Aula 3 - Classificação de sinais
|
|
|
- Catarina Regueira Barreto
- 9 Há anos
- Visualizações:
Transcrição
1 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN Págnas -0 HAYKIN, S S; VAN VEEN, B Snas e sstemas, Bookman, 00 ISBN Págnas Classfcação de snas Nas aulas anterores, vmos que um snal, de forma geral é uma função (contínua ou dscreta) do temo Veremos agora como odemos classfcar os snas segundo alguns crtéros como smetra, erodcdade e energa Em cada caso, veremos as defnções ara snas de temo contínuo e dscreto 6 Classfcação baseada na smetra 6 Snas de temo contínuo Um snal de temo contínuo é dto ar se ele satsfzer a condção ( t), ara todo t Um snal de temo contínuo é dto ímar se ele satsfzer a condção ( t), ara todo t Assm, os snas ares são smétrcos com relação ao eo vertcal ou orgem dos temos enquanto que os snas ímares são antsmétrcos em relação à orgem dos temos 3 Os snas t e t são eemlos de snal ar e ímar resectvamente O gráfco destes snas está mostrado a segur
2 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Qualquer snal ode ser decomosto numa soma de dos outros snas, um ar e outro ímar, ou seja, com, () + e ( t) rocando t or t na eressão (), temos: ( t) ( t) + ( t) () Resolvendo o sstema ()-() ara e, chega-se a: t t + t t t t ( ) ( ( ) ( )) ( ) ( ( ) ( )) 6 Snas de temo dscreto De forma análoga ao que fo feto em temo contínuo, defnmos snas de temo dscreto ar e ímar como: Snal ar: Snal ímar: [ n] [ n], ara todo n [ n] [ n], ara todo n Demonstra-se também, de forma análoga ao que fo feto antes, que qualquer snal ode ser decomosto em uma comonente ar e numa comonente ímar [ n] ( [ n] + [ n] ) [ n] ( [ n] [ n] ) A fgura segunte mostra eemlos de snas de temo dscreto ar e ímar
3 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Eercícos (MIRA, 00; 06) Determne a comonente ar e ímar das sequêncas a segur defndas no ntervalo 3 3 (a) [ n] { 3; ; 0; ; 4; 5; } (b) y [ n] { 0; 7; ; 3; 4; 9; } (c) w [ n] { 5; 4; 3; 6; 5; 0; } n : 6 Classfcação quanto à erodcdade 6 Snas de temo contínuo Um snal é dto eródco quando satsfzer a condção ( t + ) ara todo t e é uma constante ostva O menor valor de que satsfaz esta condção é chamado de eríodo fundamental de O nverso do eríodo fundamental é a frequênca fundamental, que, quando o eríodo é meddo em segundos, é dada em Hertz (Hz) f ambém defnmos a frequênca angular do snal, medda em radanos or segundo como: 3
4 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Ω π Quando o snal não aresenta um eríodo mínmo é chamado de aeródco Eercíco (HAYKIN, 000; 37) A fgura a segur mostra uma onda trangular Qual é a frequênca fundamental desta onda? Eresse a frequênca fundamental em undades de Hz ou rad/s Snas de temo dscreto A classfcação de snas em snas eródcos e aeródcos aresentada até agora se alca a snas de temo contínuo Consderaremos a segur o caso de snas de temo dscreto Dz-se que um snal de temo dscreto [ n] é eródco se ele satsfzer a condção [ n] [ n N] +, ara todos os números nteros n e N um número ntero ostvo 4
5 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 O menor valor de N que satsfaz a defnção anteror é chamado de eríodo fundamental do snal de temo dscreto [ n] A frequênca angular fundamental ou, smlesmente, frequênca fundamental de [ n] é defnda or: que é medda em radanos ω π N, Lembre-se: O eríodo de um snal de temo dscreto é obrgatoramente um número ntero Assm, sua frequênca angular fundamental ω não ode assumr qualquer valor Eercíco 3 (HAYKIN, 000; 78) Determne se os seguntes snas são eródcos Se forem eródcos, encontre o eríodo fundamental (a) [ n] ( ) n (b) [ n] descrto na fgura a segur 63 Snas de energa e otênca 63 Snas de temo contínuo Em sstemas elétrcos, um snal ode reresentar uma tensão ou uma corrente Consdere uma tensão v alcada a um resstor de resstênca R, roduzndo uma corrente A otênca nstantânea dssada no resstor é defnda or 5
6 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 v ( ) t ou R R Vemos assm que a otênca nstantânea é roorconal à amltude do snal elevada ao quadrado Além do mas, ara é eatamente gual à amltude ao quadrado do snal R Ω, vemos que a otênca Baseado nsso, em análse de snas, costuma-se defnr a otênca nstantânea de um snal como: Lembrando que a energa é o roduto da otênca elo temo, costuma-se defnr a energa total do snal como: ( ) ( ) E lm t dt t dt ambém defnmos a otênca méda de um snal ( t ) como P dt lm Para snas eródcos, odemos calcular a otênca méda tomando a méda aenas num eríodo ao nvés de tomar todo o eo dos temos Para um snal ( t ) eródco de eríodo fundamental, temos: P dt A raz quadrada da otênca méda P é chamada de valor médo quadrátco (RMS Root-Mean-Square) do snal 6
7 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 63 Snas de temo dscreto No caso de um snal de temo dscreto [ n], as ntegras anterores são substtuídas elas somas corresondentes Dessa forma, a energa total de [ n] é defnda or: E e sua otênca méda é defnda or: n n P lm n N + n N N N Novamente, ara um snal eródco, basta tomarmos a méda de um eríodo ara o cálculo da otênca méda Assm, ara o caso de um snal [ n] com eríodo fundamental N, P N n n 0 N Um snal é chamado de snal de energa se e somente se a energa total do snal satsfzer a condção 0< E< Um snal é chamado de snal de otênca se e somente se a otênca méda do snal satsfzer a condção 0< P < Pode-se mostrar que as classfcações de energa e otênca de snas são mutuamente eclusvas Em esecal, um snal de energa tem otênca méda zero enquanto que um snal de otênca tem energa nfnta 7
8 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Eercícos 4 (HAYKIN, 000; 39) Qual a energa total do ulso retangular mostrado na fgura a segur? Resosta: A 5 (HAYKIN, 000; 39) Qual é a otênca méda da onda quadrada mostrada na fgura a segur? Resosta: 6 (HAYKIN, 000; 40) Qual é a otênca méda da onda trangular mostrada a segur? Resosta: /3 7 (HAYKIN, 000; 40) Qual a energa total do snal de temo dscreto mostrado a segur? 8
9 Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 8 (HAYKIN, 000; 40) Qual a otênca méda do snal eródco de temo dscreto mostrado na fgura a segur? 9
X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)
Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado
Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.
Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D
Proposta de resolução do Exame Nacional de Matemática A 2016 (2 ạ fase) GRUPO I (Versão 1) Logo, P(A B) = = = Opção (A)
Proosta de resolução do Eame Naconal de Matemátca A 0 ( ạ fase) GRUPO I (Versão ). P( A B) 0, P(A B) 0, P(A B) 0, P(A B) 0,4 P(A) + P(B) P(A B) 0,4 Como P(A) 0, e P(B) 0,, vem que: 0, + 0, P(A B) 0,4 P(A
Capítulo 9 Rotação de corpos rígidos
Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes
Notas de Aula de Probabilidade A
VII- VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. 7. CONCEITO DE VARIÁVEIS ALEATÓRIAS: Informalmente, uma varável aleatóra é um característco numérco do resultado de um epermento aleatóro. Defnção: Uma varável
2. VARIÁVEIS ALEATÓRIAS
VARIÁVEIS ALEATÓRIAS 0 Varável aleatóra Ω é o espaço amostral de um epermento aleatóro Uma varável aleatóra é uma função que atrbu um número real a cada resultado em Ω Eemplo Retra- ao acaso um tem produzdo
Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.
Nesse prátca, estudaremos a potênca dsspada numa resstênca de carga, em função da resstênca nterna da fonte que a almenta. Veremos o Teorema da Máxma Transferênca de Potênca, que dz que a potênca transferda
Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.
DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou
MECÂNICA CLÁSSICA. AULA N o 9. Colchetes de Poisson Simetrias Espaço de Fases Transformações Canônicas (Hamiltoniano)
1 MECÂNICA CLÁSSICA AULA N o 9 Colchetes de Posson Smetras Esaço de Fases Transformações Canôncas (amltonano) O Esaço de Fases tem uma estrutura assocada a s. Esaços ossuem estruturas, que se referem aos
CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA
CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de
Experiência V (aulas 08 e 09) Curvas características
Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de
Amplificadores de Potência ou Amplificadores de Grandes Sinais
UFBA Unversdade Federal da Baha Escola oltécnca Departamento de Engenhara Elétrca Amplfcadores de otênca ou Amplfcadores de Grandes Snas Amaur Olvera Feverero de 2011 1 Característcas: Estágo fnal de amplfcação;
Modelagem do Transistor Bipolar
AULA 10 Modelagem do Transstor Bpolar Prof. Rodrgo Rena Muñoz [email protected] T1 2018 Conteúdo Modelagem do transstor Modelo r e Modelo híbrdo Confgurações emssor comum, base comum e coletor
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
NOTA II TABELAS E GRÁFICOS
Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.
Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.
Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos
Capítulo 24: Potencial Elétrico
Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas
M mn (R) : conjunto das matrizes reais m n AnB = fx; x 2 A e x =2 Bg det A : determinante da matriz A
NOTAÇÕES N = f1; ; ; g C conjunto dos números comlexos R conjunto dos números reas undade magnára = 1 [a; b] = fx R; a x bg jzj módulo do número z C [a; b[ = fx R; a x < bg z conjugado do número z C ]a;
Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012
Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto
Flambagem. Cálculo da carga crítica via MDF
Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca
Física. Física Módulo 1 Vetores, escalares e movimento em 2-D
Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,
Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.
Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas
Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.
Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: [email protected] Meddas de Dspersão Indcam se os dados estão, ou não, prómos
VOLUME A A = cm 2 16, 10 1 N= 810. d 16 = = 16 16, 10. d 1 d = Resposta: C
nual VOLME Físca II L 5: EXECÍCIOS DE OFNDMENTO EXECÍCIOS OOSTOS 0. 6 = 0 cm N= 80 = 6, 0 l / cm 9 t = s = N V l C d 6 = 80 0 6, 0 6 = 6 6, 0 d d =,6 0 d = 0, 65 0 d= 0, 065 cm d= 0, 65 mm 9 esposta: C
Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não
Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem
F-328 Física Geral III
F-328 Físca Geral III Aula Exploratóra Cap. 26 UNICAMP IFGW F328 1S2014 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère = 1 C/s A corrente tem a mesma ntensdade
γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico
Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A Estatística
Escola Secundára com º cclo D. Dns 10º Ano de Matemátca A Estatístca Trabalho de casa nº 15 GRUPO I 1. Num referencal o.n. Oxyz, a undade é o cm e a esfera defnda por ( ) ( ) está nscrta num cubo. O volume
Função par e função ímpar
Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas
7 - Distribuição de Freqüências
7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste
Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert
α ( y) l Método de Glauert Γ( y) r ( y) V c( y) β b 4 V b ( y) + r dy dγ y y dy Método de resolução da equação ntegro-dferencal da lnha sustentadora através da sua transformação num sstema de equações
ANÁLISE DE SINAIS E SISTEMAS
ANÁLISE DE SINAIS E SISTEMAS AULA 2: :. Sinais de Tempo Contínuo e Sinais de Tempo Discreto; 2. Sinais Analógicos e Digitais; 3. Sinais Determinísticos e Sinais Aleatórios; 4. Sinais Pares e Sinais Ímpares;
Dinâmica do Movimento de Rotação
Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que
CARGA E DESCARGA DE UM CAPACITOR
EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto
Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata
Curso de Crcutos Elétrcos a Edção, Q rsn D Consonn, Edtora Edgard Blücher tda Pág5 Equação (5): dw( t) v( t) = dq( t) Pág5 no parágrafo após equação (36): Volume I Errata, caso em que não há energa ncal
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: [email protected] Aula Número: 19 Importante... Crcutos com a corrente
Despacho Económico-Ambiental de Sistemas de Energia Termoeléctricos Inseridos no Mercado de Carbono
Desacho Económco-Ambental de Sstemas de Energa Termoeléctrcos Inserdos no Mercado de Carbono V.M.F. Mendes, J.P.S. Catalão, S.J.P.S. Marano e L.A.F.M. Ferrera Deartamento de Engenhara Electrotécnca e Automação
INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs
INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço
DEFINIÇÃO - MODELO LINEAR GENERALIZADO
DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto
Estatística II Antonio Roque Aula 18. Regressão Linear
Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão
NOTAS DE AULA DA DISCIPLINA CE076
5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura
NÚMEROS COMPLEXOS (C)
Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6
Realimentação negativa em ampliadores
Realmentação negatva em ampladores 1 Introdução necessdade de amplfcadores com ganho estável em undades repetdoras em lnhas telefôncas levou o Eng. Harold Black à cração da técnca denomnada realmentação
- Eletrônica Analógica 1 - Capítulo 2: Fundamentos dos transistores bipolares de junção (TBJ)
- Eletrônca Analógca 1 - Capítulo 2: Fundamentos dos transstores bpolares de junção (TBJ) 1 Físca do TBJ 2 Tpos de lgação do TBJ 2.1 Confguração base-comum Sumáro Parta A Introdução ao TBJ e sua operação
Análise Complexa Resolução de alguns exercícios do capítulo 1
Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +
Estudo de Curto-Circuito
Estudo de Curto-Crcuto Rotero. Objetvo / aplcações. Natureza da corrente de defeto 3. Resposta em regme (4 tpos de defeto) 4. Resposta transtóra 5. Conclusões Objetvo Determnação de correntes e tensões
Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos
Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões
Revisão de Estatística X = X n
Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...
1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA
1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de
LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm
LEI DE OHM EXEMPLO. Uma resstênca de 7 é lgada a uma batera de V. Qual é o valor da corrente que a percorre. SOLUÇÃO: Usando a le de Ohm V I 444 A 7 0. EXEMPLO. A lâmpada lustrada no esquema é percorrda
MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL
CIRCUITOS ELÉTRICOS Método de Análse: Análse Nodal Dscplna: CIRCUITOS ELÉTRICOS Professor: Dr Marcos Antôno de Sousa Tópco MÉTODOS DE ANÁLISE DE CIRCUITOS RESISTIVOS ANÁLISE NODAL Referênca bbloráfca básca:
SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realizado em Janeiro de 96 e revisto em Janeiro de 97
SINTONIA DE CONTROLADORES P.I.D. João Lourenço Realzado em Janero de 96 e revsto em Janero de 97 O resente texto retende, ncalmente, dar a conhecer quas as característcas rncas das váras acções de controlo,
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr
PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 2011 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFMG VESTIBULAR 0 a Fase Profa Mara Antôna Gouvea PROVA A QUESTÃO 0 Consdere as retas r, s e t de equações, resectvamente, y x, y x e x 7 y TRACE, no lano cartesano abaxo, os gráfcos
Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES
Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas
LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL
LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere
Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.
Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que
Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos
Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,
GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES
Elementos de Estatística e Probabilidades II
Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros
Algarismos Significativos Propagação de Erros ou Desvios
Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento
