Pressuposições à ANOVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Pressuposições à ANOVA"

Transcrição

1 UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia A análise de variância de um experimento inteiramente ao acaso exige que sejam feitas algumas pressuposições sobre os erros, sem as quais os resultados da análise não são válidos. Profa. Renata Goncalves Aguiar 1. Os erros são variáveis aleatórias. Normalmente não conhecemos os erros, porque eles são definidos em função das médias verdadeiras. Mas, uma vez que temos as estimativas dessas médias, podemos estimar os erros calculando a diferença entre cada dado e a média do tratamento a que ele pertence. e= X x 3 4 As estimativas dos erros recebem o nome de resíduos. É a análise de resíduos que ajuda verificar se a análise de variância é aceitável. Para verificar se os erros exibem um padrão aleatório convém construir um gráfico dos resíduos (eixo das ordenadas) de todos os tratamentos (eixo das abscissas) em estudo. 5 6 Profa. Renata Gonçalves Aguiar 1

2 6 4 Resíduos 0. Ocorrência de dados discrepantes A B C D Dados discrepantes (outlier) é um valor muito maior ou menor do que o valor esperado. Figura 6 Resíduos de quatro tratamentos. 7 8 O que viria a ser um valor esperado? Para facilitar a observação de dados discrepantes convém fazer uma análise de resíduos com desvios padronizados. 9 Para padronizar os resíduos, devemos dividi-los pela raiz quadrada do quadrado médio do resíduo (QM dentro ) da análise de variância. z= e QM dentro Resíduos Padronizados Cerca de 68% dos resíduos padronizados devem estar no intervalo -1 e +1 e cerca de 95% devem estar no intervalo - e +. Valores fora do intervalo -3 e +3 são suspeitos. -4 A B C D Figura 7 Resíduos padronizados de quatro tratamentos Profa. Renata Gonçalves Aguiar

3 Todo valor suspeito deve ser discutido e, se houver erros de registro ou de medida, eles devem ser corrigidos. Mas não se pode descartar um valor discrepante com uma desculpa qualquer: é preciso discutir a causa da discrepância Os erros são independentes. Se os erros forem dependentes porque foram tomadas observações na mesma unidade ou em unidades observadas em sequência, o resultado da ANOVA fica totalmente comprometido. 14 A não-independência é o mais grave problema para a análise porque o nível de significância se torna muito maior do que informado. Para verificar se os erros são independentes desenha-se um gráfico dos resíduos padronizados contra a ordem em que as observações foram coletadas (no tempo ou no espaço) Se a pressuposição de independência estiver satisfeita, os resíduos devem ficar dispersos em torno de zero, sem um padrão definido. Resíduos Padronizados Ordem de coleta Figura 8 Resíduos padronizados versus ordem de coleta. 18 Profa. Renata Gonçalves Aguiar 3

4 1,0 0,5 Resíduos Padronizados 0,0-0,5-1,0-1,5 4. Variância constante. Uma regra prática para verificar se existe homocedasticidade sugere validar uma -, ANOVA desde que a maior variância não Ordem de coleta Figura 9 Resíduos padronizados versus ordem de coleta. 19 exceda em três vezes a menor. 0 Outra regra sugere pressupor variâncias iguais, desde que os tratamentos sejam similares e tenham o mesmo número de réplicas. Aliás, o uso de número igual de repetições é a melhor proteção contra os efeitos de variâncias desiguais. 1 Existem apenas duas situações em que essas regras práticas não se justificam: a. de assimetria. Se a distribuição for assimétrica, a variância tende a ser função da média (quando o desvio padrão cresce com a média).,75,70 Uma forma de observar se há correlação é por meio de um diagrama de dispersão dos desvios padrões contra as médias. Se não houver correlação é razoável aceitar a pressuposição de igualdade de variâncias. Desvios Padrões,65,60,55,50, Figura 10 Correlação entre médias e desvios padrões. 4 Profa. Renata Gonçalves Aguiar 4

5 0,65 0,60 Desvios Padrões 0,55 0,50 0,45 0,40 0,35,5 3,0 3,5 4,0 4,5 5,0 5,5 Figura 11 Correlação entre médias e desvios padrões. 5 b. de curtose positiva. Se a curtose for positiva, o teste F não tem poder, ou seja, o teste F não rejeita a hipótese de nulidade, mesmo que essa hipótese seja incorreta. Curtose positiva é o mesmo que curva leptocúrtica. 6 Para testar a igualdade de variâncias, foram propostos diversos testes. Os mais conhecidos são: a. teste de Cochran; c. teste de Bartlett; Figura 1 - Tipos de curvas. 7 8 Figura 1 b. teste de Hartley; d. teste de Levene; 5. Distribuição dos erros é normal. Percent Mean 861,0 StDev 10,3 N 40 KS 0,074 P-Value >0,150 Para saber se é razoável pressupor que os erros têm distribuição normal, o pesquisador pode fazer um gráfico de probabilidades normais Variável em estudo Figura 13 Teste de normalidade. 30 Profa. Renata Gonçalves Aguiar 5

6 De qualquer forma, o teste F é bastante robusto, ou seja, pequenas transgressões à pressuposição de que os erros têm distribuição normal são usuais e não afetam, substancialmente, os resultados da análise de variância. 31 Os testes mais conhecidos para testar a normalidade dos dados são: a. teste de X ; b. teste de Kolmogorov-Smirnov; c. teste de Shapiro-Wilks. 3 Considerações Considerações Em suma, uma ANOVA só deveria ser aplicada a um conjunto de observações se estiverem satisfeitas as pressuposições de independência, homocedasticidade e normalidade. Na prática, porém, dificilmente essas pressuposições estão todas satisfeitas É importante saber que: É importante saber que: 1. A não-independência, isto é, a correlação entre as observações é o problema mais grave. 3. A não-normalidade tem pouco efeito nas inferências sobre médias quando o modelo é de efeitos fixos.. Variâncias diferentes (heterocedasticidade) têm, usualmente, efeito apenas moderado nas inferências sobre médias, desde que o número de 4. A não-normalidade tem efeito sério nas inferências sobre as variâncias, isto é, no modelo de efeitos aleatórios, quando a curtose é diferente de repetições seja constante zero. Profa. Renata Gonçalves Aguiar 6

7 Importantíssimo Comparações Múltiplas entre As análises de variância podem ser aplicadas quando existem pequenos desvios das pressuposições básicas nunca, porém, quando nenhuma dessas pressuposições não é, sequer, aproximadamente válida. Um valor F significativo na ANOVA não indica quais são os tratamentos significativamente diferentes entre si quando comparados dois a dois, ele apenas mostra que existe uma diferença entre os grupos estudados Comparações Múltiplas entre Situação-problema 7 Para definir quais médias são diferentes, podemos utilizar um dos seguintes testes: Teste de Tukey; Verifique se é possível validar a ANOVA da atividade 3. Teste de Dunnett; Teste de Scheffé Situação-problema 8 Verifique se é possível validar a ANOVA da atividade Profa. Renata Gonçalves Aguiar 7

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Exploração e Transformação de dados

Exploração e Transformação de dados Exploração e Transformação de dados A DISTRIBUIÇÃO NORMAL Normal 99% 95% 68% Z-score -3,29-2,58-1,96 1,96 2,58 3,29 Normal A distribuição normal corresponde a um modelo teórico ou ideal obtido a partir

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia 1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44

Leia mais

Mais Informações sobre Itens do Relatório

Mais Informações sobre Itens do Relatório Mais Informações sobre Itens do Relatório Amostra Tabela contendo os valores amostrados a serem utilizados pelo método comparativo (estatística descritiva ou inferencial) Modelos Pesquisados Tabela contendo

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias

A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias A presença de Outliers interfere no Teste f e no teste de comparações múltiplas de médias CHICARELI, L.S 1 ; OLIVEIRA, M.C.N. de 2 ; POLIZEL, A 3 ; NEPOMUCENO, A.L. 2 1 Universidade Estadual de Londrina

Leia mais

Planejamento e Pesquisa 1. Dois Grupos

Planejamento e Pesquisa 1. Dois Grupos Planejamento e Pesquisa 1 Dois Grupos Conceitos básicos Comparando dois grupos Testes t para duas amostras independentes Testes t para amostras pareadas Suposições e Diagnóstico Comparação de mais que

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE:

A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: A UTILIZAÇÃO DE MÉTODOS ESTATÍSTICOS NO PLANEJAMENTO E ANÁLISE DE ESTUDOS EXPERIMENTAIS EM ENGENHARIA DE SOFTWARE (FONTE: ESELAW 09 MARCOS ANTÔNIO P. & GUILHERME H. TRAVASSOS) 1 Aluna: Luana Peixoto Annibal

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Testes de comparações de médias

Testes de comparações de médias UNIDADE ACADÊMICA DE CIÊNCIAS AGRÁRIAS-POMBAL Testes de comparações de médias Pombal-PB Abril 2015 Renato Lima Dantas Dr. em Agronomia Procedimentos Pós-ANOVA O teste F significativo, para mais de dois

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Estatística Descritiva Medidas de Variação Probabilidade e Estatística 3/42 Medidas de Variação Vamos

Leia mais

5. Carta de controle e homogeneidade de variância

5. Carta de controle e homogeneidade de variância 5. Carta de controle e homogeneidade de variância O desenvolvimento deste estudo faz menção a dois conceitos estatísticos: as cartas de controle, de amplo uso em controle estatístico de processo, e a homogeneidade

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Técnicas Computacionais em Probabilidade e Estatística I. Aula III

Técnicas Computacionais em Probabilidade e Estatística I. Aula III Técnicas Computacionais em Probabilidade e Estatística I Aula III Chang Chiann MAE 5704- IME/USP 1º Sem/2008 1 Arquivo PULSE do Minitab Refere-se a um experimento feito por alunos. Cada um deles registrou

Leia mais

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES Prof. Dr. Alfredo J Rodrigues Departamento de Cirurgia e Anatomia Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo alfredo@fmrp.usp.br

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Inferência Estatística: Conceitos Básicos I

Inferência Estatística: Conceitos Básicos I Inferência Estatística: Conceitos Básicos I Introdução, Medidas de Tendência Central, Medidas de Variabilidade, Distribuições de Frequência e Probabilidade Flávia F. Feitosa BH1350 Métodos e Técnicas de

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Análise Exploratória de Dados As técnicas de análise exploratória de dados consistem em gráficos simples de desenhar que podem ser

Leia mais

1 Introdução aos Métodos Estatísticos para Geografia 1

1 Introdução aos Métodos Estatísticos para Geografia 1 1 Introdução aos Métodos Estatísticos para Geografia 1 1.1 Introdução 1 1.2 O método científico 2 1.3 Abordagens exploratória e confirmatória na geografia 4 1.4 Probabilidade e estatística 4 1.4.1 Probabilidade

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIENCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE IV TESTES DE COMPARAÇÕES MÚLTIPLAS DE MÉDIAS EXPERIMENTAIS Profª Railene Hérica Carlos

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE

ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE ANÁLISE EXPLORATÓRIA DE DADOS 2ª PARTE 1 Medidas de síntese TERCEIRA maneira de resumir um conjunto de dados referente a uma variável quantitativa. Separatrizes Locação x % x % x % x % Dispersão Forma

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Especialização em Engenharia de Processos e de Sistemas de Produção

Especialização em Engenharia de Processos e de Sistemas de Produção Especialização em Engenharia de Processos e de Sistemas de Produção Projetos de Experimento e Confiabilidade de Sistemas da Produção Prof. Claudio Luis C. Frankenberg 2ª parte Experimentos inteiramente

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

CAPÍTULO IV Análise de variância

CAPÍTULO IV Análise de variância CAPÍTULO IV Análise de variância O objectivo principal da análise de variância (analysis of variance - ANOVA) é a comparação de mais do que dois grupos no que diz respeito à localização. Para exemplificar,

Leia mais

Resposta Comentário Nota

Resposta Comentário Nota Porque o modelo linear generalizado é tão importante? Porque é o modelo linear generalizado (MLG) é a base dos delineamentos experimentais. Porque ele é a base de todos os delineamentos experimentais,

Leia mais

Teste de Cochran (Homogeneidade de Variância)

Teste de Cochran (Homogeneidade de Variância) ara o modelo heterocedástico, vamos inicialmente testar as hipóteses Os métodos mais utilizados são os testes de Cochran, Bartlett e de Levene. Teste de Cochran (Homogeneidade de Variância) O teste de

Leia mais

Aderência. Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2015

Aderência. Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2015 Aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2015 Sumário 1. Estatística qui-quadrado... 2 2. Gráfico de Probabilidades... 9 3. Teste de Jarque-Bera... 14 Serão apresentadas técnicas que

Leia mais

COS767 - Modelagem e Análise Aula 3 - Simulação

COS767 - Modelagem e Análise Aula 3 - Simulação COS767 - Modelagem e Análise Aula 3 - Simulação Validando resultados da simulação Média e variância amostral Teorema do Limite Central Intervalo de confiança Organizando as execuções da simulação Verificando

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada

UNIVERSIDADE FEDERAL FLUMINENSE. Programa de Mestrado e Doutorado em Engenharia de Produção. Disciplina: Estatística Multivariada UNIVERSIDADE FEDERAL FLUMINENSE Programa de Mestrado e Doutorado em Engenharia de Produção Disciplina: Estatística Multivariada Aula: Introdução a MVDA e Revisão Estatística Professor: Valdecy Pereira,

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Permite avaliar se existe relação entre o comportamento de duas ou mais variáveis e em que medida se dá tal interação. Gráfico de Dispersão A relação entre duas variáveis pode ser

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS

POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA TIPOS DE VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS CLASSIFICAÇÃO DAS VARIÁVEIS 1) TIPOS DE VARIÁVEIS POPULAÇÃO X AMOSTRA INTRODUÇÃO À BIOESTATÍSTICA População (N) representa o conjunto de todas as unidades experimentais que apresentam características em comum Amostra (n) representa uma parte do todo.

Leia mais

PROBABILIDADE E ESTATÍSTICA ESTATÍSTICA DESCRITIVA

PROBABILIDADE E ESTATÍSTICA ESTATÍSTICA DESCRITIVA PROBABILIDADE E ESTATÍSTICA ESTATÍSTICA DESCRITIVA Prof.ª Sheila Regina Oro Projeto Recursos Educacionais Digitais Autores: Bruno Baierle e Maurício Furigo ESTATÍSTICA DESCRITIVA A Estatística Descritiva

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

Teste de hipóteses. Estatística Aplicada Larson Farber

Teste de hipóteses. Estatística Aplicada Larson Farber 7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Pós-Graduação em Computação Distribuída e Ubíqua

Pós-Graduação em Computação Distribuída e Ubíqua Pós-Graduação em Computação Distribuída e Ubíqua INF612 - Aspectos Avançados em Engenharia de Software Engenharia de Software Experimental [Head First Statistics] Capítulos 10, 11, 12 e 13 [Experimentation

Leia mais

4 Análise dos dados Perfil dos participantes

4 Análise dos dados Perfil dos participantes 4 Análise dos dados 4.1. Perfil dos participantes A Tabela 1 apresenta a distribuição dos participantes do experimento por grau de escolaridade, curso, gênero e faixa etária. Os participantes foram predominantemente

Leia mais

Prof. Fernando Lang da Silveira - IF-UFRGS

Prof. Fernando Lang da Silveira - IF-UFRGS Descrevendo e condensando um conjunto de dados: tabelas de distribuição de frequência, histogramas, distribuição de Gauss, média e desvios padrão dos dados e da média Prof. Fernando Lang da Silveira -

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.

Leia mais

1 - Noções de álgebra matricial

1 - Noções de álgebra matricial 1 - Noções de álgebra matricial Apêndice A Revisão de alguns conceitos estatísticos Apêndice B Rudimentos de álgebra matricial Representação vetorial de um problema ecológico E1 E2 S1 X 11 X 12 S2 X 21

Leia mais

ANÁLISE ESTATÍSTICA com o SPSS Statistics

ANÁLISE ESTATÍSTICA com o SPSS Statistics João Marôco 5 a. Edição ANÁLISE ESTATÍSTICA com o SPSS Statistics ANÁLISE ESTATÍSTICA com o SPSS Statistics 5ª Edição JOÃO MARÔCO É proibida toda e qualquer reprodução desta obra por qualquer meio físico

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Medidas de Posição ou Tendência Central

Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor

Leia mais

Análise de dados para negócios. Cesaltina Pires

Análise de dados para negócios. Cesaltina Pires Análise de dados para negócios Cesaltina Pires Janeiro de 2003 Índice geral 1 Representação grá ca de dados 1 1.1 Variáveis discretas e contínuas.......................... 1 1.2 Distribuições de frequência

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Prof. MSc. David Roza José 1/44

Prof. MSc. David Roza José 1/44 1/44 Regressão Linear Objetivos: Familiarizar-se com estatística descritiva e distribuição normal; Saber como calcular coeficientes angular e linear da reta de melhor ajuste com regressão linear; Saber

Leia mais

AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL

AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos AULA 7 DISTRIBUIÇÕES CONTÍNUAS E MODELO NORMAL Docente:

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros

Leia mais

Unidade: Risco e Retorno. Unidade I:

Unidade: Risco e Retorno. Unidade I: Unidade I: 0 Unidade: Risco e Retorno A análise de investimentos está baseada nas estimativas dos fluxos de caixa de um projeto. Nem sempre essas previsões de fluxo de caixa coincidem com os resultados

Leia mais

UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS GABARITO

UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS GABARITO UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS Programa de Pós-Graduação em Estatística e Experimentação Agropecuária Prova do Processo Seletivo para Mestrado 16- GABARITO N o de inscrição

Leia mais

Métodos Estatísticos sticos Aplicados à Engenharia de Software Experimental

Métodos Estatísticos sticos Aplicados à Engenharia de Software Experimental A Utilização de Métodos M Estatísticos sticos no Planejamento e Análise de Estudos Experimentais em Engenharia de Software Marco Antônio P. Araújo CES/JF e Faculdade Metodista Granbery maraujo@acessa.com

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas

Leia mais

1) Como vou comparar 3 grupos realizo uma Anova one way:

1) Como vou comparar 3 grupos realizo uma Anova one way: Gabarito aula anova e teste não-paramétrico: 1) Como vou comparar 3 grupos realizo uma Anova one way: One-way ANOVA: AREA versus VIRUS Analysis of Variance for AREA Source DF SS MS F P VIRUS 2 215,54 107,77

Leia mais

Probabilidade e Estatística, 2010/2

Probabilidade e Estatística, 2010/2 Probabilidade e Estatística, 2010/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses para médias 1. A temperatura média da água descartada por uma torre de resfriamento não deve ser maior que

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

AVALIAÇÃO DOS TESTES MULTIVARIADOS DA RAZÃO DE VEROSSIMILHANÇAS E T² DE HOTELLING: Um estudo por simulação de dados

AVALIAÇÃO DOS TESTES MULTIVARIADOS DA RAZÃO DE VEROSSIMILHANÇAS E T² DE HOTELLING: Um estudo por simulação de dados AVALIAÇÃO DOS TESTES MULTIVARIADOS DA RAZÃO DE VEROSSIMILHANÇAS E T² DE HOTELLING: Um estudo por simulação de dados Eduardo Campana Barbosa 12 Rômulo César Manuli² Patrícia Sousa² Ana Carolina Campana

Leia mais

Controle Estatístico de Qualidade. Capítulo 7 (montgomery)

Controle Estatístico de Qualidade. Capítulo 7 (montgomery) Controle Estatístico de Qualidade Capítulo 7 (montgomery) Capacidade do Processo Introdução Cartas de Controle Instrumento de monitoramento e detecção de desvios na estabilidade do processo Considerando

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

Planejamento e Análise de Experimentos

Planejamento e Análise de Experimentos Planejamento e Análise de Experimentos Aula 3 Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Agosto de 2011 ANOVA para Fator Único Análise

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

EXPERIMENTOS COM INTERAÇÕES

EXPERIMENTOS COM INTERAÇÕES EXPERIMENTOS COM INTERAÇÕES Na maioria dos experimentos, os tratamentos são de efeitos fixos. Mas também são realizados experimentos em que os efeitos dos tratamentos são aleatórios. 1 Para saber se, em

Leia mais

MOQ-14 Projeto e Análise de Experimentos

MOQ-14 Projeto e Análise de Experimentos Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-14 Projeto e Análise de Experimentos Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Regressão Linear

Leia mais

Distribuição T - Student. Prof. Herondino S. F.

Distribuição T - Student. Prof. Herondino S. F. Distribuição T - Student Prof. Herondino S. F. Distribuição T-Student A distribuição T de Student é uma distribuição de probabilidade estatística, publicada por um autor que se chamou de Student, pseudônimo

Leia mais

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo:

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo: Deseja-se saber a proporção de pacientes com hipertensão arterial entre os pacientes de um ambulatório de diabetes mellitus. Estudos anteriores de diabetes têm encontrado uma proporção de 18,5%. 1. Qual

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

O poder da ANOVA e da igualdade de variância

O poder da ANOVA e da igualdade de variância O poder da ANOVA e da igualdade de variância Por Marcelo Rivas Fernandes A ANOVA e o Teste de Iguldade de Variância são tão imprescindíveis para a estatística inferencial, quanto a média e o desvio padrão

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

EXERCÍCIOS SOBRE TESTE T

EXERCÍCIOS SOBRE TESTE T EXERCÍCIOS SOBRE TESTE T 1 Exercício Foi realizado um estudo para determinar se havia influência de um gene sobre a resistência a geadas de plantas de uma determinada espécie. Foram produzidas 10 plantas

Leia mais

Estatística. Guia de Estudos P2

Estatística. Guia de Estudos P2 Estatística Guia de Estudos P2 1. Intervalo de Confiança Conceito extremamente importante que consiste em utilizar os valores amostrais obtidos através das fórmulas de Estatística Descritiva para encontrar

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais