Aula 3 - Classificação de sinais

Tamanho: px
Começar a partir da página:

Download "Aula 3 - Classificação de sinais"

Transcrição

1 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN Págnas -0 HAYKIN, S S; VAN VEEN, B Snas e sstemas, Bookman, 00 ISBN Págnas Classfcação de snas Nas aulas anterores, vmos que um snal, de forma geral é uma função (contínua ou dscreta) do temo Veremos agora como odemos classfcar os snas segundo alguns crtéros como smetra, erodcdade e energa Em cada caso, veremos as defnções ara snas de temo contínuo e dscreto 6 Classfcação baseada na smetra 6 Snas de temo contínuo Um snal de temo contínuo é dto ar se ele satsfzer a condção ( t), ara todo t Um snal de temo contínuo é dto ímar se ele satsfzer a condção ( t), ara todo t Assm, os snas ares são smétrcos com relação ao eo vertcal ou orgem dos temos enquanto que os snas ímares são antsmétrcos em relação à orgem dos temos 3 Os snas t e t são eemlos de snal ar e ímar resectvamente O gráfco destes snas está mostrado a segur

2 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Qualquer snal ode ser decomosto numa soma de dos outros snas, um ar e outro ímar, ou seja, com, () + e ( t) rocando t or t na eressão (), temos: ( t) ( t) + ( t) () Resolvendo o sstema ()-() ara e, chega-se a: t t + t t t t ( ) ( ( ) ( )) ( ) ( ( ) ( )) 6 Snas de temo dscreto De forma análoga ao que fo feto em temo contínuo, defnmos snas de temo dscreto ar e ímar como: Snal ar: Snal ímar: [ n] [ n], ara todo n [ n] [ n], ara todo n Demonstra-se também, de forma análoga ao que fo feto antes, que qualquer snal ode ser decomosto em uma comonente ar e numa comonente ímar [ n] ( [ n] + [ n] ) [ n] ( [ n] [ n] ) A fgura segunte mostra eemlos de snas de temo dscreto ar e ímar

3 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Eercícos (MIRA, 00; 06) Determne a comonente ar e ímar das sequêncas a segur defndas no ntervalo 3 3 (a) [ n] { 3; ; 0; ; 4; 5; } (b) y [ n] { 0; 7; ; 3; 4; 9; } (c) w [ n] { 5; 4; 3; 6; 5; 0; } n : 6 Classfcação quanto à erodcdade 6 Snas de temo contínuo Um snal é dto eródco quando satsfzer a condção ( t + ) ara todo t e é uma constante ostva O menor valor de que satsfaz esta condção é chamado de eríodo fundamental de O nverso do eríodo fundamental é a frequênca fundamental, que, quando o eríodo é meddo em segundos, é dada em Hertz (Hz) f ambém defnmos a frequênca angular do snal, medda em radanos or segundo como: 3

4 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Ω π Quando o snal não aresenta um eríodo mínmo é chamado de aeródco Eercíco (HAYKIN, 000; 37) A fgura a segur mostra uma onda trangular Qual é a frequênca fundamental desta onda? Eresse a frequênca fundamental em undades de Hz ou rad/s Snas de temo dscreto A classfcação de snas em snas eródcos e aeródcos aresentada até agora se alca a snas de temo contínuo Consderaremos a segur o caso de snas de temo dscreto Dz-se que um snal de temo dscreto [ n] é eródco se ele satsfzer a condção [ n] [ n N] +, ara todos os números nteros n e N um número ntero ostvo 4

5 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 O menor valor de N que satsfaz a defnção anteror é chamado de eríodo fundamental do snal de temo dscreto [ n] A frequênca angular fundamental ou, smlesmente, frequênca fundamental de [ n] é defnda or: que é medda em radanos ω π N, Lembre-se: O eríodo de um snal de temo dscreto é obrgatoramente um número ntero Assm, sua frequênca angular fundamental ω não ode assumr qualquer valor Eercíco 3 (HAYKIN, 000; 78) Determne se os seguntes snas são eródcos Se forem eródcos, encontre o eríodo fundamental (a) [ n] ( ) n (b) [ n] descrto na fgura a segur 63 Snas de energa e otênca 63 Snas de temo contínuo Em sstemas elétrcos, um snal ode reresentar uma tensão ou uma corrente Consdere uma tensão v alcada a um resstor de resstênca R, roduzndo uma corrente A otênca nstantânea dssada no resstor é defnda or 5

