Interpolação. Interpolação Polinomial

Tamanho: px
Começar a partir da página:

Download "Interpolação. Interpolação Polinomial"

Transcrição

1 Iterpolação Iterpolação Poliomial

2 Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x) é usada em substituição à fução f.

3 Problemática A ecessidade de efetuar esta substituição surge quado: Quado são cohecidos os valores uméricos da fução para um cojuto de potos (tabelados) e é ecessário calcular o valor da fução em um poto fora desse cojuto (um poto ão tabelado). Quado há uma expressão algébrica da fução e verificase que difereciá-la e itegrá-la, por exemplo, são tarefas demasiadamete complexas (ou impossíveis).

4 Um Exemplo A seguite tabela mostra o calor específico c da água correspodete à temperatura T (ºC): Temperatura ( C ) Calor Específico 0, , , , , , ,99878 Supohamos que se queira calcular: o calor específico da água a 32,5 ºC a temperatura para a qual o calor específico é 0,99837 A iterpolação os ajuda a resolver este tipo de problema

5 Em equação Cosideremos +1 valores distitas: x 0,..., x (ós da iterpolação) e os valores de f(x) esses potos: f(x 0 ),..., f(x ). Queremos determiar a fução g(x) tal que: g(x 0 )=f(x 0 )... g(x )=f(x )

6 Graficamete

7 Classe de fuções Em osso caso, cosideramos a fução g(x) com um elemeto da classe de fuções poliomiais. Tetaremos aproximar a fução f(x) a partir de um cojuto de valores com uma fução do tipo: a 0 +a 1 x+...+a x

8 Iterpolação poliomial Dados os +1 potos (x 0,f(x 0 )),..., (x,f(x )), queremos aproximar f(x) por um poliômio p (x) de grau meor ou igual a : f(xk )=p (x k ) ; k=0,1,... Questões: esse poliômio existe? Ele é úico?

9 Iterpolação poliomial Cosiderado que p o poliômio escreve-se p (x)= a 0 +a 1 x+...+a x, a codição f(x k )=p (x k ), para k = 0,1,...,, produz o seguite sistema de +1 equações e +1 icógitas: a0 a1x0... ax0 f ( x0 ) a0 a1x1... ax1 f ( x1 )... a0 a1x... ax f ( x)

10 Iterpolação poliomial: matriz A matriz do sistema é: 1 x0... x 0 1 x1... x1 A x... x Essa matriz é uma matriz de Vadermode, desde que x 0,..., x são potos distitos, temos det A 0. Etão o sistema admite uma solução úica.

11 Prova Podemos proceder da forma seguite: O determiate pode ser cosiderado como um poliômio em x 0 : 1 x... x x1 1 x x... x = a + a x + a x a x E um poliômio de grau com raízes: x 1 a x, ele pode ser escrito (x i -x 0 ); i 0

12 Determiate de Vadermode O determiate da matriz de Vadermode pode ser escrito da forma seguite: x 0 0 x x... 1 x x... x = Õ - j 0 i< j ( x x ) i

13 Iterpolação poliomial: teorema Em outros termos, podemos dizer que: Existe um úico poliômio p (x) de grau tal que p (x k )=f(x k ), k=0,1,..., desde que x i x j por j k.

14 Obter p (x) Para obter o poliômio p (x), existem diversos métodos, o mais direto sedo a resolução do sistema liear. A escolha do método depede de várias codições: a estabilidade do sistema, performace computacioal,...

15 Resolução do sistema Vamos ecotrar o poliômio de grau 2 que iterpola os potos da tabela: x f(x) Cosiderado p 2 (x)=a 0 +a 1 x+a 2 x 2. Temos o sistema: a 0-a 1+a 2 =4 7 2 a 0 =1 a 0 1, a 1, a a 0 +2a 1+4a 2 =-1

16 Codicioameto A determiação dos coeficietes pela resolução do sistema é um processo simples, mas o sistema pode ser mal codicioado e sua resolução com umeração a poto flutuate pode produzir resultados errados. Existem outros métodos para determiar os poliômios de iterpolação. Como existe uma solução úica, qualquer método que determia uma solução determia a solução úica.

17 Método de Lagrage Forma de Lagrage Cosiderado os +1 potos (x 0,y 0 =f(x 0 )),..., (x,y = f(x )) e o poliômio iterpolador p (x). Lagrage propôs de represetar o poliômio p (x) da forma: p (x)=y 0 L 0 (x)+..+y L (x), ode L k (x) são poliômios de grau e a codição p (x i )=y i, i=0,..., seja satisfeita.

18 Forma de Lagrage A melhor forma de ter a codição: p (x i )=y i i=0,...,, é impor: 1 se k i L k (x i)= 0 se k i Por isso, pode-se defiir: L k ( x) ( x x )( x x )...( x x )( x x )...( x x ) 0 1 k 1 k 1 ( x x )( x x )...( x x )( x x )...( x x ) k 0 k 1 k k 1 k k 1 k

19 Forma de Lagrage O umerador de L k (x) é um produto de fatores em x. Logo L k (x) é de grau. Podemos verificar também que: 1 se k i L k (x i)= 0 se k i A forma de Lagrage para o poliômio iterpolador é: ( x x ) j 0, j k ( ) k k ( ), k ( ) k 0 p x y L x L x j 0, j k ( x x ) k j j

20 Iterpolação liear Iterpolação de dois potos (x 0,y 0 =f(x 0 )) e (x 1,y 1 =f(x 1 )). Usado a forma de Lagrage, temos: ( x x ) ( x x ) ( x x) y ( x x ) y p ( x) y y ( x0 x1 ) ( x1 x0 ) ( x1 x0)

21 Exemplo Seja a tabela: x f(x) Temos: L ( x) L ( x) L 2 ( x x1 )( x x2) ( x 0)( x 2) x 2x ( x x )( x x ) ( 1 0)( 1 2) ( x x0 )( x x2 ) ( x 1)( x 2) x x 2 ( x x )( x x ) (0 1)(0 2) ( )( ) ( 1)( 0) ( x) ( x x )( x x ) (2 1)(2 0) 6 2 x x0 x x1 x x x x x 2x x x 2 x x 7 2 p ( x) 4 1 x x

22 Forma de Newto Cosiderado os +1 potos (x 0,f(x 0 )),..., (x,f(x )) e o poliômio iterpolador p (x). Newto propôs de represetar o poliômio p (x) da forma: p (x)=d 0 +d 1 (x-x 0 )+d 2 (x-x 0 )(x-x 1 )+...+d (x-x 0 )...(x-x -1 ) Os coeficietes d k, k=0,..., são difereças divididas de ordem k etre os potos (x j,f(x j )), j=0,...,k

23 Operador difereças divididas f(x) é uma fução tabelada em x 0,...,x. Os operadores de difereças divididas são defiidos por: é f [ x0 ] = f ( x0) ordem0 ê ê f [ x1 ]- f [ x0 ] f [ x0, x1 ] = ordem1 ê x1 - x0 ê ê f [ x1, x2] - f [ x0, x1 ] f [ x0, x1, x2] = ordem 2 ê x2 - x0 ê ê f [ x1,..., x ] - f [ x0,..., x- 1] f [ x0,..., x ] = ordem ê ë x - x0

24 Operador difereças divididas x Ordem 0 Ordem 1 Ordem 2... Ordem x 0 f[x 0 ] f[x 0, x 1 ] x 1 f[x 1 ] f[x 0, x 1, x 2 ] f[x 1, x 2 ] x 2 f[x 2 ] f[x 1, x 2, x 3 ] f[x 0,..., x ] f[x -2, x -1, x ]... f[x -1, x ] x f[x ]

25 Operador difereças divididas EXEMPLO x f(x) x Ordem 0 Ordem 1 Ordem 2 Ordem 3 Ordem /2-1 1/ /

26 Exemplo x Ordem 0 Ordem 1 Ordem 2 Ordem 3 Ordem /2-1 1/ / p 4 (x)=1+0(x-(-1))+(-1/2)(x-(-1))(x-0)+(1/6)(x-(-1))(x-0)(x-1)+(-1/24)(x-(-1))(x-0)(x-1)(x-2) p 4 (x)=d 0 +d 1 (x-x 0 )+d 2 (x-x 0 )(x-x 1 )+d 3 (x-x 0 )(x-x 1 )(x-x 2 )+d 4 (x-x 0 )(x-x 1 )(x-x 2 )(x-x 3 ) p 4 (x)=1-(1/2)(x+1)x+(1/6)(x+1)x(x-1)-(1/24)(x+1)x(x-1)(x-2)

27 Forma de Newto Podemos provar que as difereças divididas satisfazem a propriedade seguite: f [ x,..., x ] f [ x,..., x ] 0 k j0 j k Ode j 0,..., j k é qualquer permutação de 0,..., k.

28 Forma de Newto Forma de Newto para o poliômio iterpolador: Seja uma fução f(x) cotíua e com tatas derivadas cotíuas ecessárias um itervalo [a,b]. Sejam a=x0 <x 1 <...<x =b Vamos costruir o poliômio p (x) que iterpola f(x) em x 0,..., x, costruido sucessivamete os poliômios p k (x), k=0,...,

29 Forma de Newto Cosiderado a tabela: x f(x) x Ord 0 Ord 1 Ord / p x x x ( ) =

30 Estudo do erro A aproximar a fução f(x) por um poliômio, comete-se um erro: E (x)=f(x)-p (x)

31 Estudo do erro Teorema: Sejam x 0 <...<x, seja f(x) com derivadas até ordem (+1) para x o itervalo [x 0,x ]. Em qualquer poto x do itervalo [x 0,x ], o erro é dado por: ( 1) f ( x ) E( x) ( x x0)...( x x), ode x [ x0, x ] ( 1)!

32 Estudo do erro Do teorema precedete, podemos deduzir que: Dois corolários: Se a derivada de ordem +1 é cotíua em [x0,x ], ( 1) f ( x ) f [ x0, x1,..., x, x], x [ x0, x], x [ x0, x] ( 1)! Se além disso, x1 -x 0 =x 2 -x 1 =...=x -x -1 =h M 1 ( 1) E( x) ( x x0)...( x x), M 1 max ( f ( x) ) ( 1)! x [ x0, x] 1 h E( x) M 1 4( 1)

33 Estudo do erro Se a fução é dada a forma de uma tabela, só podemos estimar o valor absoluto do erro. Mas a tabela de diferecias divididas é costruída até ordem +1, podemos usar o maior valor destas M difereças como aproximação para: 1 ( 1)! Nesse caso, o valor do erro pode ser majorado com: E ( x) = ( x - x )...( x - x ) max( + ) diferecias divididas de ordem 0 1

34 Iterpolação iversa Trata-se de, cohecedo um valor y de (f(x 0 ),f(x )), aproximar um valor de x tal que f(x)=y. Uma solução cosiste em iterpolar f(x) e em seguida resolver a equação f(x)=y. No caso de graus elevados (>2), a resolução da equação pode ser difícil e ão temos avaliação do erro cometido. Uma outra solução cosiste em efetuar uma iterpolação iversa, ou seja determiar um poliômio iterpolador de f -1 (x). Com a iterpolação iversa, podemos calcular uma avaliação do erro cometido. A iterpolação iversa só poder ser feita com uma fução moótoa.

35 Grau do poliômio Trata-se de determiar o grau do poliômio para iterpolar uma fução em um poto: Deve-se costruir a tabela de difereças divididas. Se a vizihaça do poto de iteresse, as difereças divididas de ordem k são praticamete costates, podemos cocluir que um poliômio de grau k é suficiete.

36 Newto-Gregory No caso em que os x 0,...,x são igualmete espaçados, podemos usar a forma de Gregory-Newto. Diféreças ordiarias: f(x)=f(x+h)-f(x) f(x)= f(x+h)- f(x) f(x)= f(x+h)- f(x)...

37 Newto-Gregory Podemos costruir a tabela de difereças ordiárias da mesma forma que a tabela de difereças divididas. Teorema: Se: Etão: x = x + jh, j = 0,1,..., j 0 0 f [ x,..., x ] = D f ( x0 ) h!

38 Newto-Gregory No caso em que os x 0,...,x são igualmete espaçados, podemos escrever o poliômio iterpolador: 2 Df ( x0 ) D f ( x0) p ( x) = f ( x0) + ( x - x0) + ( x - x0)( x - x1) + 2 h 2h D f ( x0 )... + ( x - x0)...( x - x- 1) h!

39 Newto-Gregory Usado uma mudaça de variáveis: s=(x-x 0 )/h Temos: (x-x j )=(s-j)h e p (x)=f(x 0 )+s f(x 0 )+s(s-1) f(x 0 )/2+...

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Interpolação INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Iterpolação Itrodução A tabela abaio relacioa calor especíico da água e temperatura: temperatura C calor especíico 5 3 35 4 45 5.9997.9985.9986.9988.9988.99849.99878 o

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira

TE231 Capitulo 4 Interpolação Polinomial. Prof. Mateus Duarte Teixeira TE3 Capitulo 4 Iterpolação Poliomial Pro. Mateus Duarte Teieira . Itrodução A tabela abaio relacioa calor especíico da água com a temperatura: Deseja-se por eemplo saber: a o calor especíico da água a

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Aula 16. Integração Numérica

Aula 16. Integração Numérica CÁLCULO NUMÉRICO Aula 6 Itegração Numérica Itegração Numérica Aula 6 Itegração Numérica Cálculo Numérico 3/4 Itegração Numérica Em determiadas situações, itegrais são diíceis, ou mesmo impossíveis de se

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional

CCI-22 CCI-22. 5) Interpolação. Matemática Computacional CCI- CCI- atemátia Computaioal 5 Iterpolação Carlos Alerto Aloso Saes Poliômios iterpoladores, Formas de Lagrage, de Newto e de Newto-Gregory Itrodução Forma de Lagrage Forma de Newto CCI- Forma de Newto-Gregory

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Aálise Matemática Resolução do exame de Recurso de 6 de Fevereiro de 9 Respostas a pergutas diferetes em folhas diferetes Justifique cuidadosamete todas as respostas. Não é permitida a utilização

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli

Ajuste de Curvas. Lucia Catabriga e Andréa Maria Pedrosa Valli 1-27 Ajuste de Curvas Lucia Catabriga e Adréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempeho (LCAD) Departameto de Iformática Uiversidade Federal do Espírito Sato - UFES, Vitória, ES,

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FUNÇÕES CONTÍNUAS Onofre Campos

FUNÇÕES CONTÍNUAS Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL III SEMANA OLÍMPICA Salvador, 19 a 26 de jaeiro de 2001 1. INTRODUÇÃO FUNÇÕES CONTÍNUAS Oofre Campos oofrecampos@bol.com.br Vamos estudar aqui uma ova classe de

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Numeração de funções computáveis. Nota

Numeração de funções computáveis. Nota Numeração de fuções computáveis 4.1 Nota Os presetes acetatos foram baseados quase a sua totalidade os acetatos realizados pela Professora Teresa Galvão da Uiversidade de Porto para a cadeira Teoria da

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA

Uma série de potências depende de uma variável real e apresenta constantes C k. + C k. k=0 2 RAIO E INTERVALO DE CONVERGÊNCIA 1 Uma série de potêcias depede de uma variável real e apreseta costates, chamadas de coeficietes. Ela se apreseta da seguite forma: Quado desevolvemos a série, x permaece x, pois é uma variável! O que

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos.

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos. VARIÁVEIS DE ESTADO Defiições MODELAGEM E DINÂMICA DE PROCESSOS Profa. Ofélia de Queiroz Ferades Araújo Estado: O estado de um sistema diâmico é o cojuto míimo de variáveis (chamadas variáveis de estado)

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS rof Me Arto Barboi SUMÁRIO INTRODUÇÃO EQUAÇÃO DIFERENCIAL ORDINÁRIA (EDO) Ordem de uma Equação Diferecial Ordiária Grau de uma Equação Diferecial Ordiária Solução geral e particular

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

KRIGAGEM UNIVERSAL (Metodologia geoestatística para dados não estacionários)

KRIGAGEM UNIVERSAL (Metodologia geoestatística para dados não estacionários) KRIGAGEM UNIVERSAL (Metodologia geoestatística para dados ão estacioários) Para a obteção de um variograma é suposto que a variável regioalizada teha um comportameto fracamete estacioário, ode os valores

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução A interpolação é outra técnicas bem conhecida e básica do cálculo numérico. Muitas funções são conhecidas apenas em um

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: Grupo I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva, a folha de respostas, o úmero do

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

ESCOLA DE ENGENHARIA DE LORENA EEL/USP OPERAÇÕES UNITÁRIAS II Prof. Antonio Carlos da Silva. DESTILAÇÃO COM RETIFICAÇÃO (misturas binárias)

ESCOLA DE ENGENHARIA DE LORENA EEL/USP OPERAÇÕES UNITÁRIAS II Prof. Antonio Carlos da Silva. DESTILAÇÃO COM RETIFICAÇÃO (misturas binárias) ESCOA E ENGENHARIA E ORENA EE/USP OPERAÇÕES UNITÁRIAS II Prof. Atoio Carlos da Silva ESTIAÇÃO COM RETIFICAÇÃO (misturas biárias) Refluxo de topo a a, a a, x a Codesador x Produto de topo Seção de Retificação

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tema II Itrodução ao Cálculo Diferecial II TPC º 7 Etregar em 09 0 009. O João é coleccioador de cháveas de café. Recebeu como preda um cojuto de 0 cháveas, todas diferetes em que 4 são douradas e 6 prateadas.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamatieses Itegradas (FAI) www.fai.com.br BAZÃO, Vaderléa Rodrigues; MEIRA, Suetôio de Almeida; NOGUEIRA, José Roberto. Aálise de Fourier para o estudo aalítico da equação da oda. Omia Exatas,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versões 1/3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versões / Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Teoria da Estimação 1

Teoria da Estimação 1 Teoria da Estimação 1 Um dos pricipais objetivos da estatística iferecial cosiste em estimar os valores de parâmetros populacioais descohecidos (estimação de parâmetros) utilizado dados amostrais. Etão,

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais.

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais. Progressões Aritméticas Itrodução Chama-se sequêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais. Exemplo: 7; 0; 3;... ; 34 Uma seqüêcia pode ser iita ou iiita. 7; 0; 3; 6;... esta sequêcia

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais