01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura.
|
|
- Luca Custódio Aleixo
- 2 Há anos
- Visualizações:
Transcrição
1 TD-ENEM-ANO 0. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. A função real que expressa a parábola, no plano cartesiano da figura, é dada pela lei f ( x). x 6. x C, onde C é a medida da altura do líquido contido na taça, em centímetros. Sabe-se que o ponto V, na figura, representa o vértice da parábola, localizado sobre o eixo x. Nessas condições, a altura do líquido contido na taça, em centímetros, é A. B. C 4. D 5. E Muitos processos fisiológicos e bioquímicos, tais como batimentos cardíacos e taxa de respiração, apresentam escalas construídas a partir da relação entre superfície e massa (ou volume) do animal. Uma dessas escalas, por exemplo, considera que o cubo da área S da superfície de um mamífero é proporcional ao quadrado de sua massa M. HUGHES-HALLETT, D. et al. Cálculo e aplicações. São Paulo: Edgard Blücher, 999 (adaptado). Isso é equivalente a dizer que, para uma constante k > 0, a área S pode ser escrita em função de M por meio da expressão: A) S K. M B) S K. M C) S K. M D) S K. M E) S K. M 0. A cidade de Guarulhos (SP) tem o 8º PIB municipal do Brasil, além do maior aeroporto da América do Sul. Em proporção, possui a economia que mais cresce em indústrias, conforme mostra o gráfico. Analisando os dados percentuais do gráfico, qual a diferença entre o maior e o menor centro em crescimento no polo das indústrias? A) 75,8 B) 64,09
2 C) 56,95 D) 45,76 E) 0, Uma indústria tem um reservatório de água com capacidade para 900 m. Quando há necessidade de limpeza do reservatório, toda a água precisa ser escoada. O escoamento da água é feito por seis ralos, e dura 6 horas quando o reservatório está cheio. Esta indústria construirá um novo reservatório, com capacidade de 500 m, cujo escoamento da água deverá ser realizado em 4 horas, quando o reservatório estiver cheio. Os ralos utilizados no novo reservatório deverão ser idênticos aos do já existente. A quantidade de ralos do novo reservatório deverá ser igual a: A). B) 4. C) 5. D) 8. E) Numa escola com 00 alunos foi realizada uma pesquisa sobre o conhecimento desses em duas línguas estrangeiras, inglês e espanhol. Nessa pesquisa constatou-se que 600 alunos falam inglês, 500 falam espanhol e 00 não falam qualquer um desses idiomas. Escolhendo-se um aluno dessa escola ao acaso e sabendo-se que ele não fala inglês, qual a probabilidade de que esse aluno fale espanhol? A) / B) 5/8 C) /4 D) 5/6 E) 5/4 06. A temperatura T de um forno (em graus centígrados) é reduzida por um sistema a partir do instante de seu desligamento (t = 0) e varia de acordo com a expressão t T ( t) 400, com t em minutos. Por motivos de segurança, a trava do forno só é 4 liberada para abertura quando o forno atinge a temperatura de 9 ºC. Qual o tempo mínimo de espera, em minutos, após se desligar o forno, para que a porta possa ser aberta? A) 9,0 B) 9,8 C) 0,0 D) 8,0 E) 9,0 07. A Secretaria de Saúde de um município avalia um programa que disponibiliza, para cada aluno de uma escola municipal, uma bicicleta, que deve ser usada no trajeto de ida e volta, entre sua casa e a escola. Na fase de implantação do programa, o aluno que morava mais distante da escola realizou sempre o mesmo trajeto, representado na figura, na escala : 5 000, por um período de cinco dias. Quantos quilômetros esse aluno percorreu na fase de implantação do programa? A) 4 B) 8 C) 6 D) 0 E) 40
3 08. O dono de um sítio pretende colocar uma haste de sustentação para melhor firmar dois postes de comprimentos iguais a 6 m e 4 m. A figura representa a situação real na qual os postes são descritos pelos segmentos AC e BD e a haste é representada pelo segmento EF, todos perpendiculares ao solo, que é indicado pelo segmento de reta AB. Os segmentos AD e BC representam cabos de aço que serão instalados. Qual deve ser o valor do comprimento da haste EF? A) m B) m C),4 m D) m E),6 m 09. Nos Estados Unidos a unidade de medida de volume mais utilizada em latas de refrigerante é a onça fluida (fl oz), que equivale a aproximadamente,95 centilitros (cl). Sabe-se que o centilitro é a centésima parte do litro e que a lata de refrigerante usualmente comercializada no Brasil tem capacidade de 55 ml. Assim, a medida do volume da lata de refrigerante de 55 ml, em onça fluida (fl oz), é mais próxima de A) 0,8. B),0. C),0. D) 04,7. E) 0,4. 0. Foi realizado um levantamento nos 00 hotéis de uma cidade, no qual foram anotados os valores, em reais, das diárias para um quarto padrão de casal e a quantidade de hotéis para cada valor da diária. Os valores das diárias foram: A = R$ 00,00; B = R$ 00,00; C = R$ 400,00 e D = R$ 600,00. No gráfico, as áreas representam as quantidades de hotéis pesquisados, em porcentagem, para cada valor da diária. O valor mediano da diária, em reais, para o quarto padrão de casal nessa cidade, é A) 00,00. B) 45,00. C) 50,00. D) 75,00. E) 400,00.. Maria quer inovar em sua loja de embalagens e decidiu vender caixas com diferentes formatos. Nas imagens apresentadas estão as planificações dessas caixas. Quais serão os sólidos geométricos que Maria obterá a partir dessas planificações? A) Cilindro, prisma de base pentagonal e pirâmide. B) Cone, prisma de base pentagonal e pirâmide. C) Cone, tronco de pirâmide e pirâmide.
4 D) Cilindro, tronco de pirâmide e prisma. E) Cilindro, prisma e tronco de cone.. Alguns objetos, durante a sua fabricação, necessitam passar por um processo de resfriamento. Para que isso ocorra, uma fábrica utiliza um tanque de resfriamento, como mostrado na figura. O que aconteceria com o nível da água se colocássemos no tanque um objeto cujo volume fosse de 400 cm? A) O nível subiria 0, cm, fazendo a água ficar com 0, cm de altura. B) O nível subiria cm, fazendo a água ficar com cm de altura. C) O nível subiria cm, fazendo a água ficar com cm de altura. D) O nível subiria 8 cm, fazendo a água transbordar. E) O nível subiria 0 cm, fazendo a água transbordar.. Uma mãe recorreu à bula para verificar a dosagem de um remédio que precisava dar a seu filho. Na bula, recomendava-se a seguinte dosagem: 5 gotas para cada kg de massa corporal a cada 8 horas. Se a mãe ministrou corretamente 0 gotas do remédio a seu filho a cada 8 horas, então a massa corporal dele é de A) kg. B) 6 kg. C) 4 kg. D) 6 kg. E) 75 kg. 4. A capacidade mínima, em BTU/h, de um aparelho de ar-condicionado, para ambientes sem exposição ao sol, pode ser determinado da seguinte forma: 600 BTU/h por m, considerando-se até duas pessoas no ambiente. Para cada pessoa adicional neste ambiente, acrescentar 600BTU/h. Acrescentar mais 600BTU/h para cada equipamento eletroeletrônico em funcionamento no ambiente. Será instalado um aparelho de ar-condicionado em uma sala, sem exposição ao sol, de dimensões 4 m x 5 m, em que permaneçam quatro pessoas e possua um aparelho de televisão em funcionamento. A capacidade mínima, em BTU/h, desse aparelho de arcondicionado deve ser A) 000. B) 600. C) 00. D) 800. E) Dentre outros objetos de pesquisa, a Alometria estuda a relação entre medidas de diferentes partes do corpo humano. Por exemplo, segundo a Alometria, a área A da superfície corporal de uma pessoa relaciona-se com a sua massa m pela fórmula A k. m, em que k é uma constante positiva. Se no período que vai da infância até a maioridade de um indivíduo sua massa é multiplicada por 8, por quanto será multiplicada a área da superfície corporal? A) 6 B) 4 C) 4 D) 8 E) 64
5 6. Dados os pontos A(, -), B(-, ) e C(, 7), determine a medida da altura do triângulo ABC relativa ao lado BC. A) B) 4 C) 5 D) 6 E) 7
Empurrão para o Enem: Enem 2013
Empurrão para o Enem: Enem 2013 136 A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura A função real que expressa a parábola, no plano
ENEM 2013 (Questões 150, 151, 152, 153, 154, 155, 156)
(Questões 150, 151, 152, 153, 154, 155, 156) 1. (Questão 150) Numa escola com 1 200 alunos foi realizada uma pesquisa sobre o conhecimento desses em duas línguas estrangeiras, inglês e espanhol. Nessa
Resolução de Problemas
Resolução de Problemas 1. (Uerj) Com o intuito de separar o lixo para fins de reciclagem, uma instituição colocou em suas dependências cinco lixeiras, de acordo com o tipo de resíduo a que se destinam:
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?
Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750
Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo
Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.
Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.
PROVA DE MATEMÁTICA DO VESTIBULAR ENEM - 2013 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
PROVA DE MATEMÁTICA DO VESTIBULAR ENEM - 01 PROFA. MARIA ANTÔNIA C. GOUVEIA 16 A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. A função
MATEMÁTICA PARA CONCURSOS II
1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma
Volumes parte 02. Isabelle Araujo
olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de
MATEMÁTICA - 3 o ANO MÓDULO 38 RELAÇÕES ENTRE GRANDEZAS E UNIDADES DE MEDIDAS
MATEMÁTICA - 3 o ANO MÓDULO 38 RELAÇÕES ENTRE GRANDEZAS E UNIDADES DE MEDIDAS 1m 1m 1m 2 1m 1m 3 1m 1m km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3, km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 7 3 298 501 km 3 hm 3 dam 3
SISTEMA MÉTRICO DECIMAL
1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de
Poliedros, Prismas e Cilindros
1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual
(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.
(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse
O valor mediano da diária, em reais, para o quarto padrão de casal nessa cidade, é:
Estatística Básica Material de apoio para Aula ao Vivo 1. (Enem) A cidade de Guarulhos (SP) tem o 8º PIB municipal do Brasil, além do maior aeroporto da América do Sul. Em proporção, possui a economia
GEOMETRIA ESPACIAL - PRISMAS
GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.
Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO O medidor de energia elétrica de uma residência,
01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.
2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas
CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ
CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?
EXAME DISCURSIVO 2ª fase
EXAME DISCURSIVO 2ª fase 30/11/2014 MATEMÁTICA Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
Devemos escolher os números com os menores expoentes, cujas bases são comuns aos três desenvolvimentos em fatores primos.
1) O dono de um pequeno mercado comprou menos de 200 limões e, para vendê-los, poderá fazer pacotes contendo 12, ou 15, ou 18 limões em cada um deles, utilizando, dessa forma, todos os limões comprados.
O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.
TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm
Treino Matemática Planificação de Sólidos e Trigonometria Básica
1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro
Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.
Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.
COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André
ESCALAS. www.matematicaemexercicios.com www.youtube.com/matematicaemexercicios www.facebook.com/matematicaemexercicios
www.matematicaemexercicios.com www.youtube.com/matematicaemexercicios www.facebook.com/matematicaemexercicios AULÃO DE REVISÃO ENEM 2015 MATEMÁTICA E SUAS TECNOLOGIAS ASSUNTOS MAIS IMPORTANTES ESCALAS
MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA
1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão
MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.
MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG
PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo
1 a Questão: (10,0 pontos)
Ciências da Natureza, e suas Tecnologias 1 a Questão: (10,0 pontos) Suponha que, em certo dia de janeiro de 00, quando 1 dólar americano valia 1 peso argentino e ambos valiam,1 reais, o governo argentino
Cilindro. www.nsaulasparticulares.com.br Página 1 de 13
Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui
CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.
Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 29.02.2012 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro Identifica claramente,
10 ( C ) A é um número compreendido entre 5 e 6. ( D ) A é um número compreendido entre 6 e 7. ( E ) A é um número compreendido entre 9 e 10.
Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda. 01. Se A 2 5 3 1 4 8, podemos afirmar que ( A ) A é um número natural, ímpar e primo. 65 ( B ) A é uma fração equivalente
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos
O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),
0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.
ENEM 2012 MATEMÁTICA PROVA AMARELA
ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES
CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com
Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera
Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O
PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.
GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou
QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de
Funções. Parte I. www.soexatas.com Página 1
Funções Parte I 1. (Uerj 01) O reservatório A perde água a uma taxa constante de 10 litros por hora, enquanto o reservatório B ganha água a uma taxa constante de 1 litros por hora. No gráfico, estão representados,
Telecurso 2000 Junho 2012. Instrução: Todas as trinta questões desta prova devem ser respondidas assinalando a alternativa adequada ao enunciado.
Instrução: Todas as trinta questões desta prova devem ser respondidas assinalando a alternativa adequada ao enunciado. QUESTÃO 1 Charles comemorou 36 anos no dia 3 de fevereiro de 01. Assim, é CORRETO
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
1 1 1 3 0 x 2. 1 1 1 3 0 x
Foi realizada uma pesquisa, num bairro de determinada cidade, com um grupo de 500 crianças de a 1 anos de idade. Para esse grupo, em função da idade x da criança, concluiu-se que o peso médio p(x), em
LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI
01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta
Geometria Espacial - Troncos
Geometria Espacial - Troncos ) (SpeedSoft) ) (Fuvest) A altura de um cone circular reto é H. Seja α um plano que é paralelo à base e que divide o cone em dois sólidos de mesmo volume. Calcule a distância
COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROA DE MATEMÁTICA Quanto ao nível: A prova apresentou questões simples, médias e de melhor nível, o que traduz uma virtude num processo de seleção. Quanto à abrangência: Uma prova com 9
Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada
Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.
UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA
UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.
GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.
GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,
MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA
MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA F G J H I A E D B C C C C B B B A B A 10 cm Base 10 10 10 20 cm planificação Base a a d = 6 cm a a D = 8 cm c a b c b b. c a. c b. c a. c c a b b a b a b c d D a a
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00
Exercícios extras Matemática Aplicada Prismas
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2ª TURMA(S):
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre
Problemas de volumes
Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução
(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.
41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar
PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da
UFPel - CENG - CÁLCULO 1
UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2011/2012 6º ANO DO ENSINO FUNDAMENTAL
CONCURSO DE ADMISSÃO 2011/2012 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA: Membro da CEOCP (Mat / 6º EF) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20
Volumes Exemplo1: Exemplo2:
Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90
A 'BC' e, com uma régua, obteve estas medidas:
1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,
ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1
Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.
SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ
SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UFTM) Os valores das
Ao final do trajeto, João estará no ponto: a) A b) B c) C d) D
QUIZ 1) (Prova Brasil 2007) A figura abaixo ilustra as localizações de alguns pontos no plano. João sai do ponto X, anda 20 metros para a direita, 30 metros para cima, 40 metros para a direita e 10 metros
A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br
A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se
CPV 82% de aprovação na ESPM
CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
Algoritmos com Estrutura Sequencial
Algoritmos com Estrutura Sequencial 1. A partir da diagonal de um quadrado, deseja-se elaborar um algoritmo que informe o comprimento do lado do quadrado. Construa um algoritmo que leia o valor da diagonal
Versão 1. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2011 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso
UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine
AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A
AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero
Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA ESTADUAL PROFESSOR ANTÔNIO ALADIM DE ARAÚJO EEAA Bolsistas: Karla Kamila Maia dos Santos,
Universidade Federal de Goiás Instituto de Informática
Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas
Troncos de Cone e de Pirâmide
Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base
CURSO PRÉ-UNIVERSITÁRIO UFJF
CURSO PRÉ-UNIVERSITÁRIO UFJF TAREFA Nº 1 DIA PARA ENTREGA: 24/06/2014-18:OOH ANFITEATRO ODONTO 1) Leia com atenção a tirinha em quadrinhos abaixo: Suponha que Mafalda esteja estudando o Globo Terrestre
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : 1 ESFERAS Consideramos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r o conjunto
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.
7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.
Questões Complementares de Geometria
Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma
Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF
Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1
FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.
ME-25 MÉTODOS DE ENSAIO ENSAIO DE PENETRAÇÃO DE MATERIAIS BETUMINOSOS
ME-25 MÉTODOS DE ENSAIO ENSAIO DE PENETRAÇÃO DE MATERIAIS BETUMINOSOS DOCUMENTO DE CIRCULAÇÃO EXTERNA 1 ÍNDICE PÁG. 1. INTRODUÇÃO... 3 2. OBJETIVO... 3 3. E NORMAS COMPLEMENTARES... 3 4. DEFINIÇÃO... 3
FUNÇÕES AULA 2 DO PLANO DE
Matemática Tema 2 Professora: Rosa Canelas FUNÇÕES AULA 2 DO PLANO DE TRABALHO Nº1 FUNÇÃO - DEFINIÇÃO Uma função é uma relação entre duas variáveis em que a cada valor da primeira, a variável independente,
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.
1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é: