Representação de Conhecimento Usando Teoria de Conjuntos Aproximados

Tamanho: px
Começar a partir da página:

Download "Representação de Conhecimento Usando Teoria de Conjuntos Aproximados"

Transcrição

1 Representção Conhecmento Usndo Teor Conjuntos Aproxmdos MARCOS AURÉLIO DOMINGUES JOAQUIM QUINTERO UCHÔA UFLA - Unversd Fer Lvrs DCC - Deprtmento Cênc d Computção Cx Post 37 - CEP Lvrs MG) domnguescompufbr joukmufbr Resumo A Teor Conjuntos Aproxmdos TC tem sdo utzd em várs áres pesqus prncpmente nques reconds com representção conhecmento e prendzdo máqun Este trbho tem por objetvo presentr os prncps concetos d TCA e monstrr su vbd pr utzção como um formsmo mtemátco pr representção conhecmento n presenç ncertez Pvrs-Chve: Teor Conjuntos Aproxmdos TC espços e conjuntos proxmdos sstems representção conhecmento SRCs) Introdução A Teor Conjuntos Aproxmdos TC fo propost em [Pwk 98)] como um novo moo mtemátco pr representção do conhecmento trtmento ncertez e cssfcção proxmd Devdo ests crcterístcs tem-se utzdo est teor em Integênc Artfc especmente ns áres : prendzdo máqun qusção conhecmento rcocíono ndutvo scobert conhecmento em bse ddos Como po ser verfcdo em [Pwk 99)] conjuntos proxmdos pom ser consrdos conjuntos com fronters nebuoss ou sej conjuntos que não pom ser crcterzdos precsmente utzndo-se dos trbutos dsponíves A TCA se dfere outrs teors como Teor Conjuntos Fuzzy [Zh 96)] e Teor Evdênc Dempster-Shfer [Shfer 976)]) por não necesstr nenhum nformção dcon respeto ddos ts como: dstrbução probbd trbução crençs gru pertnênc ou possbd Isto tem evdo TCA ser um grn fonte nsprção pr pesqusdores que buscm o senvovmento sstems ógcos e métodos dutvos pr representção mnpução e rcocíno n presenç nformções ncompets Prncps Concetos d TCA Espços Aproxmdos Um espço proxmdo é um pr orndo on: é um conjunto não vzo nomndo conjunto unverso é um reção equvênc sobre nomnd reção ndscernbd Ddos se então e são ndscerníves em ou sej csse equvênc fnd por é mesm que fnd por e As csses equvênc nduzds por em são nomnds conjuntos eementres Se é um conjunto eementr not scrção ss csse equvênc Ess scrção é função do conjunto tr- butos que fne Note que! ddos on é um conjunto eementr em e são ndscerníves e "# no espço $ $ não se consegue dstngur pos Aproxmção Inferor e Superor %& Ddo um espço proxmdo e um conjunto ) com o objetvo verfcr o quão bem é representdo peos conjuntos eementres são fnds: proxmção nferor *- /0 em como unão todos os conjuntos eementres que

2 estão contdos em em símboos *- /0 $ proxmção superor * em como unão todos os conjuntos que possuem ntersecção não vz com em símboos * $ Ns notções utzds qundo o espço proxmdo for conhecdo e não houver rsco confusão referênc o espço será bod Assm por exempo será usdo em substtução * x y [x] R unverso U X U eementos ndscerníves csse equvênc nduzd pe reção R conjunto eementr) Fgur : Conjunto no espço proxmdo!#"%$& ) 3 Regões do Espço Aproxmdo s proxmção nferor e proxmção superor permtem cssfcção do espço proxmdo em regões: Ddo um espço proxmdo % e regão postv em formd por tods s csses equvênc * contds $ ntermente *- /0 no conjunto e dd por Po-se frmr que todos os eementos st regão pertencem regão negtv em formd peos conjuntos eementres que não estão contdos * $ n proxmção * superor e dd por Po-se frmr que nenhum dos eementos pertencem regão duvdos em formd peos eementos que pertencem proxmção superor ms não * pertencem * à proxmção *- /0 nferor e dd por A pertnênc um eemento st regão é ncert $ ) Aproxmção Inferor b) Aproxmção Superor A nf X) A supx) Exempo Sej um conjunto unverso e um reção equvênc em fnndo o espço proxmdo Sej tmbém como ustr Fgur A proxmção nferor e proxmção superor em % são mostrds n Fgur ) e b) A Fgur 3 por su vez present s regões Sej % um espço proxmdo e sej O conjunto po ou não ter sus fronters crmente fnds em função ds scrções dos conjuntos eementres Isso ev o conceto conjuntos proxmdos: um conjunto proxmdo em é fmí todos os subconjuntos que possuem mesm proxmção nferor e mesm proxmção superor em Ou sej possuem mesm regão postv negtv e duvdos Fgur : Aproxmções em Fgur 3: Regões em X U posx) duvx) negx)

3 4 Outrs Medds d TCA & Sej um espço proxmdo e um conjunto Com o objetvo medr quão bem o espço po refetr s funções pertnênc objetos em s seguntes medds são fnds: medd *- /0 ntern $ *- em /0 medd * extern $ * em qud d proxmção nferor *- /0 *- /0 em qud d proxmção superor * * em curác * *- /0 em * pertnênc proxmd Tmbém com ests medds qundo não houver dúvd referênc o espço proxmdo será omtd d notção Estes concetos serão exempfcdos ms à frente no Exempo 4 3 Sstems Representção Conhecmento SRCs) Os concetos d TCA são utzdos prncpmente no contexto Sstems Representção Conhecmento Um Sstem Representção Conhecmento SRC) é um quádrup $ on é o unverso fnto Os eementos são chmdos objetos que são crcterzdos por um conjunto trbutos e seus respectvos vores O conjunto vores trbutos é ddo por on é o conjunto vores do trbuto! #"$&% Por su vez é um $ função scrção t que pr Exempo O SRC representdo pe Tbe screve sete tpos ts em termos cnco trbutos que screvem s quntds vtmn A vtmn C vtmn D proteíns e pídos cd t e que são presentdos sobre segunte notção: vta vtc vtd prot e p Assm *) - / :3 = >? e Neste SRC tem-se: B> $ e $ / 4376 $C= D= Tbe : SRC on $!FE GIH &4GKJ&LGM &LGN &4GKO&LGP &LGKQR e S!$ETUWV% &LTUWVYX)&4TUWVYZ &\[I]_^ V &L` U [R $ TUWV% TUWVYX TUWVYZ [I]_^ V ` U [ G:H GKJ GM GN 3 GKO 4 GP GKQ $ Ddo um SRC é mportnte observr que cd subconjunto trbutos!b % b fne um únco espço proxmdo on é reção ndscernbd equvênc) nduzd por Exempo 3 Sej o SRC do Exempo e Neste cso tem-se que os eementos c e são ndscerníves com reção db pos possuem o mesmo vor Aém dsto é um espço proxmdo e seus conjuntos eementres são e) f f- - / e g 0 3 Índce Dscrmnnte Atrbutos fndo por em um sstem representção conhecmento e fne-se o índce dscrmnnte em reção o subconjunto trbutos notdo por hj como db Ddo um espço proxmdo um subconjunto trbutos $ um medd do gru certez n termnção d pertnênc um eemento o conjunto cordo com os trbutos P que é ddo por: ) - /0 hk $ Exempo 4 Sej o SRC fndo no Exempo e sej Nesse cso os db conjuntos eementres do espco proxmdo são: m) Sej - f / 0 f- e g Tem-se que:

