Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO"

Transcrição

1 Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez

2 Matemátca Básca ara Cêcas Socas II UNIDADE INTERPOLAÇÃO. INTRODUÇÃO A terolação é uma técca de aromação de dados ou uções bastate utlzada e se alca as segutes stuações: a) quado a eressão (le de assocação) da ução ão é cohecda, orém ossuímos um cojuto de valores obtdo, or eemlo, através de dados eermetas; b) quado é dícl calcular o valor da ução, devdo a comledade da le que a dee. Nesta udade estudaremos a terolação de uções ocado o teresse a rmera stuação, ctada aterormete. Cosdere um cojuto com + elemetos relacoados, da segute orma,,,,,,,, o ode a le que dee a ução ão é cohecda. Queremos obter, or eemlo,, ode,,...,, tal que. Podemos reresetar or meo de um olômo, ara todo,,,...,. Desta orma odemos estmar através de, ou seja, Observação: o símbolo dca que se trata de um valor aromado. Gracamete tal que

3 Matemátca Básca ara Cêcas Socas II. INTERPOLAÇÃO POLINOMIAL O objetvo a terolação olomal é determar um olômo da orma a a a tal que,... a ara todo,,,...,. O olômo é chamado olômo terolador. A segur vamos obter o olômo terolador através da resolução de um sstema lear.. INTERPOLAÇÃO LINEAR A PARTIR DA SOLUÇÃO DE UM SISTEMA LINEAR Para obter um olômo ara todo,,,...,, devemos ter:, ara todo,,,...,. que terola + otos cohecdos,, Como a a a... a etão a a a a a a a a a... a... a... a. Resolvedo-se o sstema obtém-se os coecetes. a do olômo,a,..., a Observação: Quado o olômo terolador tem a orma a a um) a terolação é dta terolação lear. Eemlo : Seja a ução (grau y deda elos otos, e, Determar, or terolação lear, o valor aromado de.. Como a terolação é lear, o olômo terolador é de grau um e tem a orma:

4 Matemátca Básca ara Cêcas Socas II a. a Como e tem-se que a. a a. a. Desta orma recsamos resolver o segute sstema.a a a a. Da rmera equação do sstema temos que. Da seguda equação resulta que a a a a a. Logo. Como queremos calcular, vamos calcular... Portato é um valor aromado ara. Lembre-se que é um valor aromado em razão de que a le que dee a ução é descohecda. Além do método de terolação através da resolução de um sstema lear (ctado aterormete), estem outras ormas ara obter o olômo terolador, cohecdas como ormas de Lagrage e de Newto. Na seqüêca do teto estudaremos a orma de Newto ara terolação olomal.

5 Matemátca Básca ara Cêcas Socas II.. FORMA DE NEWTON Cosdere,,..., determar o olômo tal que ode, otos dsttos. A orma de Newto cosste em que terola através dos otos,,...,,,,.,,,......,,,,...,......,,,,,,...,,,,, são costates obtdas a artr dos otos cohecdos, chamadas oeradores dereças dvddas. A segur vejamos como determar essas costates... DIFERENÇAS DIVIDIDAS Cosdere o cojuto de otos dsttos,,,,,...,, segute orma:,, os oeradores dereças dvddas são dedos da ordem zero,,, ordem,,,, ordem,,,,, ordem,,,...,,,...,,,..., ordem

6 Matemátca Básca ara Cêcas Socas II De orma geérca odemos escrever:,,,,...,,,,,,...,.,,,,,,,,...,.,,,,,,,,,,,...,.,,...,,,...,,,,...,,.,,..., é chamada de dereça dvdda de ordem k da ução k os k+ otos dsttos.,,..., k Portato, dada uma ução tal que são cohecdos os valores, sobre ara,,,,...,, ode-se orgazar as dereças dvddas a segute tabela: X ordem ordem ordem ordem ordem,,,,,,,,,,,,,,,,,,...,

7 Matemátca Básca ara Cêcas Socas II,,,,,,, Observe que os elemetos crculados a tabela são aqueles que aarecem a eressão,,,.,,,...,,,,..., Vejamos algus eemlos: Eemlo : Cosdere a ução, tabelada a segur. Usado a orma de Newto, determe o olômo que terola os otos dados e o valor aromado de A tabela de dereças dvddas é: X ordem ordem ordem 9 6

8 Matemátca Básca ara Cêcas Socas II O olômo terolador tem a orma:,,, Portato o olômo que terola é: ou seja,. olômo terolador O valor aromado de é. Assm tem-se que: Ou ada.

9 Matemátca Básca ara Cêcas Socas II Eemlo : Cosdere a ução, tabelada a segur. Usado a orma de Newto, determe o olômo que terola os otos dados e o valor aromado de, A tabela de dereças dvddas é: ordem ordem ordem ordem ordem O olômo terolador tem a orma:,,,,,,,,,, Portato o olômo que terola é:

10 Matemátca Básca ara Cêcas Socas II O valor aromado de, é,. Assm tem-se que:,.,.,.,.,.,., 6.,.,., 6., 8. olômo terolador,.,.,.,.,.,.,9.,.,.,9. 7,,,,77 9 9,6,,,, ,,., Ou ada,,. Observação: Se os otos estão gualmete esaçados sgca,,..., que estamos em reseça de um caso artcular. Vejamos um eemlo. Eemlo : Cosdere a ução, tabelada a segur. Usado dereças dvddas, determe o olômo que terola os otos dados e o valor aromado de 8. X

11 Matemátca Básca ara Cêcas Socas II A tabela de dereças dvddas é: ordem ordem ordem O olômo terolador tem a orma:,,, Portato o olômo que terola é: 6 7 olômo terolador O valor aromado de 8 é Assm tem-se que: Ou ada ERRO NA INTERPOLAÇÃO Além dos erros de arredodameto, ao se aromar uma ução or um olômo terolador de grau, comete-se um erro E tal que

12 Matemátca Básca ara Cêcas Socas II E ara todo o tervalo,. Neste mometo, ão será eto um estudo detalhado sobre erros, tedo em vsta a ecessdade do cohecmeto de algus cocetos matemátcos ada ão estudados. Bblograa Barroso, L. C., Barroso, M. M. A., Camos Flho, F. F., Carvalho, M. L. B., Maa, M. L Cálculo Numérco, Edtora Harbra, ed. São Paulo, 98. Gomes, S. C. P. Métodos Numércos: Teora e Programação, Edtora da Furg, ed. Ro Grade, 999. Moraes, D., Mars, J. M. Cálculo Numérco Comutacoal, Teora e Pratca, Edtora Atlas, ed. São Paulo, 99. Ruggero, M. A. G., Loes, V. L. R. Cálculo Numérco, Asectos Teórcos e Comutacoas, Ed. Makro Books, ed. São Paulo, 996.

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Método de Dereças Ftas Alcado às Equações Derecas Parcas. 4.- Aromação de Fuções. 4..- Aromação or Polômos: Iterolação. 4..- Ajuste de Dados: Mímos

Leia mais

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev.

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev. uesp CAMUS DE GUARATINGUETÁ Computação e Cálculo Numérco: Elemetos de Cálculo Numérco ro. G.J. de Sea - Depto. de Matemátca Rev. 5 CAÍTUO 4 INTEROAÇÃO 4. INTRODUÇÃO Cosdere a segute tabela relacoado calor

Leia mais

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.

( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução. 55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

4 Capitalização e Amortização Compostas

4 Capitalização e Amortização Compostas 4.1 Itrodução Quado queremos fazer um vestmeto, podemos depostar todos os meses uma certa quata em uma cadereta de poupaça; quado queremos comprar um bem qualquer, podemos fazê-lo em prestações, a serem

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hpóteses Neste capítulo será estudado o segudo problema da ferêca estatístca: o teste de hpóteses. Um teste de hpóteses cosste em verfcar, a partr das observações de uma amostra, se uma

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

integração são difíceis de serem realizadas. Por exemplo, como calcular

integração são difíceis de serem realizadas. Por exemplo, como calcular 89. INTERPOAÇÃO Objetvo: Ddo um cojuto de + otos G; o lo e um cojuto de uções Ecotrr um ução gg que melhor reresete esse cojuto de ddos de cordo com lgum crtéro. Deção : Sejm os + otos. Dzemos que ução

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES BINÔMIO DE NEWTON Uiversidade Federal do Rio Grade FURG Istituto de Matemática, Estatística e Física IMEF Edital CAPES BINÔMIO DE NEWTON Prof. Atôio Maurício Medeiros Alves Profª Deise Maria Varella Martiez Matemática Básica

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico. Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico. Notas de aulas UNIVERSIDADE FEDERAL DE OURO PRETO Isttuto de Cêcas Eatas e Bológcas Departameto de Computação José Álvaro Tadeu Ferrera Cálculo Numérco Notas de aulas Iterpolação Polomal Ouro Preto 3 (Últma revsão em

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Derivada de uma matriz em ordem a um escalar. Derivada de um escalar em ordem a uma matriz DERIVAÇÃO COM MATRIZES. Y = y m. X = x m X = y = = b.

Derivada de uma matriz em ordem a um escalar. Derivada de um escalar em ordem a uma matriz DERIVAÇÃO COM MATRIZES. Y = y m. X = x m X = y = = b. DEFINIÇÃO Dervada de uma matrz em ordem a um escalar [ ] Y = y m : ; y = f() z Y z = y : m z DEFINIÇÃO 2 Dervada de um escalar em ordem a uma matrz h = f( X ) ; [ ]: X = x m EXEMPLO [ y] h h m X = x :

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal Exercícos Itrodutóros Exercíco Para

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Estudo do intervalo de confiança da regressão inversa utilizando o software R

Estudo do intervalo de confiança da regressão inversa utilizando o software R Estudo do tervalo de cofaça da regressão versa utlzado o software R Llae Lopes Cordero João Domgos Scalo. Itrodução Na maora das aplcações evolvedo regressão, determa-se o valor de Y correspodete a um

Leia mais

Cálculo Numérico. Ajuste de Curvas Método dos Mínimos Quadrados. Profa. Vanessa Rolnik 1º semestre 2015

Cálculo Numérico. Ajuste de Curvas Método dos Mínimos Quadrados. Profa. Vanessa Rolnik 1º semestre 2015 Cálculo Numérco Ajuste de Curvas Método dos Mímos Quadrados Profa. Vaessa Rolk º semestre 05 Ajuste de curvas Para apromar uma fução f por um outra fução de uma famíla prevamete escolhda (caso cotíuo)

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

VI - Integração Numérica

VI - Integração Numérica V - tegração Numérca C. Balsa & A. Satos. trodução São, este mometo, coecdos dos aluos métodos aalítcos para o cálculo do tegral dedo b ( d a sedo ( cotíua e tegrável o tervalo [ ab] ;. Cotudo, algumas

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Introdução à Estatística

Introdução à Estatística Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA INTRODUÇÃO

POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA INTRODUÇÃO POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA INTRODUÇÃO Para um melhor etedmeto do método da colocação ortogoal e sua relação com o método dos resíduos oderados (MRP) tora-se dsesável um estudo mesmo que

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram

Leia mais

Problema geral de interpolação

Problema geral de interpolação Problema geral de terpolação Ecotrar p() que verfque as codções: f j ( ) y,,,,,, j,,, m ( j) ( ) dervada de ordem j ós valores odas Eemplo: ecotrar p() que verfque:, f () 4 3, f( 3) 3, f'(3) 4 3 p() 3

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Tabela 1 Números de acidentes /mês no Cruzamento X em CG/07. N de acidentes / mês fi f

Tabela 1 Números de acidentes /mês no Cruzamento X em CG/07. N de acidentes / mês fi f Lsta de exercícos Gabarto e chave de respostas Estatístca Prof.: Nelse 1) Calcule 1, e para o segute cojuto de valores. A,1,8,0,11,,7,8,6,,9, 1 O úmero que correspode a 5% do rol é o valor. O úmero que

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina:

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Deartameto de Iformátca Dscla: do Desemeho de Sstemas de Comutação Processos de ascmeto e Morte Prof. Sérgo Colcher colcher@f.uc-ro.br Processos de ascmeto e Morte CMTC Homogêea a ual trasções acotecem

Leia mais

2-Geometria da Programação Linear

2-Geometria da Programação Linear I 88 Otmzação Lear -Geometra da Programação Lear ProfFeradoGomde DC-FEEC-Ucamp Coteúdo. Poledros e cojutos coveos. Potos etremos vértces soluções báscas factíves 3. Poledros a forma padrão 4. Degeeração

Leia mais

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança Regressão Smples Parte III: Coefcete de determação, regressão a orgem e método de máxma verossmlhaça Coefcete de determação Proporção da varabldade explcada pelo regressor. R Varação explcada Varação total

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Introdução à Estatística. Júlio Cesar de C. Balieiro 1

Introdução à Estatística. Júlio Cesar de C. Balieiro 1 Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

a) 1,8 e 4,6. b) 2,0 e 2,2. c) 1,8 e 5,2. d) 2,0 e 4,6. e) 2,0 e 1,9.

a) 1,8 e 4,6. b) 2,0 e 2,2. c) 1,8 e 5,2. d) 2,0 e 4,6. e) 2,0 e 1,9. Questão : As otas de dez aluos, um exame, estão dadas a segur:, 5, 8, 3, 6, 5, 8, 7, 6, 0 O desvo médo e a varâca dessas otas podem ser expressos, respectvamete, por: a),8 e 4,6 b),0 e, c),8 e 5, d),0

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. val@mat.ufrgs.r http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Organização; Resumo; Apresentação.

Organização; Resumo; Apresentação. Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Grade Cojutos de Dados Orgazação; Resumo; Apresetação. Amostra ou População Defetos em uma lha de produção Lascado Deseho Torto Deseho Torto Lascado

Leia mais

2. NOÇÕES MATEMÁTICAS

2. NOÇÕES MATEMÁTICAS . NOÇÕES MATEMÁTICAS Este capítulo retoma algumas oções matemátcas ecessáras para uma boa compreesão de algus aspectos que serão mecoados e detalhados o presete trabalho. Algus destes aspectos podem abstrar

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

INTRODUÇÃO A ESTATÍSTICA

INTRODUÇÃO A ESTATÍSTICA Hewlett-Packard INTRODUÇÃO A ESTATÍSTICA Aulas 01 e 06 Elso Rodrgues, Gabrel Carvalho e Paulo Luz Sumáro Defções... 1 EXERCÍCIOS FUNDAMENTAIS... 1 Meddas de tedêca cetral... 1 Méda artmétca smples... 1

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos População ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e Eame de Admissão de Matemática Págia de... Simpliicado a epressão. : : tem-se: Simpliicado a epressão p p p Sabedo que p p obtém-se: p p log a etão log será igual a: a a a a pp p p. Para diluir litro de

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. - val@pucrs.br http://www.pucrs.br/famat/val/ Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Estatístca: uma defção Coleç Coleção de ú úmeros estatí estatístcas O ú ú mero

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

d s F = m dt Trabalho Trabalho

d s F = m dt Trabalho Trabalho UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho 1. Itrodução

Leia mais

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida . MODELO DETALHADO: Relações de Recorrêca Exemplo: Algortmo Recursvo para Cálculo do Fatoral Substtução Repetda T T ( ) ( ) t 1, T ( + t, > T ( ) T ( + t T ( ) ( T( ) + t + t ) + t T ( ) T ( ) T ( ) +

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ

Probabilidades e Estatística LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ Duração: 90 mutos Grupo I Probabldades e Estatístca LEE, LEIC-A, LEIC-T, LEMat, LERC, MEBol, MEBom, MEEC, MEFT, MEMec, MEQ Justfque coveetemete todas as respostas 1 o semestre 018/019 10/01/019 09:00 o

Leia mais

Almeida, C. (1987) Novo método para resolução da equação dos rebaixamentos em ensaios a caudal variável

Almeida, C. (1987) Novo método para resolução da equação dos rebaixamentos em ensaios a caudal variável Almeda, C. (1987) Novo método para resolução da equação dos rebaxametos em esaos a caudal varável Geols, revsta da Secção de Geologa Ec. e Aplcada, vol. I, p. 100-10. GEOLIS - Vol. I(1987) 100-10 100 NOVO

Leia mais

Projeto e Análise de Algoritmos Recorrências. Prof. Humberto Brandão

Projeto e Análise de Algoritmos Recorrências. Prof. Humberto Brandão Projeto e Aálse de Algortmos Recorrêcas Prof. Humberto Bradão humberto@dcc.ufmg.br Uversdade Federal de Alfeas Laboratóro de Pesqusa e Desevolvmeto LP&D Isttuto de Cêcas Exatas ICEx versão da aula: 0.

Leia mais

MAE 5776 ANÁLISE MULTIVARIADA. Júlia M Pavan Soler

MAE 5776 ANÁLISE MULTIVARIADA. Júlia M Pavan Soler MAE 5776 ANÁLISE MULTIVARIADA Júla M Pava Soler ava@me.us.br º Semestre IME/09 Baco de Dados: Dados Multvarados Varáves Udades Amostras j j j j j j : Matrz de Dados resosta do -ésmo dvíduo a j-ésma varável

Leia mais

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.

AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos. Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais