Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1"

Transcrição

1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/

2 Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o conuno d informçõs m qu, uno com nrd u(), [, ), drmin univocmn o compormno do sism pr.. A scolh do sdo não é únic! não linr linr vrin no mpo LI g, u f, u, A B u y, y C D u A B u y C D u linr homogêno com coficins vriávis d A d

3 Mriz d rnsição d Esdos ; o nn d ; d ; ; A I ; ; o dscrv rnsição do sdo d Ingrndo sucssivmn qução homogên: d d A A d o d d A A d A A d d 3

4 Após infinis ingrçõs chg-s : ; I A d A A d d A A A d d d ; I A d A A d d A A A 3 d 3 d d.... mrizn: séri convrgn qundo os lmnos os lmnos d A são limidos m (, ) Pr o cso linr homogêno com coficins consns: (LI: = ) I A A A A 3 i ;...! 3! i! 3 i i A função mriz ponncil 4

5 d d A d d A A ; A ( ) ; LI: ; A( ) orm d Sylvsr: n n A i A I i i i Pr vlors crcrísicos iguis plic-s rgr d L Hopil pr rsolvr indrminção. 5

6 rnsformd d Lplc: d d A si A X(s) () L si A A ; L si A Dcomposição mricil: AP P A P P 6

7 Pr o cso linr não homogêno com coficins consns: d d A Bu Inroduzindo mudnç d vriávl: z z d d dz dz dz z (A )z A d d d d d dz d d A d Bu dz d Bu z z Bu d o z B u d 7

8 A( ) A A A A A z z B u d A B u d A rspos à nrd nul rspos o sdo nulo 8

9 Emplo: A A F dh () A F k h () () d dh () A k h () k h () d k h h h h u F F S vriávl mdid n síd é o nívl do sgundo nqu: y h h k Linrizndo m orno do sdo scionário: d d d d k b u h A b A A k k k h A h A 9

10 y A b u c A b b c Ed Esdo scionário: ái F k h k h k h h h 4 A b Uilizndo o orm d Sylvsr: A I 3 A

11 d u d u d u d u y Uilizndo o rnsformd d Lplc: si A X s bu s L si A L si A bu(s) A s (s ) L si A L L s s (s )(s ) (s ) A A

12 Uilizndo o dcomposição mricil: A A

13 Rprsnção m Espço d Esdos Discros não linr linr vrin no mpo k f k,u k,k k Ak k Bkuk yk Ck k Dkuk y k g k,u k,k LI k A k B uk y k C k D u k linr homogêno com coficins consns k A k, A A AA A k k A Mriz d rnsição d sdos discros 3

14 orm d Sylvsr: A k A I n n k i i i i Dcomposição mricil: k k A P P lim k k qu ocorr qundo i < Pr o cso linr não homogêno com coficins consns: k A k B uk A B u A B u AA B u B u A A B u B u k k k i ka A B ui i 4

15 Sisms d Ddos Amosrdos A B u Solução, u u k A B u d A k (k) considrndo no inrvlo (ddo mosrdo) A A k k k k B d u Pr = (k+) k k u k k k A A B d 5

16 k d d d d d k k i k A A B ui k A k B uk k k u k k i k k i k u i i k k A A k k k k k k i u i i Convrsão conínuo discro: A d B d 6

17 A B u Solução proimd Aplicndo o méodo d Eulr plício: d A B u k k k k k k IA k Bu k A I A A m_bs( bs (A) B B d B d k k Aplicndo o méodo d Eulr implício: A Bu u u k k k k k (k) considrndo no inrvlo (ddo mosrdo) IA IA Bu k k k A I A d B I A B d 7

18 Digonlizção A B u A P P A P P Mudnç d vriávl: P d P d d P P A P P P A P d d d d d d d d d n i () n n i i 8

19 () n () () P () () A () P P ( ) ( ) A P P 9

20 Vlors vors crcrísicos d mriz A: à diri: P A P P v v v Av d d dn v d d A P P P A P à squrd: P v v v n v A v P P P P B u d v v v v d dn v... v v d... vd B u n d o n n v n v n

21 n v...v d d n v v n o v d...v d n n v v n B u B u d n v v v v Bu d d n d ivção do modo modo d rspos composição do modo O modo vinculdo conribui ib id form difrn pr cd vriávl ld sdo: msm ivção do modo pr odos os sdos n n i d n d i o n i v v v... v v v B u d conribuição do modo pr rspos mporl do sdo i

22 Pr o sism digonlizdo: o n n cd modo conribui com pso uniário pr um únic vriávl d sdo su ivção é dd pl condição inicil d rspciv vriávl d sdo.

23 Conrolbilidd A B u n v v v v Bu d d n d Como u() só f o sgundo rmo, vmos considrr ( ) = : n v v B u d v v b b b u d n d d n S v b b b v B m não u() não influnci o modo : s modo não é conrolávl. Anlisndo o sism digonlizdo: d d P B u sdo * não é conrolávl l d d v B u u 3

24 Mriz d conrolbilidd: n K B A B A B A B O sism é conrolávl s posok n Ilusrndo com um sism discro com condição inicil nul: k A k B uk B u A B u A B u B u 3 A B u A B u A B u B u n n i n A B ui i 4

25 Considrndo um sism d sgund ordm com um únic nrd ( ) = : A b u Aplicndo um nrd u I durn um pquno inrvlo : I bu I Aplicndo um sgund nrd u II durn o sguin inrvlo : A bu = A b u bu II I II I II Pr podr lcnçr qulqur pono do plno (, ) é ncssário qu os vors I II não nhm msm dirção, iso é, qu sm L.I.: K b A b dv r poso 5

26 Obsrvbilidd A B u y C D u Considrndo u() = : A C y y C C P Cv d vd vdn Cv d Cvd Cv dn n n n S Cv d não o modo não influnci y(): s modo não é obsrvávl. 6

27 Mriz d obsrvbilidd: L C A C A C A C n O sism é obsrvávl s posol n Ilusrndo com um sism discro com nrd nul: A k k y C C y C CA y k C k y C CA CA n ynca 7

28 A dfinição d conrolbilidd é: Um sism é conrolávl s somn s, pr odo sdo inicil, ( ), is um nrd conínu por prs, u(, ] l qu ( ) = pr lgum finio. Ad dfinição i d obsrvbilidd bilid d é: Um sism é obsrvávl s somn s, pr odo, obsrvção d y(, ], pr qulqur u(, ] conhcido, prmi clculr ( ). 8

29 ) O modo é conrolávl é obsrvávl ) O modo é conrolávl não obsrvávl d d v B u d y Cv d d v B u y 3) O modo é não conrolávl obsrvávl 4) O modo não é nm conrolávl nm obsrvávl d d u y Cv d y d d u 9

30 Pricionndo o vor d sdos ns quro cgoris possívis: d d co cno nco ncno co cno nco ncno co cno nco ncno P P co c no B u cno P Único cminho possívl: y C P co nco co nco ncno ys CP s I P B u s co co co 3

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Fculdd d Engnhri Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Séri d Fourir m mpo conínuo ul d hoj Fculdd d Engnhri Rspos d SLIs conínuo ponnciis Eponnciis imgináris hrmonicmn rlcionds

Leia mais

Análise de Sistemas Contínuos por Transformada de Fourier

Análise de Sistemas Contínuos por Transformada de Fourier ES 43 Sinis Sisms Anális d Sisms Conínuos por rnsformd d Fourir Prof. Aluizio Fuso Ribiro Arúo Dpo. of Sisms d Compução Cnro d Informáic - UFPE Cpíulo 7 Sinis Sisms Eng. d Compução Inrodução Conúdo Rprsnção

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Progrm d SS Sinis Sims 5 uls Sims Linrs Invrins uls Séri d Fourir (mpo conínuo uls rnsformd d Fourir (mpo conínuo uls Séri d Fourir (mpo

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

Apostila de Matrizes, Determinantes e Sistemas. Prof. Mauricio Carias

Apostila de Matrizes, Determinantes e Sistemas. Prof. Mauricio Carias posil d Mrizs, Drminns Sisms Prof. Muricio Cris Cpíulo - Mrizs. Dfinição s mrizs são ls d númros ris uilizds m qus odos os rmos d ciênci d ngnhri. Váris oprçõs rlizds por compudors são rvés d mrizs. Vjmos