4 3 hk - /0 $ $ - - ) / - /0 $ $D> - /0 3 Tbes Decsão $ $ >>> c=?c= No contexto d TCA o nteresse rec prncpmente sobre tbes csão um tpo prtcur SRC Um tbe csão é um SRC on os trbutos são dvddos em condções e csões Tem-se então 6 on é o conjunto ds condções e 6 o conjunto ds csões Como germente o conjunto 6 é untáro $ um tbe csão é scrt por on e são ts como num SRC C é o conjunto condções e é o trbuto csão Por enten-se cssfcção e fmí conjuntos eementres do conjunto proxmdo nduzdo por Exempo Sej o SRC do Exempo Sej o trbuto csão em e S é um tbe csão on :3 Os conjuntos eementres do espço proxmdo nduzdo por são - / 0 e Por su vez cssfcção é dd por - / 0 $ Dd um tbe csão é mportnte verfcr o quão bem fmí conjuntos eementres nduzdos pes condções % espeh fmí conjuntos eementres nduzdos por Pr sso consrndo o espço proxmdo nduzdo por são fnds: regão postv nduzd por - /0 gru pendênc com reção ftor sgnfcânc um trbuto com reção à pendênc exstente entre se $ e Exempo 6 Sej o SRC fndo no Exempo e sej Os conjuntos eementres do espço proxmdo nduzdo por são: ) - f 0 $ f- / e g Por su vez / 0 Com sso é possíve verfcr os seguntes resutdos: $ - "!# - /0 - /0 $ - - /0 / 0 0 $ / $ /0 - /0 $ 4376 Pr o cácuo : bem como o &% / 0 - "!# ) * $ - "!# *-/ ) - "!# ) - "!#" $ - "!# / - "!#" ) - "!# ) é necessáro ccur ntes o vor Consrndo-se que d) 43 e k 43 e respectvmente o que é feto segur tem-se que s fmís dos conjuntos eementres dos espços proxmdos nduzdos por!) e k são dds respectvmente por *) - / 0 e - 0 / Don: $ j) 4376 / 0 e $ j) 4376 $ k e $ k 4376 = Portnto: ) ) $ - "!# / - "!#" - "!# ) $ - "!# *-/ "!#" - "!# 4 ) -

5 $ Dz-se nd com respeto um tbe csão e que é npennte com reção à pendênc exstente entre e se pr todo subconjunto própro for verd que e Cso hj gum t que e então é dto ser pennte com reção à pendênc exstente entre e Um conjunto é dto ser um reduto com reção à pendênc exstente entre e se for npennte com reção à pendênc exstente entre e e e Exempo 7 Sej S o SRC do Exempo on é o trbuto csão em Como já vsto S e um tbe csão on csse condções é dd por :3 e csão é dd por A fmí Y fo termnd no Exempo Tem-se os seguntes resutdos em : $ :3 98 :3 = = :3 Neste cso é pennte e :3 é o únco subconjunto possur um reduto pos :3 é o únco subconjunto com o mesmo gru pendênc Tem-se nd: : :3 Portnto o conjunto % 43 > 4376?c= 98 :3 é o únco reduto do conjunto condções com reção pendênc entre e 4 Consrções Fns Este trbho presentou os prncps concetos d Teor Conjuntos Aproxmdos TC evncndo o seu formsmo mtemátco pr representção conhecmento E tmbém exempfcou pcção ts concetos em Sstems Representção Conhecmentos SRCs) Como perspectvs futurs preten-se mpementr um versão mutptform um sstem que mpemente os prncps concetos d TCA bem como gortmos prendzdo bsedos nestes concetos e já presentdos em [Uchô 998)] e [Uchô & Ncoett 999)] Referêncs [Pwk 98)] Pwk Z Rough sets Internton Journ of Computer nd Informton Scences ): [Pwk 99)] Pwk Z Rough sets: theoretc spects of resonng bout dt London Kuwer 99 [Shfer 976)] Shfer G A mthemthc theory of evnce Prnceton Prnceton Unversty Press 976 [Uchô 998)] Uchô J Q Representção e ndução conhecmento usndo teor conjuntos proxmdos São Cros UFSCr p Dssertção Mestrdo) [Uchô & Ncoett 999)] Uchô J Q & Ncoett M C ILROS: um sstem prendzdo máqun pr domínos ncompetos In: Ans do 4 SBAI - Smpóso Brsero Automção Integente Esco Potécnc d USP São Puo SP) 8 9 Setembro 999 p [Zh 96)] Zh L A Fuzzy sets Informton nd Contro 8):

Representação de Conhecimento Usando Teoria de Conjuntos Aproximados

Representação de Conhecimento Usando Teoria de Conjuntos Aproximados Representação de Conhecimento Usando Teoria de Conjuntos Aproximados MARCOS AURÉLIO DOMINGUES JOAQUIM QUINTERO UCHÔA UFLA - Universidade Federal de Lavras DCC - Departamento de Ciência da Computação Cx

Leia mais

Capítulo 3: Elementos dos Circuitos Elétricos

Capítulo 3: Elementos dos Circuitos Elétricos 3.1 INTODUÇÃO SETO DE TECNOLOGIA DEPATAMENTO DE ENGENHAIA ELÉTICA TE41 Crcutos Eétrcos I Prof. Ewdo L. M. Meh Cpítuo 3: Eementos dos Crcutos Eétrcos O objetvo d Engenhr é projetr e produzr dspostvos que

Leia mais

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física.

Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul Instituto de Física Curso de Licenciatura em Física. Ministério d Educção Fundção Universidde Feder de Mto Grosso do Su Instituto de Físic Curso de Licencitur em Físic O fio infinito Um exempo de obtenção do cmpo eetrostático por dois métodos: integrção

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma:

XI OMABC NÍVEL O lugar geométrico dos pontos P x, y cuja distância ao ponto Q 1, 2 é igual a y é uma: O lugr geométrco dos pontos P x, y cu dstânc o ponto Q, é gul y é um: prábol com foco no ponto Q crcunferênc de ro gul N fgur segur, o trângulo ABC é equlátero de ldo 0, crcunferênc mor é tngente os três

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja,

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja, 5 Cpítulo 5 JUSMENO DOS EORES OBSERDOS Como resultdo do processmento de fses observds por R, R 3, receptores, em um mesm sessão, obter-se-ão os vlores ds componentes de todos os possíves vetores de serem

Leia mais

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Subespaços invariantes, autovalores e autovetores

Subespaços invariantes, autovalores e autovetores UFF Áebr ner II - st 2 1 Subespços nvrntes, utovores e utovetores 1 Sej trnsformção ner efn por! #$ &% )*,-!10 ostre ue ' é um subespço nvrnte e 2 Sej 2 3 45 trnsformção ner efn por ostre ue ' 3 Sejm N!OFR

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I Escol Secundár com 3º cclo D. Dns 10º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

Definição de áreas de dependência espacial em semivariogramas

Definição de áreas de dependência espacial em semivariogramas Definição de áres de dependênci espcil em semivriogrms Enio Júnior Seidel Mrcelo Silv de Oliveir 2 Introdução O semivriogrm é principl ferrment utilizd pr estudr dependênci espcil em estudos geoesttísticos

Leia mais

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A 1 Verfcção Refno dos s I EEIMVR-UFF, Setembro de 11 Prov A 1. Clcule o vlor de γ no ferro, 168 o C, com os ddos fornecdos n prov. Vmos em ul que o S G e o γ estão relcondos trvés de, 5585γ G R ln M Logo,

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps que vmos recordr: Representr o

Leia mais

3 Algoritmos propostos

3 Algoritmos propostos Algortmos propostos 3 Algortmos propostos Nesse trabalho foram desenvolvdos dos algortmos que permtem classfcar documentos em categoras de forma automátca, com trenamento feto por usuáros Tas algortmos

Leia mais

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos

Equação do 2º grau. Sabemos, de aulas anteriores, que podemos A UA UL LA Acesse: http://fuvestibur.com.br/ Equção do 2º gru Introdução Sbemos, de us nteriores, que podemos resover probems usndo equções. A resoução de probems peo método gébrico consiste em gums etps

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

9.1 Indutores e Indutância

9.1 Indutores e Indutância Cpítuo 9 Indutânci 9.1 Indutores e Indutânci Neste cpítuo, estudmos os indutores e sus indutâncis, cujs proprieddes decorrem diretmente d ei de indução de Frdy. Cpcitores: Recpitução Lembre-se que, no

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Exame de Qualificação k-caminhos mínimos

Exame de Qualificação k-caminhos mínimos Exme de Qufcção k-cmnhos mínmos Fábo Psruk Insttuto de Mtemátc e Esttístc Unversdde de São Puo 6 de Junho de 2008 Sumáro Este trbho trt de gortmos pr gerção de k-cmnhos mínmos sem crcutos em grfos não-drgdos.

Leia mais

2 Teoria de membranas elásticas

2 Teoria de membranas elásticas Teor de membrns elástcs teor de membrn pr mters ltmente deformáves dfere d elstcdde clássc, á que s deformções n superfíce méd d membrn deformd são em módulo mores que undde. Dentro dests crcunstâncs utlz-se

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

se vai Devagar Devagar se vai longe longe...

se vai Devagar Devagar se vai longe longe... Compelm M et e tn át os de M ic Devgr Devgr se se vi vi o o longe... longe 130 ) Describe the pttern by telling how ech ttribute chnges. A c) Respost possível: b B B B A b b... A b) Drw or describe the

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

ESPAÇO PARA EDUCAÇÃO E CIDADANIA. a k id s

ESPAÇO PARA EDUCAÇÃO E CIDADANIA. a k id s v k d s k d s Brekng Prdgms A Brekng Prdgms é um empres especzd n gestão de projetos cuturs, bem como n dmnstrção e cptção de nvestmentos socs corportvos. Rezmos produção dret ou em coprtcpção de projetos

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

Primeira Prova de Mecânica A PME /08/2012

Primeira Prova de Mecânica A PME /08/2012 SL LITÉNI UNIVRSI SÃ UL eprtmento de ngenhr Mecânc rmer rov de Mecânc M 100 8/08/01 Tempo de prov: 110 mnutos (não é permtdo o uso de dspostvos eletrôncos) r r r r r r 1º Questão (3,0 pontos) onsdere o

Leia mais

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex Lst de Eercícos - Otmzção Lner Prof. Mr do Socorro DMAp/IBILCE/UNESP Método Smple Ref.: Bzr, M. e J.J. Jvs - Lner Progrmmng nd Network Flows - John Wley, 77. ) Resolv o problem bo pelo método smple começndo

Leia mais

ESTIMATIVA DE ERROS DE DISCRETIZAÇÃO MULTIDIMENSIONAL EM DINÂMICA DOS FLUIDOS

ESTIMATIVA DE ERROS DE DISCRETIZAÇÃO MULTIDIMENSIONAL EM DINÂMICA DOS FLUIDOS ESTIMATIVA DE ERROS DE DISCRETIZAÇÃO MULTIDIMENSIONAL EM DINÂMICA DOS FLUIDOS Antóno Fábo Crvlho d Slv Crlos Henrque Mrch IV SIMMEC Smpóso Mnero de Mecânc Computconl Uberlând, MG, mo de 000 pp. 497-504

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores Exos e árvores Projeto pr exos: restrções geométrcs Aul 4 Elementos de máquns Exos e árvores 1 Exos e árvores Projeto pr exos: restrções geométrcs o Deflexões e nclnções: geometr de um exo corresponde

Leia mais

UMA MATRIZ DOS PESOS ALTERNATIVA PARA O AJUSTAMENTO DOS NIVELAMENTOS DIRETOS

UMA MATRIZ DOS PESOS ALTERNATIVA PARA O AJUSTAMENTO DOS NIVELAMENTOS DIRETOS UA ATRIZ DOS PESOS ALTERNATIVA PARA O AJUSTAENTO DOS NIVELAENTOS DIRETOS An Aterntve Weght trx for the Drect Leveng Adjustment JULIO CESAR FARRET CARLITO VIEIRA DE ORAES ADRIANO LUIS SCÜNEANN ROGÉRIO SILVA

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS NIESIDADE FEDEAL DA BAHIA DEPATAMENTO DE MATEMÁTICA MATA7 ÁLGEBA LINEA A POFESSOES: Glór Márc Enldo ergst LISTA DE EXECÍCIOS ) Sejm A B e C mtres nversíves de mesm ordem encontre epressão d mtr X nos tens

Leia mais

Cap. IV Análise estatística de incertezas aleatórias

Cap. IV Análise estatística de incertezas aleatórias TLF 010/11 Cap. IV Análse estatístca de ncertezas aleatóras Capítulo IV Análse estatístca de ncertezas aleatóras 4.1. Méda 43 4.. Desvo padrão 44 4.3. Sgnfcado do desvo padrão 46 4.4. Desvo padrão da méda

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

4 Critérios para Avaliação dos Cenários

4 Critérios para Avaliação dos Cenários Crtéros para Avalação dos Cenáros É desejável que um modelo de geração de séres sntétcas preserve as prncpas característcas da sére hstórca. Isto quer dzer que a utldade de um modelo pode ser verfcada

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

7 Tratamento dos Dados

7 Tratamento dos Dados 7 Tratamento dos Dados 7.. Coefcentes de Troca de Calor O úmero de usselt local é dado por h( r )d u ( r ) (7-) k onde h(r), o coefcente local de troca de calor é h( r ) q''- perdas T q''- perdas (T( r

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

DETERMINAÇÃO DE ELEMENTOS TERRA RARAS E OUTROS TRAÇOS EM SOLEIRAS DE DIABÁSIO DA PROVÍNCIA MAGMÁTICA DO PARANÁ POR ATIVAÇÃO NEUTRÔNICA

DETERMINAÇÃO DE ELEMENTOS TERRA RARAS E OUTROS TRAÇOS EM SOLEIRAS DE DIABÁSIO DA PROVÍNCIA MAGMÁTICA DO PARANÁ POR ATIVAÇÃO NEUTRÔNICA 2005 Interntonl Nucler Atlntc Conference - INAC 2005 Sntos, SP, Brzl, August 28 to September 2, 2005 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 85-99141-01-5 DETERMINAÇÃO DE ELEMENTOS TERRA

Leia mais

DELINEAMENTOS EXPERIMENTAIS

DELINEAMENTOS EXPERIMENTAIS SUMÁRIO 1 Delneamentos Expermentas 2 1.1 Delneamento Interamente Casualzado..................... 2 1.2 Delneamento Blocos Casualzados (DBC).................... 3 1.3 Delneamento Quadrado Latno (DQL)......................

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Aula Características dos sistemas de medição

Aula Características dos sistemas de medição Aula - Característcas dos sstemas de medção O comportamento funconal de um sstema de medção é descrto pelas suas característcas (parâmetros) operaconas e metrológcas. Aqu é defnda e analsada uma sére destes

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura.

Determinação dos Momentos de Encastramento Perfeito. Um membro de secção constante ligando os nós i e j está representado na figura. eternção os oentos e Encstrento Perfeto U ebro e secção constnte gno os nós e está represento n fgur. A su trz e rgez reconr s forçs eercs ns etrees co os esocentos que í surge. y, sto é, = y A eor Resstênc

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Esforços internos em vigas com cargas transversais

Esforços internos em vigas com cargas transversais Esforços internos Esforços internos em um estrutur crcterizm s igções interns de tensões, isto é, esforços internos são integris de tensões o ongo de um seção trnsvers de um rr. Esforços internos representm

Leia mais

ANEXO I RISCO DOS SORTEIOS A REALIZAR

ANEXO I RISCO DOS SORTEIOS A REALIZAR Contnuação da Resoução CNSP N o 84, de 013. ANEXO I RISCO DOS SORTEIOS A REALIZAR Art.1 o Consdera-se, para os fns deste anexo, os concetos e notações abaxo: I R. sorteos : montante de capta, referente

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

3 Elementos de modelagem para o problema de controle de potência

3 Elementos de modelagem para o problema de controle de potência 3 Elementos de modelagem para o problema de controle de potênca Neste trabalho assume-se que a rede de comuncações é composta por uma coleção de enlaces consttuídos por um par de undades-rádo ndvdualmente

Leia mais

Modelamento não Linear de Dois Elos de um Robô Eletromecânico de Cinco Graus de Liberdade

Modelamento não Linear de Dois Elos de um Robô Eletromecânico de Cinco Graus de Liberdade Proceedng Seres of the Brzln Socety of Appled nd Computtonl Mthemtcs, Vol. 3, N., 5. Trblho presentdo no III CMAC - SE, Vtór-ES, 5. Proceedng Seres of the Brzln Socety of Computtonl nd Appled Mthemtcs

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

2 Metodologia de Medição de Riscos para Projetos

2 Metodologia de Medição de Riscos para Projetos 2 Metodologa de Medção de Rscos para Projetos Neste capítulo remos aplcar os concetos apresentados na seção 1.1 ao ambente de projetos. Um projeto, por defnção, é um empreendmento com metas de prazo, margem

Leia mais

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não

Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM UM ÚNICO FATOR E A ANÁLISE DE VARIÂNCIA Dr. Sivldo Leite Correi EXEMPLO DE UM PROBLEMA COM UM ÚNICO FATOR Um empres do rmo textil desej desenvolver

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação:

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação: Cpítulo 4 Vetores Reursos om oprght nluídos nest presentção: Grndes eslres: mss, volume, tempertur,... Epresss por um número e undde Grndes vetors: deslomento, forç,... Requerem módulo, dreção, sentdo

Leia mais

Funções de Transferência

Funções de Transferência Funções de Trnsferênc Em teor de controle, funções chmd funções de trnsferênc são comumente usds r crcterzr s relções de entrd-síd de comonentes ou sstems que odem ser descrtos or equções dferencs. FUNÇÃO

Leia mais

II TESTES PARA O CASO DE UMA AMOSTRA (Testes de Aderência)

II TESTES PARA O CASO DE UMA AMOSTRA (Testes de Aderência) II TESTES PARA O CASO DE UMA AMOSTRA (Testes de Aderênc) Estes testes são útes pr verfcr se determnd mostr pode provr de um populção especfcd. São usulmente conhecdos como testes de derênc ou bondde do

Leia mais

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006

GABARITO / 6 TRU 003: Mecânica das Estruturas II T1000 e T2000 3a. Prova 17/11/2006 GRITO / TRU : ecânic ds struturs II T e T. Prov 7// ( ) ( Pontos). uestão: Sej treiç d figur, compost de brrs de mesm rigidez xi, e sujeit à crg vertic posiciond no nó centr inferior. Use o teorem de peyron

Leia mais

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.

1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3. Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

ENG ANÁLISE DE CIRCUITOS I ENG04030

ENG ANÁLISE DE CIRCUITOS I ENG04030 ENG04030 NÁLISE DE CIRCUITOS I uls 7 e 8 Introdução qudrpolos Crcutos equlentes e ssocções Sérgo Hffner plcção Modelo de trnsstor de junção polr = h h = h h h h h h h h h h [ S] SHffner00 hffner@eee.org

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar )

Análise de faltas balanceadas e não-balanceadas utilizando Z bar. 1. Análise de falta balanceada usando a matriz de impedância de barra (Z bar ) Análse de altas balanceadas e não-balanceadas utlzando. Análse de alta balanceada usando a matrz de mpedânca de ra ( ) Aqu será eta uma análse de cálculo de curto-crcuto trásco (alta balanceada), utlzando

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

Materiais. Corrosão e Protecção de Materiais

Materiais. Corrosão e Protecção de Materiais Mters Corrosão e Proteção de Mters Doente: João Slvdor Fernndes Lb. de Tenolog Eletroquím Pvlhão de Mns, Pso 4 joo.slvdor@teno.ulsbo.pt Ext. 1964 Dgrms de Equlíbro E-pH (Pourbx) Comportmento de um metl

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais