MÉTODO DE FIBONACCI. L, em que L
|
|
|
- Larissa Amaro Aranha
- 9 Há anos
- Visualizações:
Transcrição
1 Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno (CC): = (-a) Este esquema recursvo ode ser reresentado no dagrama abaxo, no qual são mostradas três terações sucessvas: - Iteração : a Iteração +: x x b + + a Iteração +: x x b + a + x x b or: A dstânca entra a e x, que é gual à dstânca entra b e x, é, na teração, dada d ara,, () A dstânca entra x e x, é, na teração, dada or: d ara,, () essas duas dstâncas são mostradas abaxo: Iteração : a d x x b Somando as Eqs.() e (), resulta: d ara,, (6)
2 Métodos de bonacc e da Seção Aúrea Mas, de (-b): que de () é gual à d, assm: d ara,, (7) Substtundo (7) em (6), resulta:, mas de (-a):, resultando em: ara,, (8) Duas hóteses odem se assocar à segunda condção de contorno da equação recursva (): a Hótese: a dstânca entre x e x na últma teração, teração, é gual a, traduzdo or: ou, de acordo com (8), or: (9) () a Hótese: a dstânca entre a e x, que é gual à dstânca entra b e x, na últma teração, teração, é gual a, traduzdo or: ou, em acordo com (7), or: d () d () Crtéro de Parada: O valor de é calculado tal que: e () Isto é: é o rmero valor do índce de em que é nferor a.
3 Métodos de bonacc e da Seção Aúrea ORMA RECURSIVA DE RESOLUÇÃO DO PROBLEMA a Hótese: Alcando (-b) ara =, tem-se:. Alcando (-b) ara =, tem-se:. Alcando (-b) ara =, tem-se: 8. Permtndo conclur, or ndução, que: k k k ara k,,, () Em que: k é o k ésmo número de bonacc defndo ela orma Recursva: ara,, com () Dferentes roredades dos números de bonacc são aresentadas no Aêndce I. k j Adotando em (): j = k tem-se: k j, assm: k j j j j ara j,,,, - (6) Permtndo calcular: com j e com j Resultando em: e Mas, das roredades dos números de bonacc, (7), logo: (8) O valor de, número de terações necessáras, é o rmero valor ntero de j ara o qual a função: j, sto é: j j
4 Métodos de bonacc e da Seção Aúrea e (9) a Hótese: Alcando (-b) ara =, tem-se:. Alcando (-b) ara =, tem-se:. Alcando (-b) ara =, tem-se:. Permtndo conclur, or ndução, que: k kk ara k,,, () Adotando em (): j = -k tem-se: k j e k j, assm: j j j ara j,,,, () Permtndo calcular: com j e com j resultando, fnalmente, em: e () Mas, das roredades dos números de bonacc:, logo: () O valor de, número de terações necessáras, é o rmero valor ntero de j ara o qual a função: j j, sto é: j e ()
5 Métodos de bonacc e da Seção Aúrea RESOLUÇÃO DIRETA DA EQUAÇÃO DE DIEREÇAS DO PROBLEMA orma Recursva: ara,,, - com: = () a Hótese: a dstânca entre x e x na teração é gual a, () Identfcando os valores característcos assocados à equação de dferenças () como as raízes do olnômo: rr r r sto é: r, em que: r. Identfcando: r r ; r r e r r Desse modo, a solução de () [equação de dferenças lnear, de segunda ordem e homogênea] é dada or: Ar Br, onde as constantes A e B são determnadas a artr das condções de contorno assocadas ao roblema. Assm: CC: AB CC : Ar Br r A r r r B r r, logo: r r r r r r r r () a Hótese: a dstânca entre a e x, que é gual à dstânca entra b e x, na teração é gual a Desse modo, a solução de () é dada or: () Ar Br, onde as constantes A e B são determnadas a artr das condções de contorno assocadas ao roblema.
6 Métodos de bonacc e da Seção Aúrea r A CC: AB r r Assm: CC : Ar Br r B r r, logo: r r r r r r r r MÉTODO DA SEÇÃO ÁUREA a rmera hótese consderada no método de bonacc o valor do asso a ser consderado na rmera teração é dado or: a segunda hótese consderada no método de bonacc o valor do asso a ser consderado na rmera teração é dado or: Porém ara valores elevados de, verfca-se que: e, deste modo o valor de ndeende da hótese consderada e é gual a:, ermtndo calcular os valores de de forma recursva segundo: ara,,, () com: e Resultando no denomnado Método da Seção Áurea. Assm, alcando () ara: ; (6) (8) () 6
7 Métodos de bonacc e da Seção Aúrea Permtndo conclur, or ndução que: ara,,, () com: e Crtéros Alternatvos de Parada: -) O valor de é calculado tal que : e (6) Tal crtéro corresonde a consderar que a dstânca entre a e x (gual à dstânca entre b e x ) na teração é, ela rmera vez, nferor a.. -) O valor de é calculado tal que : e (7) Tal crtéro corresonde a consderar que a dstânca entre x e x na teração é, ela rmera vez, nferor a. -) O valor de é calculado tal que : (8) e Tal crtéro corresonde a consderar que a dstânca entre a e x (gual à dstânca entre b e x ) na teração é, ela rmera vez, nferor a. 7
8 Métodos de bonacc e da Seção Aúrea APÊDICE I ÚMEROS DE IBOACCI orma Recursva: ara,,, (I-) com : Alcando a forma recursva acma, chega-se a: Identfcando os valores característcos assocados à equação de dferenças (I-) como as raízes do olnômo: r r r r r sto é:, em que: r r ; r r e r r r Desse modo, a solução de (I-) [equação de dferenças lnear, de segunda ordem e homogênea] é dada or: Ar B r, onde as constantes A e B são determnadas a artr das condções de contorno assocadas ao roblema. r r CC: AB A r r Assm:, logo: CC : Ar Br r r B r r r r (I-) ara =,,,... Razão entre dos números de bonacc sucessvos Defnndo-se: q ara,,,, tem-se: q 8, em vsta de (I-), q, tem-se a: ara,,,, dentfcando: e q
9 Métodos de bonacc e da Seção Aúrea Equação Recursva: q ara,,, q (I-) com q = A equação (I-) é uma equação de dferenças não lnear de rmera ordem que ode ser resolvda recursvamente, dando orgem a: q q q q Ou, em forma gráfca:. q. q A Equação (I-) aresenta os ontos de equlíbro que são as raízes da equação: eq eq eq eq qeq q q q q recursva (I-) a função teração: ter q fter q, dentfcando na equação, em que: q q f q ara,,,, tem-se: f ter f ter f ter q q fter f ter 9
10 Métodos de bonacc e da Seção Aúrea Dessa forma, conclu-se que o onto, no qual q, é um onto de equlíbro nstável da Equação (I-) e o onto, no qual q onto de equlíbro estável da Equação (I-). Isto ermte conclur que:, é um lm q q, conforme ndcado nas fguras da ágna anteror! Determnação de S ara,,, Para = tem-se: S. Com genérco: S e substtundo: S, Assm: S S, mas, em vsta de: e, tem-se: S S S S ara,, com S, sto é:, logo: S S ; S ; S ; Determnação de ara,,, T ara,,, Para = tem-se: T. Com : genérco: T e substtundo: T, Assm: T T, mas, em vsta de: e, tem-se: T T T T ara,, com T, sto é:, logo: T T ;T ;T ; ara,,,
CÁLCULO DA DIRECTRIZ
CÁCUO DA DIRECTRIZ I - Elementos de defnção da polgonal de apoo: - Coordenadas dos vértces da polgonal (M, P ); - Dstânca entre vértces da polgonal ( d); - Rumos dos alnhamentos (ângulo que fazem com a
F-328 Física Geral III
F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW [email protected] F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =
Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010
Proposta de resolução da Prova de Matemátca A (códgo 6 Como A e B são acontecmentos ncompatíves, 0 e Ou seja, de acordo com os dados do enuncado, 0% 0% 0% Versão : B Versão : C Como se trata de uma únca
Comprimento de Arco. Comprimento de Arco
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco
Y = AN α, 0 < α < 1 (1) Π = RT CT = P Y W N (2) Π/ N = α N α -1 AP W = 0. W = α P AN α -1. P = W/α AN α -1
Gabarto da Lsta 1 de Macro II 2008.01 1 a Questão a)falso, pode ocorrer que a força de trabalho cresça juntamente com o número de empregados. Se a Força de trabalho crescer mas que o número de empregados
Probabilidade e Estatística. Correlação e Regressão Linear
Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...
Critérios de divisibilidade em bases numéricas genéricas
Crtéros de dvsbldade em bases numércas genércas Clezo A. Braga 1 Jhon Marcelo Zn 1 Colegado do Curso de Matemátca - Centro de Cêncas Exatas e Tecnológcas da Unversdade Estadual do Oeste do Paraná Caxa
Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.
Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D
Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15
Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões
Probabilidade: Diagramas de Árvore
Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal
A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.
Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela
1ª e 2ª leis da termodinâmica
1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves
Capítulo 2 Método de Cross
UNIERSIDDE NDRNTE DE SÃO PUO - Escola de Engenhara vl Notas de aula do curso Teora das Estruturas Prof. Dr. Rcardo de. lvm.. Introdução aítulo étodo de ross O étodo de ross é um método que ermte calcular
QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)
QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores
F-328 Física Geral III
F-328 Físca Geral III ula Exploratóra Cap. 26-27 UNICMP IFGW F328 1S2014 1 Densdade de corrente! = J nˆ d Se a densdade for unforme através da superfíce e paralela a, teremos: d! J! v! d E! J! = Jd = J
Flambagem. Cálculo da carga crítica via MDF
Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca
Métodos tipo quadratura de Gauss
COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível
CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA
CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de
Aula 3 - Classificação de sinais
Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas
ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ
ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco
MÉTODOS DO TIPO DUAL SIMPLEX PARA PROBLEMAS DE OTIMIZAÇÃO LINEAR CANALIZADOS
versão mpressa ISSN -7438 / versão onlne ISSN 678-542 MÉODOS DO IPO DUAL SIMPLEX PARA PROBLEMAS DE OIMIZAÇÃO LINEAR CANALIZADOS Rcardo Slvera Sousa Carla avane Lucke da Slva Marcos Nereu Arenales * Departamento
Realimentação negativa em ampliadores
Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação
DETERMINAÇÃO DAS CONSTANTES ELASTICAS DE MOLAS E ESTUDO DE OSCILAÇÕES HARMÓNICAS
Físca Laboratoral I Ano Lectvo 9/ TRABALHO PRÁTICO Nº - LICENCIATURA E FÍSICA DETERINAÇÃO DAS CONSTANTES ELASTICAS DE OLAS E ESTUDO DE OSCILAÇÕES HARÓNICAS Objectvo - Neste trabalho pretende-se medr as
Economia básica para os cursos de graduação em Zootecnia, Engenharia de Alimentos e Engenharia de Biossistemas.
05 UNIVERSIDADE DE SÃO PAULO Faculdade de Zootecna e Engenhara de Almentos Deartamento de Zootecna Economa básca ara os cursos de graduação em Zootecna, Engenhara de Almentos e Engenhara de Bossstemas.
X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)
Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO
Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II
AV1 - MA 14-2011. (1,0) (a) Determine o maior número natural que divide todos os produtos de três números naturais consecutivos.
Questão 1 (1,0) (a) Determine o maior número natural que divide todos os rodutos de três números naturais consecutivos (1,0) (b) Resonda à mesma questão no caso do roduto de quatro números naturais consecutivos
Coordenação de Semáforos
Paragem dos Veículos Veículos "Lbertados" Paragem dos Veículos Veículos "Lbertados" "Agrupamento " Pelotões "Agrupamento " Pelotões C O O R D E N A Ç Ã O Onda Verde... IST/ Lcencaturas em Engª Cvl & Terrtóro
Medidas de tendência central. Média Aritmética. 4ª aula 2012
Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem
Caderno de Fórmulas. CCB, CCE e NCE - Cetip21
- Cetp21 Elaboração: Novembro/2005 Últma Atualzação: 27/05/2016 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às
Prof. A.F.Guimarães Questões de termologia 7
Questão (FUES SP) Uma equena bolha de ar, artndo da rounddade de, m abaxo da sueríce de um lago, tem seu volume aumentado em % ao chegar à sueríce. Suonha que a temeratura do lago seja constante e unorme,
3 Traços Latentes e a Teoria de Resposta ao Item - TRI
3 Traços Latentes e a Teora de Resosta ao Item - TRI Em mutas stuações de meddas socológcas, scológcas ou educaconas a varável de nteresse é de entendmento ntutvo ara todos. Porém, na maora das vezes,
É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.
Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das
Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos
Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões
ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas
01/09/01 ESTATÍSTICA na Contabldade Revsão - Parte Luz A. Bertolo Meddas Estatístcas A dstrbução de frequêncas permte-nos descrever, de modo geral, os grupos de valores (classes) assumdos por uma varável.
Eletrotécnica AULA Nº 1 Introdução
Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca
Equação e Inequação do 2 Grau Teoria
Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo
( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.
55 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
20 TRANSFORMAÇÕES DAS TENSÕES
ENG040 Turma C (Prof. Aleandre Pacheco) 58 0 TRANSFORMAÇÕES DAS TENSÕES Equações Gerais no Plano Dado um certo estado de tensões num onto, associado a um dado sistema de coordenadas, é imortante que se
O mercado de oligopólio
Fernando Branco Ano lectvo 2003-2004 Trmestre de Inverno Sessão 6 O mercado de olgopólo Exstem poucas empresas Produtos dferencados ou homogéneo Interacções estratégcas: As decsões de umas empresas afectam
Variáveis Indicadoras. Roteiro. Introdução
Varáves Indcadoras Rotero 1. Introdução 2. Varável Bnára de Intercepto 3. Varável de Interação 4. Aplcação 5. Varáves Qualtatvas com Váras Categoras 6. Referêncas Introdução Varáves Bnáras Modelo estenddo
CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues
CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas
Lei das Malhas (KVL) Lei dos Nós (KCL)
Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo
LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA
EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna
Regressão e Correlação Linear
Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,
7. Resolução Numérica de Equações Diferenciais Ordinárias
7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem
Congruências Lineares
Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir
Introdução a Combinatória- Aplicações, parte II
Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o
Sistemas de equações lineares
Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes
Teoria Básica e o Método Simplex. Prof. Ricardo Santos
Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere
TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES
CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções
3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas
3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas
F-328 Física Geral III
F-328 Físca Geral III Aula Exploratóra Cap. 26 UNICAMP IFGW F328 1S2014 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère = 1 C/s A corrente tem a mesma ntensdade
Prof. Lorí Viali, Dr.
Prof. Lorí Val, Dr. [email protected] http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das
GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu.
GABARITO ERP9 Questão mpedânca total em pu. mpedânca lnha em pu; mpedânca carga em pu; tensão no gerador em pu. Assm, tem-se que: ( ). Mas, ou seja: : ( ).. Logo: pu. () A mpedânca da carga em pu,, tem
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Estatística II Antonio Roque Aula 18. Regressão Linear
Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão
UM PROCEDIMENTO PARA CALCULAR ÍNDICES A PARTIR DE UMA BASE DE DADOS MULTIVARIADOS
Vol. 21, No. 1, p. 107-117, junho de 2001 Pesqusa Operaconal 107 UM PROCEDIMENTO PARA CALCULAR ÍNDICES A PARTIR DE UMA BASE DE DADOS MULTIVARIADOS Luca Slva Kubrusly Insttuto de Economa /UFRJ Av. Pasteur,
Resposta: Interbits SuperPro Web 0,5
1. (Eear 017) Um aparelho contnha as seguntes especfcações de trabalho: Entrada 9V- 500mA. A únca fonte para lgar o aparelho era de 1 V. Um cdadão fez a segunte lgação para não danfcar o aparelho lgado
Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos
Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro
SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97
SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realzado em Janero de 96 e revsto em Janero de 97 O resente texto retende, ncalmente, dar a conhecer quas as característcas rncas das váras acções de controlo,
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração
Unidade 5. A letra como incógnita equações do segundo grau
Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses
Resoluções dos testes propostos
da físca Undade B Capítulo 9 Geradores elétrcos esoluções dos testes propostos 1 T.195 esposta: d De U r, sendo 0, resulta U. Portanto, a força eletromotrz da batera é a tensão entre seus termnas quando
