( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução.

Tamanho: px
Começar a partir da página:

Download "( ) ( ) ( ) ( ) ( ) 3 - INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Introdução."

Transcrição

1 INTRODUÇÃO À RESOLUÇÃO DE SISTEMAS NÃO LINEARES. Itrodução. No processo de resolução de um problema prático é reqüete a ecessidade de se obter a solução de um sistema de equações ão lieares. Dada uma ução ão liear (orma vetorial F: D R R F (... T o objetivo é ecotrar as soluções para: F( ou equivalete: K M K K Eemplo 3.: + 9 Figura 3. Gráico das uções do eemplo. +yy- -yy/9-

2 Este sistema ão liear admite quatro soluções que são os potos ode as curvas + e se iterceptam. 9 Eemplo 3.: ( (. + -y-. -+yy+ Figura 3. Gráico das uções do eemplo. Este sistema ão tem solução ou seja ão eistem potos ode as curvas. e se iterceptem. 3.- Notações e Deiições básicas No que segue será usada a seguite otação: M e F( M Cada ução i ( é uma ução ão liear em i : portato F( é uma ução ão liear em F: R R. No caso de sistemas lieares F( A b ode A R R. R i... e 56

3 57 Estamos supodo que F( está deiida um cojuto aberto D R e que tem derivadas cotíuas esse cojuto. Aida mais supomos que eiste pelo meos um poto * D tal que F(*. O vetor das derivadas parciais da ução i (... é deomiado vetor gradiete de i ( e será deotado por i i... : i T i i i L A matriz das derivadas parciais de F( é chamada matriz Jacobiaa e será deomiada por J(: T T T J L M L L M Eemplo 3.3: Para o sistema ão liear F( A matriz Jacobiaa correspodete será: J( Os métodos para resolução de sistemas ão lieares são iterativos isto é a partir de um poto iicial ( geram uma seqüêcia { ( } de vetores e a situação de covergêcia: * lim ode * é uma das soluções dos sistema ão liear. Em qualquer método iterativo é preciso estabelecer critérios de parada para se aceitar um poto ( como aproimação para a solução eata * ou para se detectar a divergêcia do processo.

4 Uma vez que a solução eata * temos F(* um critério de parada cosiste em veriicar se todas as compoetes de F( ( tem módulo pequeo. orma de vetores. Como F( ( é um vetor o R veriicamos se ( Em testes computacioais é comum usarmos a orma iiito: para v R F < ε ode. é uma v Outro critério de parada é veriicar se má v i i + + é escolhido como aproimação para * se por eemplo: está próimo de zero isto é + < ε ; este é deomiado de critério de erro absoluto. Pode ser utilizado também o critério de erro relativo: + + < ε ; Para se detectar a divergêcia e iterromper o processo de cálculos usamos o teste com o úmero máimo de iterações. Pode-se também iterromper o processo se para algum F or maior que uma tolerâcia por eemplo se F >. Neste caso o processo é divergete. 3.- O Método de Newto para Sistemas Não-Lieares O método mais amplamete estudado e cohecido para resolver sistemas de equação ão lieares é o Método de Newto. No caso de uma equação ão liear a uma variável o método de Newto cosiste em se tomar um modelo local liear da ução ( em toro de e este modelo é a reta tagete à ução em. Ampliado a motivação de se costruir um modelo local liear para o caso de um sistema de equações ão lieares teremos: cohecida a aproimação ( D para qualquer D eiste c i D tal que: i T ( + c i i i i... Aproimado i ( c i por ( i i... E portato o modelo local liear para F( em toro de ( ica: 58