Leia mais

Transporte Vestiário Higiene Pessoal Poupança

Transporte Vestiário Higiene Pessoal Poupança Álgbr Mricil PRTE LGUMS CONSDERÇÕES TEORCS MTRZES Noção d mriz Mrizs formm um impor cocio m mmáic, d spcil uso o sudo d rsformçõs lirs mriiz é um bl d lmos disposos m lih colus Mriz m é um bl d m úmros

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

REVISÃO MATEMÁTICA &$3Ì78/2,, 2.1- INTRODUÇÃO 2.2- DEFINIÇÃO DE VARIÁVEL COMPLEXA E FUNÇÃO COMPLEXA. - Variável Complexa 2.3- FUNÇÕES ANALÍTICAS

REVISÃO MATEMÁTICA &$3Ì78/2,, 2.1- INTRODUÇÃO 2.2- DEFINIÇÃO DE VARIÁVEL COMPLEXA E FUNÇÃO COMPLEXA. - Variável Complexa 2.3- FUNÇÕES ANALÍTICAS posil isms Conrol I II- &$Ì78/,, REVIÃO MTEMÁTIC.- INTRODUÇÃO Es cpíulo m por objivo rvisr lguns funmnos mmáicos ncssários pr o suo ori conrol. Inicilmn, fini-s o qu vm sr um vriávl complx um função complx.

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 79 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 5: Represenações Enrada-Saída e o Domínio Transformado; Transformada de

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP FORMÇÃO CONTINUD PR PROFESSORES DE MTEMÁTIC FUNDÇÃO CECIERJ / SEEDUC-RJ COLÉGIO: CIEP - João orgs rro - Ururi Cmpos dos Goczs/RJ PROFESSOR: Príscil Hnriqus Goms Olivir MTRÍCUL: SÉRIE: ª TUTOR ():Divis

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

Transformada de Clarke e Park

Transformada de Clarke e Park Cnro d Tcnologi Pós-Grdução m Engnhri Eléric Aplicçõs d Elrônic d Poênci m Sisms d Poênci Trnsformd d Clrk Prk Prof. Klbr Lim Dprmno d Engnhri Eléric Sumário Obivos Inrodução Trnsformd d Clrk Vor spcil

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério d Educção Univrsidd Tcnológic Fdrl do Prná Cmpus Curii Grênci d Ensino Psquis Dprmno Acdêmico d Mmáic EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. Pul Frncis Bnvids Conúdo AULA... 6 AULA... 8. INTRODUÇÃO...

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

Angela Nieckele PUC-Rio. Convecção e Difusão

Angela Nieckele PUC-Rio. Convecção e Difusão Convcção Difusão 1 S S S p c S c S p S 2 3 squm Difrnç Cnrl ------------o------- -------o-------- --------o------ Considr-s prfil linr d nos rmos convcivos difusivos u u 2 D 2 não D D 2 1 D u, 4 u u 2

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

COMPORTAMENTO DE SOLUÇÕES

COMPORTAMENTO DE SOLUÇÕES 1 COMPORTAMENTO DE SOLUÇÕES BEHAVIOR OF SOLUCTIONS Rfl Lim Olivir; Frnndo Prir d Souz Univrsidd Fdrl d frmtml@gmilbr Mto Grosso do Sul, CPTL/UFMS -mil: RESUMO - No prsnt trblho studdo os tipos d soluçõs

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

! $&% '% "' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 / " ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',!

! $&% '% ' ' '# ' %, #! - ' # ' ' * '. % % ' , '%'# /%, 0! .!1! 2 /  ') # ' + 7*' # +!!! ''+,!'#.8.!&&%, 1 92 '. # ' '!4'',! "#$%% $&% '% "' ' '# '"''%(&%') '*'+&%'# ),'#+# ' %, # - ' # ' "%'''' ' * '. % % ', '%'# ''''') /%, 0.1 2 / " ') 33*&,% *"'",% '4'5&%64'' # ' + 7*' # + "*''''' 12''&% '''&")#'35 ''+,'#.8.&&%, 1 92 '. #

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

8 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS

8 REPRESENTAÇÃO NO ESPAÇO DE ESTADOS 8 REPRESENÇÃO NO ESPÇO DE ESDOS 8. Cocio d sdo ( prsção srá fi o domíio do mpo coíuo; s difrçs com o cso discro são pqus srão prsds posriorm. rprsção rd/síd d um sism só é álid qudo, o mpo iicil, o sism

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr.

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr. Univrsidd Tcnológic Fdrl do Prná Cmpus Toldo d Engnhri Eltrônic Dsnho Técnico AULA 9 PROGRAMA DA AULA: Projçõs ortogonis: Posiçõs ds Figurs plns m rlção um plno d projção. Estudo d sólidos gométricos no

Leia mais

para Z t (lembre que = 1 B)

para Z t (lembre que = 1 B) Economria III ANE59 Lisa d Ercícios d Economria d Séris mporais Pro. Rogério Siva d Maos (Juho 6) Si: www.uj.br/rogrio_maos A. MODELOS ARIMA. Escrva por nso:. ARMA(,) para. ARMA(,) para X. ( B B ) Z (

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

Capítulo IV TRANSFORMADAS DE LAPLACE

Capítulo IV TRANSFORMADAS DE LAPLACE Cpíulo IV TRANSFORMADAS DE LAPLACE Cpíulo IV Trnormd d Lplc Cpíulo IV O méodo d rnormd d Lplc rolv quçõ dirncii corrpondn problm d vlor inicil problm d vlor ronir O proco d olução coni m rê po principi:

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 3 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. O número de csos possíveis é. Como se pretende que o número sej pr, então pr o lgrismo ds uniddes existem

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F -

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Seção 2.1: Equações lineares; Fator integrante

Seção 2.1: Equações lineares; Fator integrante Capíulo Sção.: Equaçõs linars; Faor ingran Uma EDO d primira ordm é da forma d d f ond f é linar na variávl. Alguns mplos ípicos ds ipo d quaçõs com coficins consans saõ a b ou quaçõs com coficins variávis:

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Um outro arquivo texto deve ser criado para usar as funções definidas acima, por exemplo com o nome "simulacao.sce":

Um outro arquivo texto deve ser criado para usar as funções definidas acima, por exemplo com o nome simulacao.sce: List C Auls Prátics d cilb imulçã numéric Exmpl d rsrvtóri Objtiv: sluçã numéric d quçõs dirnciis rdináris usnd unçã ODE. Cnsidr nvmnt sistm d um rsrvtóri: srvtóri cm áu Prâmtrs: 0 m - ár d sçã trnsvrsl

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

Capítulo 9. Chopper(conversor CC-CC)

Capítulo 9. Chopper(conversor CC-CC) píulo 9 onrsor nrodução hoppr(conrsor rg Alimnção: nsão ix rg: nsão riál Equiln d um rnsormdor A A nsão d síd do conrsor pod sr mior ou mnor qu nsão d nrd Normlmn uilizdos m limnção d disposiios lromcânicos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9

Gabarito da 2ª Prova de 2ELE030 (03/06/2014) Circuitos Elétricos 1 Prof. Ernesto Ferreyra p.1/9 Gbrito d ª Prov de ELE00 (0/06/0) Circuitos Elétricos Prof. Ernesto Ferreyr p./9 )No circuito d Fig., encontre: ()o vlor de R que vi mximir su potênci dissipd; [,0] (b)o vlor d potênci máxim dissipd pr

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

Princípios de Telecomunicações

Princípios de Telecomunicações UNVERSDADE FEDERAL DE PERNAMBUO ro d cologi Gociêcis urso d Eghri Eléric Elrôic ODE Grupo d Psquis m omuicçõs Pricípios d lcomuicçõs élio MAGALÃES DE OLVERA, BEE, MEE, Docur, MEEE Lis d Exrcício 9 d Novmbro

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Exprimno 4 Induors circuios RL com onda quadrada 1. OBJETIVO O objivo dsa aula é sudar o comporamno d induors associados a rsisors m circuios alimnados com onda quadrada. 2. MATERIAL UTILIZADO osciloscópio;

Leia mais

Capítulo 3.1: Equações homogêneas lineares de segunda ordem com coeficientes constantes

Capítulo 3.1: Equações homogêneas lineares de segunda ordem com coeficientes constantes Cpíulo.: Equçõs homogêns linrs d sgund ordm om ofiins onsns Um qução difrnil ordinri d sgund ordm m form grl f,, ond f é um função dd. Es qução é di linr s f é linr m ': g p q so onrário dizmos qu é não

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

3 PLANEJAMENTO DE SISTEMAS WiMAX MÓVEIS

3 PLANEJAMENTO DE SISTEMAS WiMAX MÓVEIS 3 PLANEJAMENTO DE SISTEMAS WiMAX MÓVEIS 3.. METODOLOGIA DE PLANEJAMENTO DE COBETUA O ojivo ásico do plnjmno d corur é clculr quns céluls srão ncssáris pr corir um drmind ár gográfic, lvndo-s m considrção

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADA DIRECIONAL E PLANO TANGENTE8. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADA DIRECIONAL E PLANO TANGENTE8 TÓPICO Gil d Cost Mrques Fundmentos d Mtemátic II 8.1 Diferencil totl de um função esclr 8.2 Derivd num Direção e Máxim Derivd Direcionl 8.3 Perpendiculr um superfície

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.

IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02. IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo:

Definição: Sejam dois números inteiros. Uma matriz real é uma tabela de números reais com m linhas e n colunas, distribuídos como abaixo: I MTRIZES Elemeos de Álgebr Lier - MTRIZES Prof Emíli / Edmé Defiição: Sem dois úmeros ieiros Um mriz rel é um bel de úmeros reis com m lihs e colus, disribuídos como bixo: ( ) i m m m m Cd elemeo d mriz

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Prof. Dr. Yr de Souz Tdno yrtdno@utfpr.edu.br Aul 0 0/04 Sistems de Equções Lineres Prte MÉTODOS ITERATIVOS Cálculo Numérico /9 MOTIVAÇÃO Os métodos itertivos ou de proimção fornecem um

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Elementos de Análise - Lista 6 - Solução

Elementos de Análise - Lista 6 - Solução Elementos de Análise - List 6 - Solução 1. Pr cd f bixo considere F (x) = x f(t) dt. Pr quis vlores de x temos F (x) = f(x)? () f(x) = se x 1, f(x) = 1 se x > 1; F (x) = se x 1, F (x) = x 1 se x > 1. Portnto

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

Oferta - Gabarito. Questão 1: CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA

Oferta - Gabarito. Questão 1: CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 1113 TEORIA MICROECONÔMICA I PROFESSOR: JULIANO ASSUNÇÃO TURMA: JA Ofert - Gbrito 19 Questão 1: A função custo de um firm é dd por c() = 3 /3 / +

Leia mais

Física Geral e Experimental I (2011/01)

Física Geral e Experimental I (2011/01) Diretori de Ciêncis Exts Lbortório de Físic Roteiro Físic Gerl e Experimentl I (/ Experimento: Cinemátic do M. R. U. e M. R. U. V. . Cinemátic do M.R.U. e do M.R.U.V. Nest tref serão borddos os seguintes

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

O sinal Impulso Unitário 1. Definição

O sinal Impulso Unitário 1. Definição O sinl mpuls Uniári. Dfiniçã mpuls uniári mp iscr [n] [ n], n, cs cnrári mpuls uniári mp cnínu, 2. Hisóric O sinl l Dirc fi cri pl físic inglês Pul A. Muric Dirc 92-984 p sr is cm quiln cnínu l Krnckr

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação

Marcone Jamilson Freitas Souza. Departamento de Computação. Programa de Pós-Graduação em Ciência da Computação Método SIMPLEX Mrcone Jmilson Freits Souz Deprtmento de Computção Progrm de Pós-Grdução em Ciênci d Computção Universidde Federl de Ouro Preto http://www.decom.ufop.br/prof/mrcone E-mil: mrcone@iceb.ufop.br

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais