Bioestatística e Computação I

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Bioestatística e Computação I"

Transcrição

1 Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M. Pagano e Gravreau e Geraldo Marcelo da Cunha

2 Problema X Altura de indivíduos com 12 a 40 anos que sofrem de síndrome alcoólica fetal. Deseja-se inferir se a média μ dessa população é significativamente diferente da média da população de mesma faixa etária que não sofre de síndrome alcoólica fetal μ 0 =160 cm. A distribuição de X é aproximadamente normal com média μ desconhecida. A partir de uma amostra aleatória de 31 indivíduos a média μ foi estimada por =147,4 cm. x Há evidência de que μ μ0?

3 Teste de Hipótese Permite afirmar, com um certo grau de confiança, que uma determinada hipótese numérica é válida.

4 Teste de Hipótese Para cada tipo de hipótese há um tipo de teste Hipótese sobre uma média Hipótese sobre duas médias Hipótese sobre proporções Hipótese sobre variâncias...

5 Teste de Hipótese sobre 1 Média Estamos interessados em afirmar que a média de uma população μ, estimada a partir de uma amostra, é significativamente diferente de um valor pré-estabelecido μ 0.

6 Teste de Hipótese sobre 1 Média Outros exemplos A média de nível sérico de colesterol para a população de homens hipertensos e fumantes é significativamente diferente da população em geral? O volume médio de glóbulos vermelhos é menor do que o normal na população que se encontra em insegurança alimentar moderada ou grave? A média do ângulo de fase da bioimpedância de crianças sépticas é diferente da média das crianças normais?

7 Teste de Hipótese sobre 1 média A média para uma população μ, estimada a partir de uma amostra, é significativamente diferente de um determinado valor μ 0? É necessária uma prova dessa diferença. Até que se prove o contrário, deve-se presumir a igualdade. A hipótese que se deseja provar é como se fosse um crime. Até que se prove o contrário o réu é inocente.

8 Teste de Hipótese sobre 1 média 1.Para provar que uma média μ é diferente de um determinado valor μ 0 começamos afirmando que ela é igual.

9 Teste de Hipótese sobre 1 média Hipótese nula H 0 Hipótese da igualdade Essa é a hipótese que queremos rejeitar. H0 : μ = μ 0 Hipótese alternativa H A Hipótese da desigualdade HA : μ μ 0

10 Teste de Hipótese sobre 1 média 2.Estabelece-se o nível de significância do teste, a probabilidade de errar se a hipótese nula for verdadeira. 3.Retira-se uma amostra aleatória da população de interesse e estima-se a média μ a partir da média amostral. x 4.Há evidência significativa de que μ seja diferente de μ 0? 5.Se sim, rejeita-se a hipótese nula e aceita-se a hipótese alternativa. 6.Se não, só podemos afirmar que não há evidência da diferença.

11 Teste de Hipótese sobre 1 média Portanto, o interesse em se realizar um teste de hipótese é sempre rejeitar a hipótese nula (H 0 ) em favor da hipótese alternativa (H A ).

12 Teste de Hipótese sobre 1 média Ao pressupor que H 0 é verdadeira, pode-se supor também a respeito da distribuição de probabilidade de X. Se H 0 é verdadeira: X ~N 0, n A partir daí podemos estabelecer a probabilidade de X assumir um valor tão ou mais extremo que o observado e decidir se é realmente plausível que H 0 seja verdadeira. Se partíssemos de H A, não teríamos uma distribuição de probabilidade definida.

13 Teste de Hipótese sobre 1 média Teste bilateral H0 : μ = μ 0 HA : μ μ 0 Teste unilateral H0 : μ μ 0 HA : μ > μ 0 H0 : μ μ 0 HA : μ < μ 0 Juntas, as duas hipóteses devem cobrir todos os valores possíveis para a média μ.

