III - Cone Circular Reto ou de Revolução. IV - Pirâmides de Bases Regulares. V- Esfera. esférica. Parte I: Praticando é que se Aprende.

Tamanho: px
Começar a partir da página:

Download "III - Cone Circular Reto ou de Revolução. IV - Pirâmides de Bases Regulares. V- Esfera. esférica. Parte I: Praticando é que se Aprende."

Transcrição

1 Sólidos Geométricos Área: II reinando para o ENEM/014 Fórmulas dos Sólidos Geométricos I - Prismas Retos 01 III - Cone Circular Reto ou de Revolução Cone equilátero g = R 1 - Prismas Especiais Cuo Paralelepípedo A = A + A t V = AH A = r A = rg A = r + rg (A + A ) r H A V. H IV - Pirâmides de Bases Regulares A = a F A = 4a A = 6a V = a d = a D = a - Prismas de Bases Regulares Base riangular Base Quadrangular A = (a + ac +c) V = ac D = a + + c A = A + A V A. H Base Hexagonal V- Esfera esférica = aresta lateral m = apótema de pirâmide h = altura a = aresta da ase a = apótema da ase Volume: Área da superfície A = Volume: V = 4 r 4 r Parte I: Praticando é que se Aprende A. h 1- (UFMG) Um recipiente sem tampa, cuja ase inferior tem a forma de um triângulo isósceles, foi desdorado na chapa cuja forma se vê na figura. O volume do recipiente era de a A = 4 A ah A = a A = 4aH a A = 6 4 ag A = 6. a) 1600 ) 169 c) 196 d) 4800 II - Cilindro Circular Reto ou de Revolução A = r A = rh A = r + rh A + A V = r h (A. h) B Cilindro Eqüilátero H = R - (UFMG) Corta-se em cada canto de uma placa quadrada de lado a, um quadrado de lado, conforme a figura aaixo. Em seguida, as aas são doradas para cima, ao longo das linhas pontilhadas, formando uma caixa retangular sem tampa, de volume. O valor de a é a) 6 ) 8 c) 9 d) 10

2 Área: II reinando para o ENEM/014 - Uma caixa cúica fechada tem 0 cm de aresta. Saendo-se que a caixa foi toda recoerta de papelão, a quantidade de papelão gasta, em m, foi a) 0,54 ) 5,4 c) 0,6 d),6 4 - A figura a seguir nos mostra uma esfera inscrita num cilindro eqüilátero cuja seção meridiana tem área igual a 6 cm. Podemos afirmar que o volume do líquido que foi colocado no cilindro exterior à superfície esférica, em cm, é igual a a) 6 ) 9 c) 18 d) (Enem) Uma garrafa cilíndrica está fechada, contendo um líquido que ocupa quase completamente seu corpo, conforme a figura. Suponha que, para fazer medições, que disponha apenas de uma régua milimetrada. Para calcular o volume do líquido contido na garrafa, o número mínimo de medições a serem realizadas é: a) 1 ) c) d) 4 e) (Enem/001) Em muitas regiões do estado do Amazonas. O volume de madeira de uma árvore cortada é avaliado de acordo com uma prática dessas regiões: 5 - Duas esferas de raios m e 4m têm centro no eixo do cone da figura, são tangentes entre si e ao cone. A altura do cone mede a) 51 m 7 6 ) m 7 c) 6 1 m 7 4 d) m I) Dá-se uma volta completa em torno do tronco com um arante II) O arante é dorado duas vezes pela ponta e, em seguida, seu comprimento é medido com fita métrica. 6- Considerando V 1 o volume do copo 1 e V o volume do copo, é correto afirmar que a) V1 V ) V1 V c) V V1 d) V1 V 4V 7- rês olas metálicas e de mesmo diâmetro, quando jogadas dentro de um tamor cilíndrico cujo raio mede 4 cm, fica totalmente sumersas e fazem o nível da água, no interior do tamor, suir 1 cm. A medida do raio de cada esfera, em centímetros, é III) O valor otido com essa medida é multiplicado Por ele mesmo e depois multiplicado pelo comprimento do tronco. Esse é o volume estimado de madeira. Outra estimativa pode ser otido pelo cálculo formal do volume do tronco, considerando-o um cilindro perfeito. A diferença entre essas medidas é praticamente equivalente às perdas de madeira no processo de corte para a comercialização. Pode-se afirmar que essas perdas são da ordem de a) 0% ) % c) 15% d) 1% e) 5% GABARIO 1- D - B - A 4- C 5- D 6- D 7- D 8- B 9- D 10- B 11-B -x-x- a) 4 ) 6 c) 8 d) 1 Parte II: Desenvolvendo Hailidades 8- (Enem) Uma fárica produz arras de chocolates no formato de paralelepípedos e de cuos, com o mesmo volume. As arestas da arra de chocolate no formato de paralelepípedo medem cm de largura, 18 cm de comprimento e 4 cm de espessura. Analisando as características das figuras geométricas descritas, a medida das arestas dos chocolates que têm o formato de cuo é igual a 1-(ENEM/001) Um faricante de rinquedos receeu o projeto de uma caixa que deverá conter cinco pequenos sólidos, colocados na caixa por uma aertura em sua tampa. A figura representa a planificação da caixa, com as medidas dadas em centímetros. 11 a) 5 cm. ) 6 cm. c) 1 cm d) 4 cm. e) 5 cm. 9- (Enem/011) Um porta-lápis de madeira foi construído no formato cúico, seguindo o modelo ilustrado a seguir. O cuo de dentro é vazio. A aresta do cuo maior mede 1 cm e a do cuo menor, que é interno, mede 8 cm. O volume de madeira utilizado na confecção desse ojeto foi de a) 1 cm ) 64 cm c) 96 cm d) 116 cm e) 178 cm Os sólidos são faricados nas formas de I. um cone reto de altura 1 cm e raio da ase 1,5 cm.

3 Área: II reinando para o ENEM/014 0 II. um cuo de aresta cm. III. uma esfera de raio 1,5 cm. IV. um paralelepípedo retangular reto, de dimensões cm, cm e 4 cm. V. um cilindro reto de altura cm e raio da ase 1 cm. O faricante não aceitou o projeto, pois perceeu que, pela aertura dessa caixa, só poderia colocar os sólidos dos tipos a) o triplo. ) o doro. c) igual. d) a metade. e) a terça parte. 16- (ENEM/006) Eclusa é um canal que, construído em águas de um rio com grande desnível, possiilita a navegailidade, suida ou descida de emarcações. No esquema aaixo,está representada a descida de uma emarcação, pela eclusa do porto Primavera, do nível mais alto do rio Paraná até o nível da jusante. a) I, II e III. ) I, II e V. c) I, II, IV e V. d) II, III, IV e V. e) III, IV e V. 1- (ENEM/00) Uma editora pretende despachar um lote de livros, agrupados em 100 pacotes de 0 cm x 0 cm x 0 cm. A transportadora acondicionará esses pacotes em caixas com formato de loco retangular de 40 cm x 40 cm x 60 cm. A quantidade mínima necessária de caixas para esse envio é: a)9 )11 c)1 d)15 e) (ENEM/005) Os três recipientes da figura têm formas diferentes, mas a mesma altura e o mesmo diâmetro da oca. Neles são colocados líquido até a metade de sua altura, conforme indicado nas figuras. A câmara dessa eclusa tem comprimento aproximado de 00 m e largura igual a 17 m. A vazão aproximada da água durante o esvaziamento da câmara é de 4.00 m por minuto. Assim, para descer do nível mais alto até o nível da jusante, uma emarcação leva cerca de a) minutos. ) 5 minutos. c) 11 minutos. d) 16 minutos. e) 1 minutos. Representando por V1, V e V o volume de líquido em cada um dos recipientes, tem-se a) V1 = V = V ) V1 < V < V c) V1 = V < V d) V < V1 < V e) V1 < V = V 15- (ENEM/006) Uma artesã confecciona dois diferentes tipos de vela ornamental a partir de moldes feitos com cartões de papel retangulares de 0 cm x 10 cm (conforme ilustram as figuras aaixo). Unindo dois lados opostos do cartão, de duas maneiras, a artesã forma cilindros e, em seguida, os preenche completamente com parafina. 17-(ENEM 007) Representar ojetos tridimensionais em uma folha de papel nem sempre é tarefa fácil. O artista holandês Escher ( ) explorou essa dificuldade criando várias figuras planas impossíveis de serem construídas como ojetos tridimensionais, a exemplo da litografia Belvedere, reproduzida aaixo. Considere que um marceneiro tenha encontrado algumas figuras supostamente desenhadas por Escher e deseje construir uma delas com ripas rígidas de madeira que tenham o mesmo tamanho. Qual dos desenhos a seguir ele poderia reproduzir em um modelo tridimensional real? Supondo-se que o custo da vela seja diretamente proporcional ao volume de parafina empregado, o custo da vela do tipo I, em relação ao custo da vela do tipo II,será

4 Área: II reinando para o ENEM/ ( ENEM/007) A diversidade de formas geométricas espaciais criadas pelo homem, ao mesmo tempo em que traz enefícios, causa dificuldades em algumas situações. Suponha, por exemplo, que um cozinheiro precise utilizar exatamente 100 ml de azeite de uma lata que contenha 1.00 ml e queira guardar o restante do azeite em duas garrafas com capacidade para 500 ml e 800 ml cada, deixando cheia a garrafa maior. Considere que ele não disponha de instrumento de medida e decida resolver o prolema utilizando apenas a lata e as duas garrafas. As etapas do procedimento utilizado por ele estão ilustradas nas figuras a seguir, tendo sido omitida a 5ª etapa (ENEM/009) Uma empresa que farica esferas de aço, de 6 cm de raio, utiliza caixas de madeira, na forma de um cuo, para transportá-las. Saendo que a capacidade da caixa e de 1.84 cm, então o numero máximo de esferas que podem ser trans - portadas em uma caixa e igual a a) 4. ) 8. c) 16. d) 4. e). 1- (ENEM/009) Uma farica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura e 6 cm de aresta da ase. Essas velas são formadas por 4 locos de mesma altura troncos de pirâmide de ases paralelas e 1 pirâmide na parte superior, espaçados de 1 cm entre eles, sendo que a ase superior de cada loco e igual a ase inferior do loco soreposto, com uma haste de ferro passando pelo centro de cada loco, unindo-os, conforme a figura. Qual das situações ilustradas a seguir corresponde à 5ª etapa do procedimento? Se o dono da farica resolver diversificar o modelo, retirando a pirâmide da parte superior, que tem 1,5 cm de aresta na ase, mas mantendo o mesmo molde, quanto ele passará a gastar com parafina para faricar uma vela? a) 156 cm. ) 189 cm. c) 19 cm. d) 16 cm. e) 540 cm. - (ENEM/009) Um artesão construiu pecas de artesanato interceptando uma pirâmide de ase quadrada com um plano. Após fazer um estudo das diferentes pecas que poderia oter, ele concluiu que uma delas poderia ter uma das faces pentagonal. Qual dos argumentos a seguir justifica a conclusão do artesão? 19- (ENEM/008) A figura ao lado mostra um reservatório de água na forma de um cilindro circular reto, com 6 m de altura. Quando está completamente cheio, o reservatório é suficiente para aastecer, por um dia, 900 casas cujo consumo médio diário é de 500 litros de água. Suponha que, um certo dia, após uma campanha de conscientização do uso da água, os moradores das 900 casas aastecidas por esse reservatório tenham feito economia de 10% no consumo de água. Nessa situação, a) a quantidade de água economizada foi de 4,5 m. ) a altura do nível da água que sorou no reservatório, no final do dia, foi igual a 60 cm. c) a quantidade de água economizada seria suficiente para aastecer, no máximo, 90 casas cujo consumo diário fosse de 450 litros. d) os moradores dessas casas economizariam mais de R$ 00,00, se o custo de 1 m de água para o consumidor fosse igual a R$,50. e) um reservatório de mesma forma e altura, mas com raio da ase 10% menor que o representado, teria água suficiente para aastecer todas as casas. a) Uma pirâmide de ase quadrada tem 4 arestas laterais e a interseção de um plano com a pirâmide intercepta suas arestas laterais. Assim, esses pontos formam um polígono de 4 lados. ) Uma pirâmide de ase quadrada tem 4 faces triangulares e, quando um plano intercepta essa pirâmide, divide cada face em um triângulo e um trapézio. Logo, um dos polígonos tem 4 lados. c) Uma pirâmide de ase quadrada tem 5 faces e a interseção de uma face com um plano e um segmento de reta. Assim, se o plano interceptar todas as faces, o polígono otido nessa interseção tem 5 lados. d) O número de lados de qualquer polígono otido como interseção de uma pirâmide com um plano e igual ao numero de faces da pirâmide. Como a pirâmide tem 5 faces, o polígono tem 5 lados. e) O numero de lados de qualquer polígono otido interceptando-se uma pirâmide por um plano e igual ao numero de arestas laterais da pirâmide. Como a pirâmide tem 4 arestas laterais, o polígono tem 4 lados - (ENEM/010) Alguns testes de preferência por eedouros de água foram realizados com ovinos, envolvendo três tipos de eedouros, de formatos e tamanhos diferentes. Os eedouros 1 e tem a forma de um tronco de cone circular reto, de altura igual a 60 cm, e diâmetro da ase superior igual a 10 cm e 60 cm, respectivamente. O eedouro e um semicilindro, com 0

5 Área: II reinando para o ENEM/ cm de altura, 100 cm de comprimento e 60 cm de largura. Os três recipientes estão ilustrados na figura. encontram numa reunião na sala. Para fazer o café, Dona Maria dispõe de uma leiteira cilíndrica e copinhos plásticos, tamém cilíndricos. Com o ojetivo de não desperdiçar café, a diarista deseja colocar a quantidade mínima de água na leiteira para encher os vinte copinhos pela metade. Para que isso ocorra, Dona Maria deverá A escolha do eedouro. In: Biotemas. V., no. 4, 009 (adaptado). Considerando que nenhum dos recipientes tenha tampa, qual das figuras a seguir representa uma planificação para o eedouro? ENEM a) encher a leiteira ate a metade, pois ela tem um volume 0 ) encher a leiteira toda de água, pois ela tem um volume 0 c) encher a leiteira toda de água, pois ela tem um volume 10 d) encher duas leiteiras de água, pois ela tem um volume 10 e) encher cinco leiteiras de água, pois ela tem um volume (ENEM/010) Para construir uma manilha de esgoto, um cilindro com m de diâmetro e 4 m de altura (de espessura desprezível), foi envolvido homogeneamente por uma camada de concreto, contendo 0 cm de espessura. Supondo que cada metro cúico de concreto custe R$ 10,00 e tomando,1 como valor aproximado de π, então o preço dessa manilha e igual a a) R$ 0,40. ) R$ 14,00. c) R$104,16. d) R$ 54,56. e) R$ 49, (ENEM/010) Uma fárica produz arras de chocolates no formato de paralelepípedos e de cuos, com o mesmo volume. As arestas da arra de chocolate no formato de paralelepípedo medem cm de largura, 18 cm de comprimento e 4 cm de espessura. Analisando as características das figuras geométricas descritas, a medida das arestas dos chocolates que tem o formato de cuo é igual a a) 5 cm. ) 6 cm. c) 1 cm. d) 4 cm. e) 5 cm. 5- (ENEM/010) A siderúrgica Metal Nore produz diversos ojetos maciços utilizando o ferro. Um tipo especial de peca feita nessa companhia tem o formato de um paralelepípedo retangular, de acordo com as dimensões indicadas na figura que segue. O produto das três dimensões indicadas na peca resultaria na medida da grandeza 8- (ENEM/010) Uma empresa vende tanques de comustíveis de formato cilíndrico, em três tamanhos, com medidas indicadas nas figuras. O preço do tanque e diretamente proporcional a medida da área da superfície lateral do tanque. O dono de um posto de comustível deseja encomendar um tanque com menor custo por metro cúico de capacidade de armazenamento. Qual dos tanques devera ser escolhido pelo dono do posto? (Considere π ) a) I, pela relação área/capacidade de armazenamento de 1/. ) I, pela relação área/capacidade de armazenamento de 4/. c) II, pela relação área/capacidade de armazenamento de /4. d) III, pela relação área/capacidade de armazenamento de /. e) III, pela relação área/capacidade de armazenamento de 7/1. 9- (ENEM/010) Uma metalúrgica receeu uma encomenda para faricar, em grande quantidade, uma peca com o formato de um prisma reto com ase triangular, cujas dimensões da ase são 6 cm, 8 cm e 10 cm e cuja altura e 10 cm. al peça deve ser vazada de tal maneira que a perfuração na forma de um cilindro circular reto seja tangente as suas faces laterais, conforme mostra a figura. a) massa. ) volume. c) superfície. d) capacidade. e) comprimento 6-(ENEM/010) Dona Maria, diarista na casa da família eixeira, precisa fazer café para servir as vinte pessoas que se

6 O raio da perfuração da peca e igual a Área: II reinando para o ENEM/ (ENEM/01) Maria quer inovar em sua loja de emalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas. a) 1 cm. ) cm. c) cm d) 4 cm. e) 5 cm. 0-(ENEM/011) É possível usar água ou comida para atrair as aves e oservá-las. Muitas pessoas costumam usar água com açúcar, por exemplo, para atrair eija-flores, Mas é importante saer que, na hora de fazer a mistura, você deve sempre usar uma parte de açúcar para cinco partes de água. Além disso, em dias quentes, precisa trocar a água de duas a três vezes, pois com o calor ela pode fermentar e, se for ingerida pela ave, pode deixá-la doente. O excesso de açúcar, ao cristalizar, tamém pode manter o ico da ave fechado, impedindo-a de se alimentar. Isso pode até matá-la. Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar Pretende-se encher completamente um copo com a mistura para atrair eija-flores. O copo tem formato cilíndrico, e suas medidas são 10 cm de altura e 4 cm de diâmetro, A quantidade de água que deve ser utilizada na mistura é cerca de (utilize π = ) a) 0 ml. ) 4 ml. c) 100 ml. d) 10 ml. e) 600 ml. 1-(ENEM/011) Uma indústria farica rindes promocionais em forma de pirâmide. A pirâmide é otida a partir de quatro cortes em um sólido que tem a forma de um cuo. No esquema, estão indicados o sólido original (cuo) e a pirâmide otida a partir dele. Quais serão os sólidos geométricos que Maria oterá a partir dessas planificações? a) Cilindro, prisma de ase pentagonal e pirâmide. ) Cone, prisma de ase pentagonal e pirâmide. c) Cone, tronco de pirâmide e pirâmide. d) Cilindro, tronco de pirâmide e prisma. e) Cilindro, prisma e tronco de cone. 4- (ENEM/01) Alguns ojetos, durante a sua faricação, necessitam passar por um processo de resfriamento. Para que isso ocorra, uma fárica utiliza um tanque de resfriamento, como mostrado na figura. O que aconteceria com o nível da água se colocássemos no tanque um ojeto cujo volume fosse de 400 cm? Os pontos A, B, C, D e O do cuo e da pirâmide são os mesmos. O ponto O é central na face superior do cuo. Os quatro cortes saem de O em direção às arestas,, nessa ordem. Após os cortes, são descartados quatro sólidos. Os formatos dos sólidos descartados são a) todos iguais. ) todos diferentes. c) três iguais e um diferente. d) apenas dois iguais. e) iguais dois a dois. -(ENEM/011) A figura seguinte mostra um modelo de somrinha muito usado em países orientais. a) O nível suiria 0, cm, fazendo a água ficar com 0, cm de altura. ) O nível suiria 1 cm, fazendo a água ficar com 1 cm de altura. c) O nível suiria cm, fazendo a água ficar com cm de altura. d) O nível suiria 8 cm, fazendo a água transordar. e) O nível suiria 0 cm, fazendo a água transordar. 5- (ENEM/01) A resistência mecânica S de uma viga de madeira, em forma de um paralelepípedo retângulo, é diretamente proporcional à sua largura () e ao quadrado de sua altura (d) e inversamente proporcional ao quadrado da distância entre os suportes da viga, que coincide com o seu comprimento (x), conforme ilustra a figura. A constante de proporcionalidade k é chamada de resistência da viga. Disponível em: Acesso em: 1 maio 010. BUSHAW, D. et al. Aplicações da matemática escolar. São Paulo: Atual, A expressão que traduz a resistência S dessa viga de madeira é Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. ) semiesfera. c) cilindro. d) tronco de cone. e) cone.

7 Área: II reinando para o ENEM/ (ENEM/01) João propôs um desafio a Bruno, seu colega de classe: ele iria descrever um deslocamento pela pirâmide a seguir e Bruno deveria desenhar a projeção desse deslocamento no plano da ase da pirâmide. GABARIO 1-C 1-C 14-B 15-B 16-D 17-E 18-D 19-B 0-B 1-B -C -E 4-B 5-B 6-A 7-D 8-D 9-B 0-D 1-E -E -A 4-C 5-A 6-C O deslocamento descrito por João foi: mova-se pela pirâmide, sempre em linha reta, do ponto A ao ponto E, a seguir do ponto E ao ponto M, e depois de M a C. O desenho que Bruno deve fazer é a) d) ) e) c)

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA F G J H I A E D B C C C C B B B A B A 10 cm Base 10 10 10 20 cm planificação Base a a d = 6 cm a a D = 8 cm c a b c b b. c a. c b. c a. c c a b b a b a b c d D a a

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Insper 01) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos

Cones e cilindros. Matemática 29/10/2015. Exatas para Todos Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano atemática FUNDAENTAL Atividades complementares Este material é um complemento da obra atemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA ESTADUAL PROFESSOR ANTÔNIO ALADIM DE ARAÚJO EEAA Bolsistas: Karla Kamila Maia dos Santos,

Leia mais

Geometria Espacial - Troncos

Geometria Espacial - Troncos Geometria Espacial - Troncos ) (SpeedSoft) ) (Fuvest) A altura de um cone circular reto é H. Seja α um plano que é paralelo à base e que divide o cone em dois sólidos de mesmo volume. Calcule a distância

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

GEOMETRIA ESPACIAL - PRISMAS

GEOMETRIA ESPACIAL - PRISMAS GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática

PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA. Adriana da Silva Santi Coordenação Pedagógica de Matemática PLANO DE TRABALHO 1 MATEMÁTICA 4º ANO GEOMETRIA Adriana da Silva Santi Coordenação Pedagógica de Matemática Piraquara Abril/2015 1 CONTEÚDOS - Poliedros: prismas e pirâmides. - Corpos Redondos: cone, cilindro

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1º Bimestre/01 Aluno(a): Número: Turma: 1) Dado um paralelepípedo

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura.

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. TD-ENEM-ANO 0. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. A função real que expressa a parábola, no plano cartesiano da figura,

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Visualizando formas geométricas

Visualizando formas geométricas Módulo 1 Unidade 6 Visualizando formas geométricas Para início de conversa... Você já observou com atenção tudo que encontra ao seu redor? As formas de tudo que o cerca? Nesta unidade, faremos um estudo

Leia mais

SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ

SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UFTM) Os valores das

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros. GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar

Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1 Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.

Leia mais

A GEOMETRIA DOS ORIGAMIS

A GEOMETRIA DOS ORIGAMIS A GEOMETRIA DOS ORIGAMIS Déora Bussolotto 1 Instituto Federal de Educação Ciência e Tecnologia câmpus Bento Gonçalves deora.ussolotto@ento.ifrs.edu.r Marcos Antonio Carraro¹ Instituto Federal de Educação

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

A Turma da Tabuada 3

A Turma da Tabuada 3 A Turma da Tabuada 3 Resumo Aprender brincando e brincando para aprender melhor. É dessa forma que a turma da tabuada nos levará a mais uma grande aventura pelo mundo do espaço e das formas. Na primeira

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE

MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE Como pode cair no enem (ENEM) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 )

Uma família que utilizar 12 vezes a capacidade total do kit em um mês pagará a quantia de (considere π=3 ) Lista de Geometria espacial Para PO ET Manhã 3C13 1 (ENEM) Um porta-lápis de madeira foi construído no formato cúbico, seguindo o modelo ilustrado a seguir. O cubo de dentro é vazio. A aresta do cubo maior

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk GEOMETRIA ESPACIAL: TRONCO 1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. a) Sabendo-se que a taça estava totalmente

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Exercícios de Matemática Troncos

Exercícios de Matemática Troncos Exercícios de Matemática Troncos 1. (Ufscar) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. 4. (Ufpe) Um cone circular reto, com

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Prismas, Cubos e Paralelepípedos

Prismas, Cubos e Paralelepípedos Prisas, Cubos e Paralelepípedos 1 (Ufpa 01) Ua indústria de cerâica localizada no unicípio de São Miguel do Guaá no estado do Pará fabrica tijolos de argila (barro) destinados à construção civil Os tijolos

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005

Exame de Seleção à 1 a Série do Ensino Médio 2006 30/10/2005 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS COLÉGIO DE APLICAÇÃO SETOR CURRICULAR DE MATEMÁTICA Instruções: Exame de Seleção à 1 a Série do Ensino Médio 006 30/10/005

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

Revisão: Geometria Espacial MATEMÁTICA

Revisão: Geometria Espacial MATEMÁTICA Professor: Revisão: Geometria Espacial ARGENTINO o ano DATA: 6 / 10 / 015 MATEMÁTICA 1. (Unisc 015) Um reservatório cúbico de 60 cm de 1 de água e precisa ser totalmente esvaziado. O volume de água a ser

Leia mais

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.

Leia mais

Projeção ortográfica de modelos com elementos paralelos e oblíquos

Projeção ortográfica de modelos com elementos paralelos e oblíquos A U L A Projeção ortográfica de modelos com elementos paralelos e oblíquos Introdução Você já sabe que peças da área da Mecânica têm formas e elementos variados. Algumas apresentam rebaixos, outras rasgos,

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O Tangram é um quebra cabeças com 7 peças de diferentes tamanhos, e com elas podemos montar mais de 1400 figuras, como exemplos, temos as figuras abaixo. Fonte: fundacaobunge.org.br

Leia mais

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas DESENVOLVIMENTO DE CHAPAS É o processo empregado para transformar em superfície plana, peças, reservatórios, uniões de tubulações e de dutos, normalmente feitos em chapas, razão pela qual este processo

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE

Leia mais

Mariângela Assumpção de Castro Chang Kuo Rodrigues

Mariângela Assumpção de Castro Chang Kuo Rodrigues Mariângela Assumpção de Castro Chang Kuo Rodrigues 1 APRESENTAÇÃO A ideia deste caderno de atividades surgiu de um trabalho de pesquisa realizado para dissertação do Mestrado Profissional em Educação Matemática,

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Matemática. Aulas 7, 8 e 9. Prof. Pedrão. Visite o Portal dos Concursos Públicos

Matemática. Aulas 7, 8 e 9. Prof. Pedrão.  Visite o Portal dos Concursos Públicos Aulas 7, 8 e 9 Prof. Pedrão UMA PARCERIA Visite o Portal dos Concursos Púlicos WWW.CUROAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.r MATERIAL DIDÁTICO EXCLUIVO PARA ALUNO DO CURO

Leia mais

1ª Avaliação. a) 1,2 hectares aproximadamente b) 120 hectares aproximadamente. c) 5 alqueires paulista aproximadamente d) 29.04 alqueires paulista

1ª Avaliação. a) 1,2 hectares aproximadamente b) 120 hectares aproximadamente. c) 5 alqueires paulista aproximadamente d) 29.04 alqueires paulista ª Avaliação ) (,) As estatísticas do Metrô do Rio de Janeiro informam que, em média, 5 mil passageiros passam diariamente pelas estações. Qual a ordem de grandeza do número de passageiros que passam mensalmente

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS GEOMETRIA ESPACIAL PRISMAS Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: Dados um polígono ABC MN situado num plano α e outro polígono A B C..M N congruente

Leia mais