5 F( L F ( ( + J A ova aproimação (+ será o zero do modelo local liear L(. Agora L J Se deotamos solução do sistema liear: J ( ( F ( por. s F s temos que + + s ode s é a Observe que dado o poto ( a matriz J( ( é obtida avaliado-se J( em ( e em seguida o passo de Newto s ( é obtido a partir da resolução do sistema liear acima. Portato uma iteração de Newto requer basicamete: i a avaliação da matriz Jacobiaa em ( ; ii a resolução do sistema liear J s F e por esse motivo cada iteração e cosiderada computacioalmete cara. Em relação ao item (ii pode-se empregar métodos baseados em atoração da matriz Jacobiaa. Métodos iterativos podem ser também aplicados; por serem iterativos obtêm uma aproimação para a solução eata do sistema liear e cosequetemete o passo de Newto s ( ão é calculado eatamete. Por essa razão o método de Newto com a resolução do sistema liear através de um método iterativo é deomiado método de Newto ieato Algoritmo: Dados ( ε > e ε > aça: Passo : calcule F( ( e J( ( ; Passo : se F ( < ε aça e pare; caso cotrário: Passo 3: obteha s ( solução do sistema liear: J( ( s -F( ( ; Passo 4: aça: (+ ( + s ( ; Passo 5: se + < ε aça e pare; + 59

6 caso cotrário: Passo 6: + ; volte ao passo. Eemplo 3.4: Aplicar o método de Newto à resolução do sistema ão liear F( ode F( é dada por: F cujas soluções são * e ** 9 3 +y-3 +yy-9 Figura 3.3 Gráico das uções do eemplo 5. Usado J( 4 ε ε ε. Comecemos com (. 5 Para : 6

7 F( ( 3 ; 7 ( F( 7 >> ε J( ( s s ( s e ( má{ }.65 >> ε ou e ( >> ε ; Para : F( ( ; F( ( >> ε J( ( s s s e (.533>> ε ou e.744 > ε Prosseguir as iterações até que F ( < -4 ou + < -4. A característica mais atraete do método de Newto é que sob codições adequadas evolvedo o poto iicial ( a ução F( e a matriz Jacobiaa J( a seqüêcia gerada { ( } coverge a * com taa quadrática. É importate observar que os resultados de covergêcia obtidos são locais o setido de que a aproimação iicial ( deve estar suicietemete próima de *. 6

8 3.3 Método de Newto Modiicado De maeira aáloga ao caso de uma equação ão liear a modiicação sobre o método de Newto cosiste em se tomar a cada iteração a matriz J( ( em vez de J( ( : a partir de uma aproimação iicial ( a seqüêcia { ( } é gerada através de (+ ( + s ( ode s ( é a solução do sistema liear: J( ( s - F( ( Desta orma a matriz Jacobiaa é avaliada apeas uma vez e para todo o sistema liear a ser resolvido a cada iteração terá a mesma matriz de coeicietes: J( (. Se usarmos a atoração LU para resolvê-lo os atores L e U serão calculados apeas uma vez e a partir da ª iteração será ecessário resolver apeas dois sistemas triagulares para obter o vetor s (. Eemplo 3.5: Vamos usar aqui o método de Newto Modiicado para o sistema ão liear do eemplo 5: começado com ( 5 Temos J( Assim F( ( 3 7 Etão:. e J( (. J( ( s 3 7 s + s 3 s + s 7 ( ( + s s Agora para calcular ( resolvemos 6

9 J( ( s ( F s + s s s + s Assim ( ( s Prosseguir as iterações até obter covergêcia. Deia-se como eercício escrever ormalmete um algoritmo para este método. 63

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de sistemas não lineares Método de Newton

Cálculo Numérico / Métodos Numéricos. Solução de sistemas não lineares Método de Newton Cálculo Numérico / Métodos Numéricos Solução de sistemas não lineares Método de Newton Várias equações várias incónitas. 5:4 Queremos resolver:... m... m... m... m Eemplo: Intersecção de duas parábolas.

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções

Leia mais

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira TE3 Capitulo 4 Iterpolação Poliomial Pro. Mateus Duarte Teieira . Itrodução A tabela abaio relacioa calor especíico da água com a temperatura: Deseja-se por eemplo saber: a o calor especíico da água a

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e

: 8. log 3 4 : 7 B 6 B C. B D. 1 x. t é o tempo, dado em horas, e Eame de Admissão de Matemática Págia de... Simpliicado a epressão. : : tem-se: Simpliicado a epressão p p p Sabedo que p p obtém-se: p p log a etão log será igual a: a a a a pp p p. Para diluir litro de

Leia mais

Desigualdades (por Iuri de Silvio ITA-T11)

Desigualdades (por Iuri de Silvio ITA-T11) Desigualdades (por Iuri de Silvio ITA-T) Apresetação O objetivo desse artigo é apresetar as desigualdades mais importates para quem vai prestar IME/ITA, e mostrar como elas podem ser utilizadas a resolução

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo

CAPÍTULO III ANÁLISE DOS DADOS. Para responder à primeira pergunta, observe os dois gráficos abaixo CAPÍTULO III ANÁLISE DOS DADOS III.5 Idéias básicas sobre gráficos e modelos Modelos são regras matemáticas que permitem reproduzir um cojuto de valores uméricos a partir de outro ao qual correspodem.

Leia mais

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas.

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas. 5. SÉRIES NUMÉRICAS Neste capítulo, vamos esteder o coceito de adição, válido para um úmero fiito de parcelas, à uma soma ifiita de parcelas. 5.: Defiição e exemplos: Série geométrica e série de Dirichlet

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Iterpolação Itrodução A tabela abaio relacioa calor especíico da água e temperatura: temperatura C calor especíico 5 3 35 4 45 5.9997.9985.9986.9988.9988.99849.99878 o

Leia mais

5n 3. 1 nsen(n + 327) e)

5n 3. 1 nsen(n + 327) e) Exercícios 1 Mostre, utilizado a defiição, que as seguites sucessões são limitadas: 2 4 50 a) b) 3 +16 1 5 3 2 c) 1 4( 1) 8 5 d) 100 5 3 2 + 2( 1) 1 4( 1) 8 1 se( + 327) e) f) 5 3 2 4 4 2 2 Mostre, utilizado

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação

Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação Onde: A é a matriz do sistema linear, X, a matriz das incógnitas e B a matriz dos termos independentes da equação À seguir eemplificaremos e analisaremos cada uma dessas três situações. : A X B Podemos

Leia mais

Teoria Básica e o Método Simplex. Prof. Ricardo Santos

Teoria Básica e o Método Simplex. Prof. Ricardo Santos Teoria Básica e o Método Simple Prof. Ricardo Santos Teoria Básica do Método Simple Por simplicidade, a teoria é desenvolvida para o problema de PL na forma padrão: Minimizar f()=c T s.a. A=b >= Considere

Leia mais

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares.

Resolução do exemplo 8.6a - pág 61 Apresente, analítica e geometricamente, a solução dos seguintes sistemas lineares. Solução dos Exercícios de ALGA 2ª Avaliação EXEMPLO 8., pág. 61- Uma reta L passa pelos pontos P 0 (, -2, 1) e P 1 (5, 1, 0). Determine as equações paramétricas, vetorial e simétrica dessa reta. Determine

Leia mais

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada

Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Departamento de Física Laboratório de Teoria da Matéria Condensada Sistema de equações lineares e não lineares Tiago de Souza Farias

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS 9//0 MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a desigação de úmeros a propriedades de objetos ou a evetos do mudo real de forma a descrevêlos quatitativamete. Outra forma

Leia mais

Intervalo de Confiança para uma Média Populacional

Intervalo de Confiança para uma Média Populacional Estatística II Atoio Roque Aula 5 Itervalo de Cofiaça para uma Média Populacioal Um dos objetivos mais importates da estatística é obter iformação sobre a média de uma dada população. A média de uma amostra

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. III Método Simplex INVESTIGAÇÃO OPERACIONAL Programação Linear Eercícios Cap. III Método Simple António Carlos Morais da Silva Professor de I.O. INVESTIGAÇÃO OPERACIONAL (MS edição de 006) i Cap. III - Método Simple - Eercícios

Leia mais

Chama-se sucessão de números reais, ou sucessão, a uma aplicação de N R (por vezes considera-se Ν 0 = { }

Chama-se sucessão de números reais, ou sucessão, a uma aplicação de N R (por vezes considera-se Ν 0 = { } Aáli Matemática II ao lectivo 006/007 III- Séries. Sucessões ( breves revisões) Def.. Chama- sucessão de úmeros reais, ou sucessão, a Ν 0 ). u: N R uma aplicação de N R (por vezes cosidera- Ν 0 = { } Utiliza-

Leia mais

Método Simplex Resolução Algébrica. Prof. Ricardo Santos

Método Simplex Resolução Algébrica. Prof. Ricardo Santos Método Simplex Resolução Algébrica Prof. Ricardo Santos Método Simplex A função objetivo f(x) pode ser expressa considerando a partição básica: f(x)=c T x= [ ] c T c T x B c T x c T x B N = + x B B N N

Leia mais

Método Simplex Revisado

Método Simplex Revisado Método Simplex Revisado Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br Introdução Método

Leia mais

2.2 Alguns Exemplos de Funções Elementares

2.2 Alguns Exemplos de Funções Elementares Capítulo II: Fuções Reais de Variável Real 3. Algus Eeplos de Fuções Eleetares Fução afi (liear) São as fuções ais siples que aparece: os us gráficos repreta rectas. y + b f () y + b b y declive b ordeada

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

COMPARATIVO ENTRE REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA E A VINCULAÇÃO DE AMBOS COM A TABELA PRICE

COMPARATIVO ENTRE REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA E A VINCULAÇÃO DE AMBOS COM A TABELA PRICE COMPARATIVO ETRE REGIMES DE CAPITALIZAÇÃO SIMPLES E COMPOSTA E A VICULAÇÃO DE AMBOS COM A TABELA PRICE Etede-se por regime de capitalização o processo de formação dos juros e a maeira pela qual estes são

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09

Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09 Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08

Leia mais

O que é Estatística?

O que é Estatística? O que é Estatística? É um método de observação de feômeos coletivos. Ocupa-se da coleta, orgaização, resumo, apresetação e aálise de dados. Objetivo - Obter iformações que permitam uma descrição dos feômeos

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 07: Teorema do Valor Intermediário, Teorema do Confronto e Limite Trigonométrico Fundamental Objetivos da Aula Conhecer e aplicar o Teorema

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

Regressão, Interpolação e Extrapolação Numéricas

Regressão, Interpolação e Extrapolação Numéricas , e Extrapolação Numéricas Departamento de Física Universidade Federal da Paraíba 29 de Maio de 2009, e Extrapolação Numéricas O problema Introdução Quem é quem Um problema muito comum na física é o de

Leia mais

Análise de Projectos ESAPL / IPVC. Casos Particulares de VLA e TIR. Efeitos de Impostos, Inflação e Risco.

Análise de Projectos ESAPL / IPVC. Casos Particulares de VLA e TIR. Efeitos de Impostos, Inflação e Risco. Aálise de Projectos ESAPL / IPVC Casos Particulares de VLA e TIR. Efeitos de Impostos, Iflação e Risco. O Caso dos Fluxos de Caixa Costates uado um ivestimeto apreseta fluxos de caixa costates ao logo

Leia mais

Uma hierarquia de testes de convergência de séries baseada no teorema de Kummer

Uma hierarquia de testes de convergência de séries baseada no teorema de Kummer Bol. Soc. Para. de Mat. Essays 3s. v. 29 2 20: 83 07. c SPM ISSN-275-88 o lie ISSN-0037872 i press SPM: www.spm.uem.br/bspm doi:0.5269/bspm.v29i2.285 Uma hierarquia de testes de covergêcia de séries baseada

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Funções de varias variáveis ou Funções reais de variável vetorial

Funções de varias variáveis ou Funções reais de variável vetorial Funções de varias variáveis ou Funções reais de variável vetorial F : R n R (1,,..., n ) w F( 1,,.., 3 ) n R Dom( F) S S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio

Leia mais

Estimação por Intervalo (Intervalos de Confiança):

Estimação por Intervalo (Intervalos de Confiança): Estimação por Itervalo (Itervalos de Cofiaça): 1) Itervalo de Cofiaça para a Média Populacioal: Muitas vezes, para obter-se a verdadeira média populacioal ão compesa fazer um levatameto a 100% da população

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional

CAPÍTULO 4. 4 - O Método Simplex Pesquisa Operacional CAPÍTULO 4 O MÉTODO SIMPLEX 4 O Método Simplex caminha pelos vértices da região viável até encontrar uma solução que não possua soluções vizinhas melhores que ela. Esta é a solução ótima. A solução ótima

Leia mais

Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos:

Vamos estudar o conceito de variabilidade absoluta considerando o conjunto de notas obtidas por cinco alunos: Medidas de Disperção Itrodução: - Observamos ateriormete que as medidas de tedêcia cetral são usadas para resumir, em um úico úmero, aquele parâmetro que será o represetate do cojuto de dados. Estas medidas

Leia mais

INTRODUÇÃO TEÓRICA. Existe uma dependência entre a tensão aplicada e a corrente que circula em um circuito.

INTRODUÇÃO TEÓRICA. Existe uma dependência entre a tensão aplicada e a corrente que circula em um circuito. OBJETIVOS: a) verificar experimentalmente a Lei de Ohm; b) determinar o valor de resistências pelas medidas de tensão e corrente e pelo gráfico da característica elétrica; c) familiarização com os gráficos

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 6 Itegração Numérica Itegração Numérica Aula 6 Itegração Numérica Cálculo Numérico 3/4 Itegração Numérica Em determiadas situações, itegrais são diíceis, ou mesmo impossíveis de se

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hipóteses Neste capítulo será estudado o segudo problema da iferêcia estatística: o teste de hipóteses. Um teste de hipóteses cosiste em verificar, a partir das observações de uma amostra,

Leia mais

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x)

Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares. f(x) lim x a g(x) = lim x a f(x) Elementos de Cálculo I - Notas de aula 9 Prof Carlos Alberto Santana Soares Anteriormente, vimos que um dos problemas no cálculo de ites surge quando desejamos f() calcular a. A estratégia incial é calcular

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

Capítulo VI. Teoremas de Circuitos Elétricos

Capítulo VI. Teoremas de Circuitos Elétricos apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm

Leia mais

prof. sergio roberto de freitas

prof. sergio roberto de freitas MÉTODOS NUMÉRICOS prof. sergio roberto de freitas sfreitas@nin.ufms.br Departamento de Computação e Estatística Centro de Ciências Exatas e Tecnologia Universidade Federal de Mato Grosso do Sul 12/01/2000

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas. A obteção de uma

Leia mais

A integral indefinida

A integral indefinida A integral indefinida Introdução Prof. Méricles Thadeu Moretti MTM/CFM/UFSC. A integração é uma operação fundamental na resolução de problemas de matemática, física e outras disciplinas, além de fazer

Leia mais

GUIDG.COM PG. 1. Exercícios iniciais: Determine o conjunto solução das inequações: i) x 2 + 1< 2x 2 @ 3 @ 5x: Solução: Resolvendo em partes: y1)

GUIDG.COM PG. 1. Exercícios iniciais: Determine o conjunto solução das inequações: i) x 2 + 1< 2x 2 @ 3 @ 5x: Solução: Resolvendo em partes: y1) 5/7/011 CDI-1: Inequações, passo à passo, exercícios resolvidos. TAGS: Exercícios resolvidos, Inequações, passo à passo, soluções, cálculo 1, desigualdades, matemática básica. GUIDG.COM PG. 1 Exercícios

Leia mais

Estudando Função do 2º grau e Sistemas Lineares utilizando o Software Winplot

Estudando Função do 2º grau e Sistemas Lineares utilizando o Software Winplot Estudando Função do º grau e Sistemas Lineares utiliando o Software Winplot Silvia Cristina Freitas Batista Gilmara Teieira Barcelos Campos dos Gotacaes /RJ 008 Estudando Função do º grau e Sistemas Lineares

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

que não torne uma variável básica negativa. Se esse valor for infinito, o PL é ilimitado. Caso contrário, escolha uma variável

que não torne uma variável básica negativa. Se esse valor for infinito, o PL é ilimitado. Caso contrário, escolha uma variável Método Simple. Montar um dicionário inicial 2. Olhando a equação do z, escolha uma variável nãobásica in cujo aumento melhoraria a solução corrente do dicionário (coeficiente negativo se for minimização,

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO EXPONENCIAL PROF. CARLINHOS 1 Antes de iniciarmos o estudo da função eponencial faremos uma revisão sobre potenciação. 1. Potência com epoente natural

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. 11, 6 ; 1 4, 86 ; (A); (D); 41 permite resolver o problema é problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 16 = 17, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 11/1 ; 4 1; 1 [,

Leia mais

IND 1115 Inferência Estatística Aula 13

IND 1115 Inferência Estatística Aula 13 mbarros.com 3 mbarros.com 4 Coteúdo IND 5 Iferêcia Estatística Aula 3 Novembro 005 Môica Barros Itervalos de Cofiaça para Difereças etre Médias (Variâcias supostas iguais) Itervalo de Cofiaça para a variâcia

Leia mais

Métodos Iterativos para Soluções de Equações não-lineares Fernando Deeke Sasse CCT - UDESC fernandodeeke@gmail.com

Métodos Iterativos para Soluções de Equações não-lineares Fernando Deeke Sasse CCT - UDESC fernandodeeke@gmail.com Métodos Computacionais Numéricos e Algébricos com Maple Métodos Iterativos para Soluções de Equações não-lineares Fernando Deeke Sasse CCT - UDESC fernandodeeke@gmail.com Alguns problemas físicos envolvem

Leia mais

As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal.

As equações 1 e 2 são equações literais, enquanto que, a equação 3 não é uma equação literal. Equações literais Observa as equações seguintes: 7 1 7z 7 0 As equações 1 e são equações literais, enquanto que, a equação não é uma equação literal. Então, qual será a definição de equação literal? Equações

Leia mais

E = ΔV Δx. (1) E uma partícula de carga q movendo-se em um campo elétrico E (unidimensional) sofre uma força F dada por: f = qe.

E = ΔV Δx. (1) E uma partícula de carga q movendo-se em um campo elétrico E (unidimensional) sofre uma força F dada por: f = qe. 5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Atôio Roque Eletrodifusão e Até o mometo, cosideramos apeas o trasporte de solutos eutros (sem carga elétrica) através de membraas. Nesta aula, vamos

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir

Objetivo Estimar uma proporção p (desconhecida) de elementos uma população, apresentando certa característica de interesse, partir Objetivo Estimar uma roorção (descohecida) de elemetos em uma oulação, aresetado certa característica de iteresse, a artir da iformação forecida or uma amostra. Exemlos: : roorção de aluos da USP que foram

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Exercícios de Método Simplex Enunciados

Exercícios de Método Simplex Enunciados Capítulo Exercícios de Método Simplex Enunciados Enunciados 8 Problema Problema Problema 3 Problema 4 Problema 5 max F =0x +7x x + x 5000 4x + 5x 5000 x, x 0 max F =x + x x + x x + x 4 x, x 0 max F = x

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Método Simplex das Duas Fases

Método Simplex das Duas Fases Notas de aula da disciplina Pesquisa Operacional 1. 2003/1 c DECOM/ICEB/UFOP. Método Simplex das Duas Fases 1 Descrição do método Suponhamos inicialmente que tenham sido efetuadas transformações no PPL,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e

. Mas m 1 e Ftv (, ) , ou seja, ln v ln(1 t) ln c, com c 0 e CAPÍTULO 3 Eercícios 3 3 Seja a equação y y 0 B Como o Eercício ( item (e, yabl B y( Bl A 0 B B B B y(! y(! B 4 4 4 l A0! A( l A solução procurada é y ( l 4 l $ % 4 Pela ª Lei de Newto, m dv dt dv v dt

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

AMEI Escolar Matemática 9º Ano Sistemas de Equações

AMEI Escolar Matemática 9º Ano Sistemas de Equações AMEI Escolar Matemática 9º Ano Sistemas de Equações Equações do 1º grau com duas incógnitas Uma equação do 1º grau com duas incógnitas tem um número infinito de soluções. Para determinar se um par ordenado

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. , 6 ; 4, 86 ; (A); (D); 4 permite resolver o problema é 0 problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 6 = 7, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 0/0 ; 4 ; [ 0, [ 9º

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira

Tipos de problemas de programação inteira (PI) Programação Inteira. Abordagem para solução de problemas de PI. Programação inteira Tipos de problemas de programação inteira (PI) Programação Inteira Pesquisa Operacional I Flávio Fogliatto Puros - todas as variáveis de decisão são inteiras Mistos - algumas variáveis de decisão são inteiras

Leia mais

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 08 Licenciatura em Matemática Osasco -2010 1. Função Eponencial Dado um número rela a > 0, e a 1, então chamamos de função eponencial de base a, a função f: R R tal que: f = a Por eemplo: f = 5 g = 1 2 = 3 Gráfico de uma função eponencial Para

Leia mais