14 Teste de Hipótese sobre 1 média Deseja-se inferir se a média de altura da população com 12 a 40 anos que sofre de síndrome alcoólica fetal μ é significativamente diferente da média da população de mesma faixa etária que não possui a síndrome μ 0 =160cm. Considere σ = 6cm. Hipótese nula H 0 : μ = μ 0 =160cm Hipótese alternativa H A : μ μ 0 ou μ 160cm (teste bilateral)

15 Teste de Hipótese sobre 1 média Vamos estabelecer que queremos rejeitar a hipótese nula com uma probabilidade de erro de 5%. Nível de significância α = 0,05 O pesquisador escolhe o α dependendo da precisão que deseja, das evidências na literatura,

16 Teste de Hipótese sobre 1 média Selecionou-se uma amostra aleatória de 31 indivíduos da população de interesse, obtendo-se uma altura média de 147,4 cm. Há evidência significativa de que μ seja diferente de μ 0 =160cm? Com um nível de significância α de 5%, que valores de nula? x nos levariam a rejeitar a hipótese

17 Teste de Hipótese sobre 1 média Se H 0 fosse verdadeira = 0 =160cm X ~N 0, n Z = X 0 / n = X 160 6/ 31 α=0,05 P(Z<-z ou Z>z) = 0,05 z = ± 1,96 Região de Rejeição: Z<-1,96 ou Z>1,96 x Distribuição Normal Padrão α/2 = 0,025 0,025 0, z -1,96 1,96 Para um determinado, se Z estiver na região de rejeição, estaremos observando um evento muito improvável (probabilidade < 5%). Nesse caso, rejeitaríamos a hipótese nula.

18 Teste de Hipótese sobre 1 média Para a amostra selecionada x=147,4 Z = x 160 6/ 31 =147, / 31 Como Z está na região de rejeição, há evidência de que H 0 seja falsa. Rejeitamos a hipótese nula de que μ=μ 0 =160cm. 0,025 0,025 0,95 = 11, z -1,96 1,96 Podemos afirmar, com 5% de chance de erro, que a média de altura μ da população com síndrome alcoólica fetal é significativamente diferente da média da população em geral μ 0.

19 Teste de Hipótese sobre 1 média Outra forma de concluir o teste p-valor Probabilidade de observar uma média amostral tão ou mais extrema que o valor observado, caso H 0 fosse verdadeira. p = P(Z<-11,7 ou Z>+11,7) =? Pela tabela A.3 p<0,001 ou p 0 Como p<α, rejeita-se a hipótese nula.

20 Teste de Hipótese sobre 1 média Deseja-se testar se a média μ do nível sérico de colesterol da população de homens hipertensos e fumantes é significativamente diferente da população de homens em geral μ 0 =211mg/100ml. O nível de significância desejado é α = 5% e o desvio-padrão da população em geral é σ = 46mg/100ml. Seleciona-se aleatoriamente uma amostra de 12 homens hipertensos fumantes e mede-se um nível médio de colesterol de 217mg/100ml.

21 Teste de Hipótese sobre 1 média Solução 0 =211, =46, =0,05, n=12, x=217 Hipóteses H 0 : μ = μ 0 =211 H A : μ μ 0 ou μ 211 Região de rejeição para α=5% Z<-1,96 ou Z>+1,96 Para =217 x Z = x 0 / n = / 12 =0,45

22 Teste de Hipótese sobre 1 média α = 0,05 Se H 0 é verdadeira Região de rejeição Padronização µ= x z = z

23 Teste de Hipótese sobre 1 média Z está fora da região de rejeição Não rejeita-se a hipótese nula Não há evidência significativa de que a média μ do nível sérico de colesterol da população de homens fumantes e hipertensos seja diferente da média da população de homens em geral μ 0. Mas também não há prova de que seja igual. Não se pode afirmar que μ = μ0. Pode ser que μ seja igual a outro valor. H 0 nunca é aceita, apenas H A não é rejeitada.

24 Teste de Hipótese sobre 1 média Conclusão pelo p-valor Z = 0,45 p = P(Z<-0,45 ou Z>+0,45) teste bilateral Pela tabela A.3, p = 2 x 0,326 = 0,652 p>α Não rejeita-se a hipótese nula.

25 Teste de Hipótese sobre 1 média Teste unilateral Queremos determinar se o nível médio de hemoglobina μ para a pop. de crianças de até 6 anos expostas a altos níveis de chumbo é menor do que a média para crianças não expostas, pois não é razoável imaginar que seria maior. Considere α=5%, a média p/ não expostos μ =12,29 g/100ml e σ=0,85 g/100ml. 0 Uma amostra aleatória de 74 crianças expostas a altos níveis de chumbo apresentou nível médio de hemoglobina de 10,6 g/100ml.

26 Teste de Hipótese unilateral Solução 0 =12,29, =0,85, =0,05, n=74, x=10,6 Hipóteses p/ teste unilateral H 0 : μ 12,29 H A : μ < 12,29 Região de rejeição para α=5% Z<-1,645 Para =10,6 x α = 0,05 0,95 Distribuição Normal Padrã Z = x 0 / n =10,6 12,29 0,85/ 74 = 17, ,645

27 Teste de Hipótese unilateral Z está na região de rejeição Rejeita-se a hipótese nula. Conclusão pelo p-valor Z = -17,1 p = P(Z<-17,1) teste unilateral Pela tabela A.3, p 0 p<α Rejeita-se a hipótese nula.

28 Teste de Hipótese para uma média Teste bilateral p z z Teste unilateral p Deve ser decidido antes de selecionar amostra Teste bilateral é sempre mais conservador p 2x maior z

29 Teste de Hipótese para uma média Teste Z σ conhecido Teste t σ desconhecido

30 Teste t A população de bebês normais possui nível médio de alumínio no plasma de 4,13μg/l. Ao selecionar aleatoriamente uma amostra de 10 bebês que recebem antiácidos com alumínio, obteve-se uma média de 37,2μg/l e um desvio-padrão de 7,13μg/l. A um nível de significância de 5%, há evidências de que a população que recebe antiácidos possua nível médio de alumínio plasmático diferente da população que não recebe?

31 Teste t Solução 0 =? =? n=? x=? desvio-padrão s=? Teste bilateral ou unilateral?

32 Teste t Solução 0 =4,13, =0,05, n=10, x=37,2, s=7,13 Hipóteses p/ teste bilateral H 0 : μ = 4,13 H A : μ 4,13 Região de rejeição para t9 e α=5% (tabela A.4) t<-2,262 ou t>2,262 x Para =37,2 t= x 0 s/ n = 37,2 4,13 7,13/ 10 =14,67 Distr. t com 9 gl 0,025 0,025 0, z -2,262 2,262

33 Teste t t está na região de rejeição Rejeita-se a hipótese nula. Conclusão pelo p-valor t = 14,67 p = P(t<-14,67 ou t>14,67) - teste bilateral Pela tabela A.4, p < (2*0,0005), p<0,001 0 p<α Rejeita-se a hipótese nula.

34 Resumindo Testes de hipótese para 1 média Desvio padrão Teste Estatística de teste Lateralidade Região de rejeição populacional σ Z Z = X 0 / n bilateral Z >z α/2 unilateral Z >z α amostral s t t= X 0 s/ n bilateral unilateral t >t n-1,α/2 t >t n-1,α

35 Tipos de Erro Conclusão do teste Não rejeita H 0 Rejeita H 0 Erro tipo I População H 0 verdadeira H 0 falsa μ = μ 0 Correto Erro tipo I α Rejeitar H 0 quando ela é verdadeira μ μ 0 Erro tipo II β Correto P(Erro tipo I) = P(Rejeitar H 0 H 0 verdadeira) = α Nível de significância Ao repetir vários testes, se H 0 for verdadeira, em 5% deles concluiríamos erroneamente que H 0 é falsa.

36 Tipos de Erro Conclusão do teste Erro tipo II População H 0 verdadeira H 0 falsa μ = μ 0 Não rejeitar H 0 quando ela é falsa μ μ 0 Não rejeita H 0 Correto Erro tipo II - β Rejeita H 0 Erro tipo I - α Correto P(Erro tipo II) = P(não rejeitar H 0 H 0 falsa) = β Se H 0 for falsa, β é a proporção de repetidos testes nos quais concluiríamos erroneamente que H 0 é verdadeira. Poder do teste = 1- β, propabilidade de acertar quando H 0 é falsa

37 Teste de Hipótese e Intervalo de Confiança Nível sérico colesterol de fumantes e hipertensos H 0 : = 0 =211, =46, =0,05, n=12, x=217 Intervalo de confiança de 95% (1-α) para μ P(-z < Z < +z) = 0,95 z = ± 1,96 IC95% = x± z n =217±1,96 46 =217±26,02= 190,98 ; 243, ,98 μ 243,02 0 =211 Como o IC95% inclui μ 0, não podemos rejeitar H 0

38 Teste de Hipótese e Intervalo de Confiança Alumínio no plasma de bebês com antiácidos H 0 : = 0 =4,13, =0,05, n=10, x=37,2, s=7,13 Intervalo de confiança de 95% (1-α) para μ P(-t < t 9 < +t) = 0,95 t = ± 2,262 IC95% = x± t n =37,2±2,262 7,13 =37,2±5,1= 32,1 ; 42,3 10 μ 0 =4,13 32,1 42,3 Como o IC95% não inclui μ 0, rejeitamos H 0 com 5% de chance de erro

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Sobrevivência - Conceitos Básicos Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo

Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Modelos Lineares Generalizados - Verificação do Ajuste do Modelo Erica Castilho Rodrigues 21 de Junho de 2013 3 Uma outra medida usada para verificar o ajuste do modelo. Essa estatística é dada por X

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo

Leia mais

O erro dessa questão foi traduzir o nem como ou não, quando na verdade o correto é traduzir o nem como e não :

O erro dessa questão foi traduzir o nem como ou não, quando na verdade o correto é traduzir o nem como e não : Resolução da Prova de Raciocínio Lógico da DPU (Nível Superior) de 2016, aplicada em 24/01/2016. Um estudante de direito, com o objetivo de sistematizar o seu estudo, criou sua própria legenda, na qual

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Exercício. Exercício

Exercício. Exercício Exercício Exercício Aula Prática Utilizar o banco de dados ACCESS para passar o MER dos cenários apresentados anteriormente para tabelas. 1 Exercício oções básicas: ACCESS 2003 2 1 Exercício ISERIDO UMA

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 1- Visão Geral de Testes de Software Aula 2 Estrutura para o Teste de Software SUMÁRIO 1. Introdução... 3 2. Vertentes

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

HEMOVIDA (CICLO DO SANGUE - Gerenciamento de estoque para grandes eventos)

HEMOVIDA (CICLO DO SANGUE - Gerenciamento de estoque para grandes eventos) Ministério da Saúde Secretaria Executiva Departamento de Informática do SUS HEMOVIDA (CICLO DO SANGUE - Gerenciamento de estoque para grandes eventos) Manual do Usuário Versão 1.0 Fevereiro, 2014 Índice

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Objetivo do Portal da Gestão Escolar

Objetivo do Portal da Gestão Escolar Antes de Iniciar Ambiente de Produção: É o sistema que contem os dados reais e atuais, é nele que se trabalha no dia a dia. Neste ambiente deve-se evitar fazer testes e alterações de dados sem a certeza

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.

2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes. Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij

Matemática. Resolução das atividades complementares. M2 Matrizes [ ] 1 Construa a matriz linha A 5 (a ij Resolução das atividades complementares Matemática M Matrizes p. 6 Construa a matriz linha (a ij ) tal que cada elemento obedeça à lei a ij i j. (a ij ) ; a ij i j a a 6 a 9 7 a 0 a [ 7 0 ] [ ] 7 0 Determine

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

Teste de hipótese em modelos normais lineares: ANOVA

Teste de hipótese em modelos normais lineares: ANOVA Teste de hipótese em modelos normais lineares: ANOVA Prof Caio Azevedo Prof Caio Azevedo Exemplo 1 No primeiro modelo, o interesse primário, de certa forma, é testar se a carga não contribui para explicar

Leia mais

Aula 10 Testes de hipóteses

Aula 10 Testes de hipóteses Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti

Processamento Digital de Sinais. Conversão A/D e D/A. Prof. Dr. Carlos Alberto Ynoguti Processamento Digital de Sinais Conversão A/D e D/A Prof. Dr. Carlos Alberto Ynoguti Introdução A maioria dos sinais encontrados na natureza é contínua Para processá los digitalmente, devemos: Converter

Leia mais

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.)

Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Gerenciamento dos Riscos do Projeto (PMBoK 5ª ed.) Esta é uma área essencial para aumentar as taxas de sucesso dos projetos, pois todos eles possuem riscos e precisam ser gerenciados, ou seja, saber o

Leia mais

Ondas EM no Espaço Livre (Vácuo)

Ondas EM no Espaço Livre (Vácuo) Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Ondas EM

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: 1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das

Leia mais

INFORMAÇÕES IMPORTANTES PARA OS TIMES E TENISTAS!

INFORMAÇÕES IMPORTANTES PARA OS TIMES E TENISTAS! INFORMAÇÕES IMPORTANTES PARA OS TIMES E TENISTAS! Qualifying Dia 8 de Novembro ATENÇÃO! Os times inscritos no Futebol Masculino categoria livre e os tenistas inscritos no Tênis categoria A disputarão o

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou.

SOLUÇÕES. Fichas de Trabalho de Apoio. FT Apoio 7 ; 4.2. 1; 5.1. [ 30, [ ); 5.2. [, 2[ ; 8.6. FT Apoio 8. 2 e 1; 3.2. por exemplo: 3 ou. 11, 6 ; 1 4, 86 ; (A); (D); 41 permite resolver o problema é problema é ( ) SOLUÇÕES Fichas de Trabalho de Apoio FT Apoio 7 S 16 = 17, + ); [, [ Escola EB, de Ribeirão (Sede) ANO LETIVO 11/1 ; 4 1; 1 [,

Leia mais

Tópico 9. Teste t-student

Tópico 9. Teste t-student Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto USP Departamento de Economia Pobreza e Desigualdade 1) Que é pobreza? Inicio dos anos 1970: percepção de que as desigualdades sociais e a pobreza não estavam sendo equacionadas como resultado do crescimento econômico. Países ricos:

Leia mais

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002....

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... GIL, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo, Editora Atlas, 2002.... 1 Como encaminhar uma Pesquisa? A pesquisa é um projeto racional e sistemático com objetivo de proporcionar respostas

Leia mais

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Trabalhando com Mala Direta e Etiquetas de Endereçamento no BrOffice/LibreOffice

Trabalhando com Mala Direta e Etiquetas de Endereçamento no BrOffice/LibreOffice Departamento de Tecnologia da Informação Divisão de Relacionamento e Gestão do Conhecimento Trabalhando com Mala Direta e Etiquetas de Endereçamento no BrOffice/LibreOffice Criação de Etiquetas passo a

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Recomendações do NUCDEM para diagnóstico e acompanhamento do diabetes mellitus

Recomendações do NUCDEM para diagnóstico e acompanhamento do diabetes mellitus Recomendações do NUCDEM para diagnóstico e acompanhamento do diabetes mellitus Há um desafio imposto a nós cooperados, de mantermos a anamnese e o exame físico como os pilares da avaliação médica, evitando

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

www.isaia.com.br Porto Alegre/RS

www.isaia.com.br Porto Alegre/RS I Curso de Introdução em Pesquisa Clínica Delineamento de Estudos Clínicos e Randomização Biom. Carlo Isaia Neto carlo@isaia.com.br O delineamento de um ensaio clínico apoia-se em cinco colunas mestras:

Leia mais

REGRAS DAS PROVAS RELÂMPAGO

REGRAS DAS PROVAS RELÂMPAGO REGRAS DAS PROVAS RELÂMPAGO BALÃO Cada equipe apresentará um componente para esta prova. Os participantes deverão soprar o balão até estourar. Será estabelecida a ordem de classificação pelo tempo de estouro

Leia mais

Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras

Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras Modelo Lógico: Tabelas, Chaves Primárias e Estrangeiras Apresentar a próxima etapa da modelagem de dados: o modelo lógico e os conceitos de tabelas, chaves primárias e estrangeiras e como o banco de dados

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Prof. José Maurício S. Pinheiro - UGB - 2009

Prof. José Maurício S. Pinheiro - UGB - 2009 Auditoria e Análise de Segurança da Informação Forense Computacional Prof. José Maurício S. Pinheiro - UGB - 2009 Forense Computacional 2 Forense Computacional A forense computacional pode ser definida

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Manual de Utilização. Ao acessar o endereço www.fob.net.br chegaremos a seguinte página de entrada: Tela de Abertura do Sistema

Manual de Utilização. Ao acessar o endereço www.fob.net.br chegaremos a seguinte página de entrada: Tela de Abertura do Sistema Abaixo explicamos a utilização do sistema e qualquer dúvida ou sugestões relacionadas a operação do mesmo nos colocamos a disposição a qualquer horário através do email: informatica@fob.org.br, MSN: informatica@fob.org.br

Leia mais

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2 Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2012. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 (UNESP) O gráfico a seguir apresenta dados

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

Conceitos Básicos em Estatística

Conceitos Básicos em Estatística Introdução à Estatística Conceitos Básicos em Estatística 1 Conceitos Básicos em Estatística Definição Uma população é uma colecção de unidades individuais, que podem ser pessoas, animais, resultados experimentais,

Leia mais

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber 8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de

Leia mais

Os passos a seguir servirão de guia para utilização da funcionalidade Acordo Financeiro do TOTVS Gestão Financeira.

Os passos a seguir servirão de guia para utilização da funcionalidade Acordo Financeiro do TOTVS Gestão Financeira. Acordo Financeiro Produto : RM - Totvs Gestão Financeira 12.1.1 Processo : Acordo Financeiro Subprocesso : Template de Acordo Controle de Alçada Negociação Online Data da publicação : 29 / 10 / 2012 Os

Leia mais

Módulo 1 - Mês 1- Aula 3

Módulo 1 - Mês 1- Aula 3 PLANEJAMENTO BÁSICO Módulo 1 - Mês 1- Aula 3 PLANEJAMENTO BÁSICO Como construir renda estável em cada etapa 1. Etapas de Faturamento Para construir um rendimento estável, existe uma ordem a seguir. Na

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail.

Métodos Quantitativos em Contabilidade. Análise da Variância ANOVA. Prof. José Francisco Moreira Pessanha professorjfmp@hotmail. Métodos Quatitativos em Cotabilidade Aálise da Variâcia AOVA Prof. José Fracisco Moreira Pessaha professorfmp@hotmail.com Rio de Jaeiro, 8 de setembro de 01 Aálise da Variâcia com um fator (OE WAY AOVA)

Leia mais

Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira Coordenação de Pesquisa e Coordenação de Extensão

Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira Coordenação de Pesquisa e Coordenação de Extensão Universidade Federal do Rio de Janeiro Campus Macaé Professor Aloísio Teixeira Coordenação de Pesquisa e Coordenação de Extensão EDITAL nº 1 Coordenação de Pesquisa/Coordenação de Extensão 2016 VIII JORNADA

Leia mais

Colégio Brasileiro de Cirurgia Digestiva

Colégio Brasileiro de Cirurgia Digestiva Colégio Brasileiro de Cirurgia Digestiva Orientação para pacientes com Cálculo (pedra) da vesícula. Quem pode ter pedra (cálculo) na vesícula? Pedra ou calculo da vesícula e uma doença bastante comum.

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais