíco : Averúe a aurea das seues ares sércas.:.: 5 Teorea. Codções de Opaldade de ª Orde Sea : D IR IR ua ução co dervadas parcas de ª orde. Se eão possu u ereo local e D. Teorea. Codções sucees de opaldade de ª orde: Sea : D IR IR ução co dervadas parcas de ª orde coíuas e D e Eão é deda posva eava possu u ío local áo local e.

12 Eeplo : 5. Codções de ª orde: ± oo P e Q são poos crícos Codções de ª orde: P oo é deda posva é ío local. Q oo é deda Q é poo sela.

13 Eercíco : Calcule aravés da eora dos eores prcpas caso esa. os ereos e/ou os poos sela da ução 5.. Ereos de Fuções Codcoadas: ulplcadores de arae O éodo dos ulplcadores de arae pere ober os poos os quas ua ução suea a deeradas codções pode er ereos. Teorea. Sea... u ereo da ução... suea às resrções... ; Se λ λ... λ... λ λ... Eão λ λ... λ : λ λ. Aos úeros λ... chaaos ulplcadores de arae λ λ O eorea ara que os ereos da ução suea às resrções... só pode ocorrer e poos de esacoardade da ova ução... λ λ... λ. Ese u processo aalíco para decdr se u poo de esacoardade da ução λ é áo ou ío da ução ;... : suea às codções

14 Cosdere-se a ar T J J λ λ λ λ λ O O K O O H ode J ; T J é a rasposa de J é a ar ula e é a ar hessaa de e λ k o eor prcpal de orde k da ar λ H Eão é áo... é ío... par é áo... é ío... ípar

15 Eeplo 5. Calcule os ereos de resrções 8 e. Resolução: suea às λ λ λ 8 λ λ λ λ λ λ λ λ 8 Subrado à equação a equação obeos: 5 λ λ λ Se ve: λ λ λ 8 λ λ 5 5 λ λ 5 5 Se λ ve: λ 8 λ λ λ λ 5

16 Teos resrções varáves dode Eão e H λ λ 5 λ 5 5 H 5 5 λ 5 5 é áo λ 8 λ 8 λ H λ é ío 8 8 λ H λ é ío Eercíco 5: Calcule aravés dos ulplcadores de arae caso esa os ereos e/ou os poos sela da ução 5 resrção 5 8. suea à

17 5.. Eercícos. Calcule o radee das seues uções: a b v u lv u e u v c. Calcule a hessaa das seues uções: a l e b. Sea : IR IR ua ução coíua al que e d. osre que [ ] T... Deere os ereos e os poos sela para as seues uções: a b c 5. Use os ulplcadores de arae para deerar os ereos de sueos aos vículos dcados. a b c 7. Cosdere a ução real de duas varáves reas deda por suea à codção. a Verque que o poo P é poo críco de suea à resrção dada quado o ulplcador de arae é λ 5. b osre que suea à resrção dada e u ío local e P.

18 7. Sobre ua ução sabe-se que os úcos poos que sasae a codção são e e que Idque uscado devdaee o valor lóco das seues arações: a Os poos crícos de são apeas e. b A represeação aalíca de pode ser c e u áo local e d O poo é poo sela de. e é deda eava. 8. Sabe-se que a ar hessaa de ua ução é: a osre que C C C co C C e C cosaes reas. b Sabedo que é u poo críco de deere as cosaes C C e C. c Coee a seue aração: Para os valores C C e C ecorados a alíea aeror podeos coclur que é u ío local de. 9. Cosdere a ução real de duas varáves reas. a osre que ade u úco ío e deere-o. b Deere o valor do real β para o qual o ío da ução suea à codção de lação β é ual ao ío de ecorado a alíea aeror.

19 . Sabe-se que o radee de ua ução é α α IR [ a osre. b Deere se possível os valores de α para os quas ade poos crícos. No caso de esr α quaos poos crícos ese?. ] T c Sea h : IR IR ua ução al que h. Calcule o radee da ução o poo. hd Coee a seue aração : A ução e u áo local e. U epresáro esa que as vedas auas e lhares de udades são e ução dos valores vesdos e publcdade a elevsão e rádo. A ução que especca esa relação é V ode é o valor e lhões de euros asos a publcdade a rádo e N V V é o úero de udades e lhares veddas aualee. a Deere quao deve o epresáro asar o oal e publcdade a elevsão e a rádo de ora a aar as vedas auas. Nese caso quaas udades espera o epresáro veder? b Sabedo que para o veseo prevso e publcdade é de.5 lhões de euros deere a quaa que deve asar e publcdade a elevsão e a quaa que deve asar e publcdade a rádo de ora a aar o úero de udades veddas.

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO

TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO CAPÍTULO 7 TRANSITÓRIOS MECÂNICOS DO MOTOR DE INDUÇÃO 7.1 INTRODUÇÃO Vaos cosderar o caso de u oor de dução dusral, aleado por esões rfáscas balaceadas. Tal oor e a caracerísca orque-velocdade represeada

Leia mais

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12

Tratamento de Dados 2º Semestre 2005/2006 Tópicos de Resolução do Trabalho 2 = 12 Traaeno de Dados º Seesre 5/6 Tópcos de Resolução do Trabalho Quesão a Para agrupar os dados e classes ora consderados os valores das rendas aé 5. ua vez que a parr dese valor os dados se enconra basane

Leia mais

1. Tensão Uma das repostas do MC ao carregamento

1. Tensão Uma das repostas do MC ao carregamento Dscla RM-LEG, Z. Drovová, DEC/FCT/UNL, 6. Tesão Ua das reosas do MC ao carregaeo. Vecor das esões forças eras ssea ssea core ssea A F F - ssea ssea ssea B Cojuo( ssea + ssea ) esá e equlíbro Cojuo( ssea

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria

Receita do Método da Aproximação Polinomial Global Aplicado a Problemas. Unidirecionais sem Simetria Recea do Méodo da Aromação olomal Recea do Méodo da Aromação olomal Global Alcado a roblemas Esruura Geral do roblema: Udrecoas sem Smera y y y F y o domío : 0 < < e >0. Suea às codções de cooro: CC: G

Leia mais

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo Capíulo 3 SLITs Siseas Lieares e Ivariaes o Tepo 3. Irodução 3.2 Repreação e odelo de esado 3.3 Siseas SISO 3.4 Siseas MIMO uli-diesioais 3.5 Modelo de espaço de esados coíuos 3.6 Resposa ipulsiva e covolução

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II)

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II) Cálulo Nuéro Iterpolação Poloal Ajuste de Curvas (Parte II) Pro Jore Cavalat joreavalat@uvasedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdsuedubr/~u/ Ajuste de Curvas

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO

2-TRANSFORMAÇÃO DE COORDENADAS: PARÂMETROS DE REPRESENTAÇÃO 2-TANSFOMAÇÃO DE COODENADAS: PAÂMETOS DE EPESENTAÇÃO 2.1 Cosseos Dreores e a Mar de oação Seam dos ssemas caresaos um de referêca e ouro fo um corpo rígdo defdos pelos ssemas ( e ( respecvamee que são

Leia mais

1. Tensão Uma das repostas do MC ao carregamento. F r. forças internas. 1. Vector das tensões. sistema 3. sistema 2. sistema 1. sistema 2.

1. Tensão Uma das repostas do MC ao carregamento. F r. forças internas. 1. Vector das tensões. sistema 3. sistema 2. sistema 1. sistema 2. 1. Tesão Ua das eosas do MC ao caegaeo 1. Veco das esões foças eas ssea 1 ssea coe ssea 1 A F F - ssea 3 ssea 3 ssea B Cojuo( ssea 1 ssea ) esá e equlíbo Cojuo( ssea 1 ssea 3) esá e equlíbo Cojuo( ssea

Leia mais

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional

CCI-22 CCI-22. 6) Ajuste de Curvas. Matemática Computacional CCI- CCI- eá Copuol Ajuse de Curvs éodo dos íos Qudrdos Regressão er Irodução CCI- éodo dos íos Qudrdos Regressão ler Ajuse u polôo Ajuse ours urvs Quldde do juse Irodução CCI- éodo dos íos Qudrdos Regressão

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

1. Estatística Descritiva

1. Estatística Descritiva . Esaísca Descrva Tabelas de Frequêcas a. Dados qualavos ou quaavos quado os valores se reee Frequêca absolua sles (F ) úero de vezes que cada valor dso da varável observada se reee (,, ). Te-se que: F

Leia mais

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe

y z CC2: na saída do reator: z = 1: 0. Pe dz Os valores característicos do problema são as raízes de: Da Pe 0 Pe Pe COQ-86 Méodos Nuércos para Ssas Dsrbuídos Explos Ilusravos d EDO co Problas d Valors o Cooro -) Modlo sacoáro do raor co dsprsão soérco Coo o obvo ds sudo d caso é lusrar o ovo procdo avalar o su dspo

Leia mais

LINEARIZAÇÃO DE SISTEMAS DINÂMICOS

LINEARIZAÇÃO DE SISTEMAS DINÂMICOS Edardo obo sosa Cabra INEARIZAÇÃ DE SISTEAS DINÂICS oação e ecessdade Grade are das eoras de rojeo de sseas de coroe ora deseodas ara sseas eares oré racaee odos os sseas reas são ão-eares qe azer? Pode-se

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica MESTRADO EM IÊNIAS DE GESTÃO/MBA MÉTODOS QUANTITATIVOS APIADOS À GESTÃO V Funções Eponencal, Poênca e ogaríca V- FUNÇÕES EXPONENIA, POTÊNIA E OGARÍTMIA. U capal, coposo anualene a ua aa de juro anual durane

Leia mais

Conceitos fundamentais

Conceitos fundamentais CF Coceo fdamea Exem parâmero qe caracerzam o a e qe permem a comparação ere ele. Valor médo Para m al qe e repee com m deermado ervalo peródco a expreão para calclar o valor médo ambém é ea. < < Ex: A

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

Sistemas Série-Paralelo e

Sistemas Série-Paralelo e Capíulo 5 Cofabldade de semas ére-paralelo e Msos Flávo. Foglao uposções comus a odos os ssemas aalsados Cofabldade de ssemas é avalada um poo o empo; ou seja, compoees apreseam cofabldades esácas em.

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

Prof. Alvaro Vannucci

Prof. Alvaro Vannucci Pro. Alvaro Vaucc Lebreos o roblea dos sucessvos deslocaetos aleatóros rado - DRUNK - walk Cosderaos cada deslocaeto asso dado ela essoa coo tedo sere o eso coreto L. Chaaos de a robabldade de asso ara

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1 CAPITULO VII DERIVAÇÃO E DIFERENCIAÇÃO EM R Dervadas parcas de fuções reas de varáves reas Sea f ( ) f ( ) uma fução de A R em R e cosdere-se um poto a (a a a ) A Fado a 3 a 3 a cosdere-se a fução parcal

Leia mais

MATRIZES 1. INTRODUÇÃO

MATRIZES 1. INTRODUÇÃO Professor Murco Lu Professor Murco Lu MTRIZES INTRODUÇÃO Qudo u prole evolve u grde úero de ddos (coses ou vráves), dsposção deses u el regulr de dupl erd propc u vsão s glol do eso s els ss fords são

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

VOLUME Considerando a transformação isocórica: p T. = com T em Kelvin. T 1. N p = K. = 1, N/m 2. Logo, p 2.

VOLUME Considerando a transformação isocórica: p T. = com T em Kelvin. T 1. N p = K. = 1, N/m 2. Logo, p 2. Físca III Aual OLUME AULAS E : GASES ERFEIOS EXERCÍCIOS ROOSOS Cosderado a trasoração socórca: co e Kelv 5 N 7, ( 7 + 7) K ( 7 + 7) K Logo,,8 5 N/ Esse roblea ode ser resolvdo aalsado-se o úero de oléculas

Leia mais

Secção 7. Sistemas de equações diferenciais.

Secção 7. Sistemas de equações diferenciais. 7. Sisemas de equações difereciais Secção 7. Sisemas de equações difereciais. (Farlow: Sec. 6., 6.4 e 6.6) No caso geral, um sisema de equações difereciais de primeira ordem pode ser represeado da seguie

Leia mais

Introdução à Decomposição de Dantzig Wolfe

Introdução à Decomposição de Dantzig Wolfe Itrodução à Deoposção de Datzg Wolfe PNV-5765 Probleas de Prograação Mateáta Aplados ao Plaeaeto de Ssteas de Trasportes Maríto Prof. Dr. Adré Bergste Medes Bblografa Utlzada WILLIAMS, H.P. The forulato

Leia mais

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the -4-6 -8 - - -4-6 -8 Frequecy khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy db/hz Sie Wave Joi Acuaor Joi Sesor Revolue

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Processos Estocásticos

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Processos Estocásticos Deparameo de Iformáica Disciplia: do Desempeho de Sisemas de Compuação Variável leaória Real Variável leaória x(w) Processos Esocásicos R Prof. Sérgio Colcher Medida de Probabilidade colcher@if.puc-rio.br

Leia mais

Diferença entre duas médias. Diferença entre duas proporções (π 1 - π 2 = ) Igualdade entre duas variâncias. Prof. Lorí Viali, Dr.

Diferença entre duas médias. Diferença entre duas proporções (π 1 - π 2 = ) Igualdade entre duas variâncias. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@a a.ufrgs..ufrgs.br hp://www.ufrgs. ://www.ufrgs.br br/~viali/ Depedees Idepedees Tese para aosras eparelhadas Variâcias Cohecidas Variâcias Descohecidas Tese z uposas iguais

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

Engª de Sistemas e Informática Fundamentos de Telecomunicações 2004/2005. Quando a frequência da portadora é constante f ( 3) onde θ

Engª de Sistemas e Informática Fundamentos de Telecomunicações 2004/2005. Quando a frequência da portadora é constante f ( 3) onde θ Egª de Sseas e Ioráca Fudaeos de Telecoucações 004/005 Modulação de ase e de requêca.1 Coceos báscos Dada a oradora susodal, co agulo = A cos θ () ( ()) A sua requêca saâea é obda or dervação de ( dθ ()

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES 1

A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES 1 A DESIGUALDADE DE CHEBYCHEV HÉLIO BERNARDO LOPES Resumo. A desgualdade de Chebychev cosu um resulado de grade mporâca a esmação da probabldade de acoecmeos orudos de experêcas aleaóras de que se descohece

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SHOOL OF BSINESS AND EONOMIS ÁLLO I º Ssr / EXAME ª ÉOA TÓIOS DE RESOLÇÃO Juho Duração: horas iuos Não é priido o uso d calculadoras Não pod dsagrafar as folhas do uciado Rspoda d fora jusificada

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8 Estatístca Quâtca Sstea físco co utos copoetes trataeto etalhao copleo aborae estatístca. Usaa co sucesso a físca clássca para escreer ssteas teroâcos. Relação etre propreaes obseraas e o coportaeto proáel

Leia mais

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos:

Curso de Dinâmica das Estruturas 25. No exemplo de três graus de liberdade (GLs) longitudinais, para cada uma das partículas, temos: Crso de iâica das Esrras 5 III ESTRUTURAS COM VÁRIOS GRAUS E LIBERAE III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas

Leia mais

Exercícios de Análise de Sinal

Exercícios de Análise de Sinal Exercícios de Aálise de Sial Faculdade de Egeharia da Uiversidade do Poro Seembro 006 recolha de problemas de diversos auores edição feia por: H. Mirada, J. Barbosa (000) M. I. Carvalho, A. Maos (003,006)

Leia mais

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca de 0 Ω. a) Calcular o valor da desdade de urezas,

Leia mais

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos DISPOSITIVOS ELECTRÓNICOS Probleas Resolvdos CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Capítulo 1 Tensão. (corresponde a σ

Capítulo 1 Tensão. (corresponde a σ Capíulo Tesão Problema Cosidere o esado bidimesioal de esões idicado a figura. Deermie: a) os valores e as direcções das esões pricipais do esado dado; b) compoees irísecas o plao que faz o âgulo de 0º

Leia mais

5 Análise Não-Linear pelos Métodos de Galerkin-Urabe e Balanço Harmônico

5 Análise Não-Linear pelos Métodos de Galerkin-Urabe e Balanço Harmônico álise Não-Liear pelos Méodos de Galerki-Urabe e Balaço Harmôico expressão (.7) obida o Capíulo para a fução de Larae é uilizada essa seção para a obeção das equações difereciais de movimeo uilizadas a

Leia mais

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos

Fórmulas de quadratura do tipo Gauss associadas aos polinômios similares: propriedades e exemplos Fórls de qdrr do po Gss ssocds os polôos slres: propreddes e exeplos Algcoe Sr Rg Depo de Cêcs de Copção e Esísc IILCE UNESP 554- São José do Ro Preo SP E-l: rg@lceespr Del Olver Veroe Uversdde Federl

Leia mais

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança Regressão Smples Parte III: Coefcete de determação, regressão a orgem e método de máxma verossmlhaça Coefcete de determação Proporção da varabldade explcada pelo regressor. R Varação explcada Varação total

Leia mais

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS

4. VIBRAÇÃO FORÇADA - FORÇAS NÃO SENOIDAIS VIBRAÇÕES MEÂNIAS - APÍTULO VIBRAÇÃO ORÇADA 3. VIBRAÇÃO ORÇADA - ORÇAS NÃO SENOIDAIS No capíulo ao suou-s a vbação oçaa ssas co u gau lba, subos a oças cação oa soal. Es suo po s so paa aplcaçõs quao as

Leia mais

Formulação Conservativa X Não-Conservativa para Sistemas Hiperbólicos. Prof. Diomar Cesar Lobão UFF - Volta Redonda, RJ Nov 2008

Formulação Conservativa X Não-Conservativa para Sistemas Hiperbólicos. Prof. Diomar Cesar Lobão UFF - Volta Redonda, RJ Nov 2008 ormuação Coservava X ãocoservava para Ssemas Hperbócos Prof. omar Cesar Lobão U Voa Redoda, RJ ov 8 ovação: Apcações Ídce éodo ãocoservavo éodo Coservavo efção do Probema de Rema éodo de fereças as para

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016 aculdade de Egeharia Aálise Maemáica 2 MEEC 25/26 ucioameo aculdade de Egeharia Teórico-práicas exposição e discussão da maéria resolução de exercícios Trabalho exra-aula resolução dos exercícios proposos

Leia mais

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076 = 2. ], T 2 = conhecido como T 2 de Hotelling

NOTAS DE AULA DA DISCIPLINA CE076 = 2. ], T 2 = conhecido como T 2 de Hotelling NOTAS DE AULA DA DISCIPLINA CE76 4 INFERÊNCIA SOBRE O VETOR DE MÉDIAS 4. TESTE PARA UM VETOR DE MÉDIAS µ Lembrado o caso uvarado: H : µ µ H : µ µ Nível de sfcâca: α Estatístca do teste: t X µ s/ ~ t Decsão:

Leia mais

Funções de várias variáveis

Funções de várias variáveis 3 Fuções de váras varáves Graça Peraça e Raael Mooo ª Edção PREFÁCIO Aposla baseada em lvros de cálculos e maeras ulados durae a aculdade de maemáca. Seu objevo é aclar o esudo vso que odo o coeúdo do

Leia mais

Modulação Angular. Telecomunicações. Modulação em Frequência (FM) - 1

Modulação Angular. Telecomunicações. Modulação em Frequência (FM) - 1 Teleouniações Modulação e Frequênia (FM) - 1 Modulação Angular o Nos siseas de odulação e apliude a saída do odulador onsise nua poradora o ariações de apliude. o Na odulação e frequênia o sinal à saída

Leia mais

Lista 7.3 Optimização com Restrições de Igualdade

Lista 7.3 Optimização com Restrições de Igualdade Faculdade de Ecooia da Uiversidade Nova de Lisboa Apotaetos Cálculo II Lista 7.3 Optiização co Restrições de Igualdade. Problea de optiização de ua ução escalar, de variáveis reais, co restrições de igualdade:

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Coceio Na Esaísica exise siuações ode os dados de ieresse são obidos e isaes sucessivos de epo (iuo, hora, dia, ês ou ao), ou aida u período coíuo de epo, coo acoece u elerocardiograa ou sisógrafo. Esses

Leia mais

Grupo I ( 3 valores) 0 Os parâmetros podem ser considerados variáveis aleatórias pois as suas estimativas variam de amostra para amostra

Grupo I ( 3 valores) 0 Os parâmetros podem ser considerados variáveis aleatórias pois as suas estimativas variam de amostra para amostra Exame fial Esaísica Maria Helea Almeida 7 de Maio de 003 José Aóio Piheiro Duração h e 30 Noe bem: Grupos diferees em folhas diferees Não se esqueça de ideificar TODAS as folhas 3 Para maer a ordem, a

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear UleseMG Curso de Especlzção em Auomção e Corole Revsão de Álger Ler Deção de mrz Um mrz rel ou comple é um ução que cd pr ordedo,j o cojuo S m ssoc um úmero rel ou compleo. Um orm muo comum e prác pr represer

Leia mais

Análise de Dados e Probabilidade B Exame Final 2ª Época

Análise de Dados e Probabilidade B Exame Final 2ª Época Aálse de Dados e obabldade B Eame Fal ª Éoca Claa Cosa Duae Daa: / /7 Cáa Feades Duação: hm edo Chaves MORTATE: Esceva o ome e úmeo o cmo de cada folha Resoda a cada guo em folhas seaadas, caso ão esoda

Leia mais

Curso de Óptica Aplicada

Curso de Óptica Aplicada Curso de Ópca Aplcada Faculdade de Cêcas e Tecologa Uversdade Nova de Lsboa AT 4 Propagação Deparameo Aula Teórca de Físca 5 Ópca Geomérca Curso de Ópca Aplcada Aula Teórca 4 Propagação Curso de Ópca Aplcada

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS ANÁLISE DE ERROS A oservação de um feómeo físco ão é completa se ão pudermos quatfcá-lo. Para é sso é ecessáro medr uma propredade físca. O processo de medda cosste em atrur um úmero a uma propredade físca;

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8 - - -4-6 -8-3 -3 Frequecy (khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy (db/hz Sie Wave Joi Acuaor Joi Sesor

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida . MODELO DETALHADO: Relações de Recorrêca Exemplo: Algortmo Recursvo para Cálculo do Fatoral Substtução Repetda T T ( ) ( ) t 1, T ( + t, > T ( ) T ( + t T ( ) ( T( ) + t + t ) + t T ( ) T ( ) T ( ) +

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINIAS-JM Balthazar- Mao 3 Resolvedo u Problea de Codução de Calor Para troduzr o étodo das dfereças ftas de ua fora prátca vaos cosderar u problea de codução

Leia mais

EXERCÍCIO: ONDAS INTERMITENTES

EXERCÍCIO: ONDAS INTERMITENTES EXERCÍCIO: ONDA INTERMITENTE Cosidee ua aoxiação de u uaeo seafoiado o aaidade igual a 750/h, e adia ua siuação e que a deada a hoa-io as aoxiações da ia iial é de ea de 600 /h, fluuado ee 25% e 75% e

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) III. Estruturas com Vários Graus de Liberdade. III.1 Equações do Movimento

( ) ( ) ( ) ( ) ( ) ( ) ( ) III. Estruturas com Vários Graus de Liberdade. III.1 Equações do Movimento Crso de iâica das Esrras 5 III. Esrras co Vários Gras de Liberdade III. Eqações do Movieo No exelo de rês gras de liberdade (GLs) logidiais, ara cada a das aríclas, eos: x F x F x F As orças elásicas ode

Leia mais

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente. HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete

Leia mais

Nº de sucessos ,3277 0,4096 0,2048 0,0512 0,0064 0,0003. n Limite superior de 0,025 0,01 0,0025 0,000625

Nº de sucessos ,3277 0,4096 0,2048 0,0512 0,0064 0,0003. n Limite superior de 0,025 0,01 0,0025 0,000625 Capíulo Problema 0 Nº de sucessos 0 4 5 0,0 0, 0,4 0,6 0,8,0 P 0,77 0,4096 0,048 0,05 0,0064 0,000 E 0, p ; 0,0 5 Problema 0 4 0 5 00 400 Lme superor de 0,05 0,0 0,005 0,00065 Lme superor de p^ 0,00 0,05

Leia mais

TEMPO DE ESTABILIZAÇÃO DE SISTEMAS SUBCRÍTICOS PARA DIFERENTES FONTES EXTERNAS DE NÊUTRONS. Brayan Sobral da Fonseca

TEMPO DE ESTABILIZAÇÃO DE SISTEMAS SUBCRÍTICOS PARA DIFERENTES FONTES EXTERNAS DE NÊUTRONS. Brayan Sobral da Fonseca TEMPO DE ETABILIZAÇÃO DE ITEMA UBCRÍTICO PARA DIFERETE FOTE EXTERA DE ÊUTRO Braya obra da Foseca Dsseração de Mesrado apreseada ao Proraa de Pós-raduação e Eehara ucear COPPE da Uversdade Federa do Ro

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural,

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural, 3 Cosidere as matrizes A 3 alule o determiate da matriz A e 0 B, e seja P uma matriz ivisível tal que B P - AP Sedo um úmero atural, 0 det A det A, tem-se: Como ( ) ( ) ( ) det A 3 3 Cosidere uma seqüêia

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

MOSFET: A Dedução da equação da corrente Aula 2

MOSFET: A Dedução da equação da corrente Aula 2 MOSFET: A edução da equação da corree Aula 31 Aula Maéra Cap./pága 1ª 03/08 Elerôca PS33 Programação para a Prmera Prova Esruura e operação dos rassores de efeo de campo caal, caraceríscas esão-corree.

Leia mais

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCE DEPARAMENO DE ENGENHARIA ELÉRICA Disciplia de Pricípios de elecomuicações Pro. MC. Leoardo Gosioroski da Silva Séries e rasormadas de Fourier Aálise de um sial seoidal o empo

Leia mais

Atividades relacionadas à ManjarBrancoG

Atividades relacionadas à ManjarBrancoG Atdades relacoadas à MajarBracoG Neste cojto de atdades está oblzado o estdo da ção ajar braco, sto é, a ção qe o doío é o teralo echado [0,] e asse alores o cojto dos úeros reas. Essa ção é deda coo o

Leia mais

EN3224 Dinâmica de Fluidos Computacional

EN3224 Dinâmica de Fluidos Computacional Uversdade Federal do ABC EN34 Dâmca de Fldos Compacoal Apreseação do Crso EN34 Dâmca de Fldos Compacoal Uversdade Federal do ABC Sod s Shock Tbe Problem Um smples modelo de ma dmesoal de m gás rodzdo por

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

PROPRIEDADES GEOMÉTRICAS DO PROBLEMA DE DOIS NÍVEIS LINEAR-QUADRÁTICO

PROPRIEDADES GEOMÉTRICAS DO PROBLEMA DE DOIS NÍVEIS LINEAR-QUADRÁTICO PROPRIEDADES GEOMÉTRICAS DO PROBLEMA DE DOIS NÍVEIS LINEAR-QUADRÁTICO Kel D. Villacora V. Uiversidade Federal do Rio de Jaeiro Cidade Uiversiária, Cero de Tecologia, Bloco H, Rio de Jaeiro, RJ keldvv@cos.ufrj.br

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 3: OPERAÇÕES BÁSICAS EM SINAIS: OPERARAÇÕES NAS VARIÁVEIS DEPENDENTES; OPERARAÇÕES NA VARIÁVEL INDEPENDENTE. FUNÇÕES ELEMENTARES: O DEGRAU UNITÁRIO; A RAMPA UNITÁRIA;

Leia mais