6 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 v ( ) t ou R R Vemos assm que a otênca nstantânea é roorconal à amltude do snal elevada ao quadrado Além do mas, ara é eatamente gual à amltude ao quadrado do snal R Ω, vemos que a otênca Baseado nsso, em análse de snas, costuma-se defnr a otênca nstantânea de um snal como: Lembrando que a energa é o roduto da otênca elo temo, costuma-se defnr a energa total do snal como: ( ) ( ) E lm t dt t dt ambém defnmos a otênca méda de um snal ( t ) como P dt lm Para snas eródcos, odemos calcular a otênca méda tomando a méda aenas num eríodo ao nvés de tomar todo o eo dos temos Para um snal ( t ) eródco de eríodo fundamental, temos: P dt A raz quadrada da otênca méda P é chamada de valor médo quadrátco (RMS Root-Mean-Square) do snal 6

7 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 63 Snas de temo dscreto No caso de um snal de temo dscreto [ n], as ntegras anterores são substtuídas elas somas corresondentes Dessa forma, a energa total de [ n] é defnda or: E e sua otênca méda é defnda or: n n P lm n N + n N N N Novamente, ara um snal eródco, basta tomarmos a méda de um eríodo ara o cálculo da otênca méda Assm, ara o caso de um snal [ n] com eríodo fundamental N, P N n n 0 N Um snal é chamado de snal de energa se e somente se a energa total do snal satsfzer a condção 0< E< Um snal é chamado de snal de otênca se e somente se a otênca méda do snal satsfzer a condção 0< P < Pode-se mostrar que as classfcações de energa e otênca de snas são mutuamente eclusvas Em esecal, um snal de energa tem otênca méda zero enquanto que um snal de otênca tem energa nfnta 7

8 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Eercícos 4 (HAYKIN, 000; 39) Qual a energa total do ulso retangular mostrado na fgura a segur? Resosta: A 5 (HAYKIN, 000; 39) Qual é a otênca méda da onda quadrada mostrada na fgura a segur? Resosta: 6 (HAYKIN, 000; 40) Qual é a otênca méda da onda trangular mostrada a segur? Resosta: /3 7 (HAYKIN, 000; 40) Qual a energa total do snal de temo dscreto mostrado a segur? 8

9 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 8 (HAYKIN, 000; 40) Qual a otênca méda do snal eródco de temo dscreto mostrado na fgura a segur? 9

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.

Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos. Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)

Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A) Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

Notas de Aula de Probabilidade A

Notas de Aula de Probabilidade A VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável

Leia mais

2. VARIÁVEIS ALEATÓRIAS

2. VARIÁVEIS ALEATÓRIAS VARIÁVEIS ALEATÓRIAS 0 Varável aleatóra Ω é o espaço amostral de um epermento aleatóro Uma varável aleatóra é uma função que atrbu um número real a cada resultado em Ω Eemplo Retra- ao acaso um tem produzdo

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Nesse prátca, estudaremos a potênca dsspada numa resstênca de carga, em função da resstênca nterna da fonte que a almenta. Veremos o Teorema da Máxma Transferênca de Potênca, que dz que a potênca transferda

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)

MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano) 1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Amplificadores de Potência ou Amplificadores de Grandes Sinais

Amplificadores de Potência ou Amplificadores de Grandes Sinais UFBA Unversdade Federal da Baha Escola oltécnca Departamento de Engenhara Elétrca Amplfcadores de otênca ou Amplfcadores de Grandes Snas Amaur Olvera Feverero de 2011 1 Característcas: Estágo fnal de amplfcação;

Leia mais

Modelagem do Transistor Bipolar

Modelagem do Transistor Bipolar AULA 10 Modelagem do Transstor Bpolar Prof. Rodrgo Rena Muñoz [email protected] T1 2018 Conteúdo Modelagem do transstor Modelo r e Modelo híbrdo Confgurações emssor comum, base comum e coletor

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A

M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

VOLUME A A = cm 2 16, 10 1 N= 810. d 16 = = 16 16, 10. d 1 d = Resposta: C

VOLUME A A = cm 2 16, 10 1 N= 810. d 16 = = 16 16, 10. d 1 d = Resposta: C nual VOLME Físca II L 5: EXECÍCIOS DE OFNDMENTO EXECÍCIOS OOSTOS 0. 6 = 0 cm N= 80 = 6, 0 l / cm 9 t = s = N V l C d 6 = 80 0 6, 0 6 = 6 6, 0 d d =,6 0 d = 0, 65 0 d= 0, 065 cm d= 0, 65 mm 9 esposta: C

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula Exploratóra Cap. 26 UNICAMP IFGW F328 1S2014 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère = 1 C/s A corrente tem a mesma ntensdade

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística Escola Secundára com º cclo D. Dns 10º Ano de Matemátca A Estatístca Trabalho de casa nº 15 GRUPO I 1. Num referencal o.n. Oxyz, a undade é o cm e a esfera defnda por ( ) ( ) está nscrta num cubo. O volume

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert α ( y) l Método de Glauert Γ( y) r ( y) V c( y) β b 4 V b ( y) + r dy dγ y y dy Método de resolução da equação ntegro-dferencal da lnha sustentadora através da sua transformação num sstema de equações

Leia mais

ANÁLISE DE SINAIS E SISTEMAS

ANÁLISE DE SINAIS E SISTEMAS ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata Curso de Crcutos Elétrcos a Edção, Q rsn D Consonn, Edtora Edgard Blücher tda Pág5 Equação (5): dw( t) v( t) = dq( t) Pág5 no parágrafo após equação (36): Volume I Errata, caso em que não há energa ncal

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: [email protected] Aula Número: 19 Importante... Crcutos com a corrente

Leia mais

Despacho Económico-Ambiental de Sistemas de Energia Termoeléctricos Inseridos no Mercado de Carbono

Despacho Económico-Ambiental de Sistemas de Energia Termoeléctricos Inseridos no Mercado de Carbono Desacho Económco-Ambental de Sstemas de Energa Termoeléctrcos Inserdos no Mercado de Carbono V.M.F. Mendes, J.P.S. Catalão, S.J.P.S. Marano e L.A.F.M. Ferrera Deartamento de Engenhara Electrotécnca e Automação

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

Realimentação negativa em ampliadores

Realimentação negativa em ampliadores Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação

Leia mais

- Eletrônica Analógica 1 - Capítulo 2: Fundamentos dos transistores bipolares de junção (TBJ)

- Eletrônica Analógica 1 - Capítulo 2: Fundamentos dos transistores bipolares de junção (TBJ) - Eletrônca Analógca 1 - Capítulo 2: Fundamentos dos transstores bpolares de junção (TBJ) 1 Físca do TBJ 2 Tpos de lgação do TBJ 2.1 Confguração base-comum Sumáro Parta A Introdução ao TBJ e sua operação

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Estudo de Curto-Circuito

Estudo de Curto-Circuito Estudo de Curto-Crcuto Rotero. Objetvo / aplcações. Natureza da corrente de defeto 3. Resposta em regme (4 tpos de defeto) 4. Resposta transtóra 5. Conclusões Objetvo Determnação de correntes e tensões

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm LEI DE OHM EXEMPLO. Uma resstênca de 7 é lgada a uma batera de V. Qual é o valor da corrente que a percorre. SOLUÇÃO: Usando a le de Ohm V I 444 A 7 0. EXEMPLO. A lâmpada lustrada no esquema é percorrda

Leia mais

MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL

MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL CIRCUITOS ELÉTRICOS Método de Análse: Análse Nodal Dscplna: CIRCUITOS ELÉTRICOS Professor: Dr Marcos Antôno de Sousa Tópco MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL Referênca bbloráfca básca:

Leia mais

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97

SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97 SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realzado em Janero de 96 e revsto em Janero de 97 O resente texto retende, ncalmente, dar a conhecer quas as característcas rncas das váras acções de controlo,

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos

Leia mais

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES

Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas

Leia mais

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais