Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança"

Transcrição

1 Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

2 Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade do trigo nos Estados Unidos pode estimar a média atingida pela colheita como sendo 3,5 bushels (1 bushel é litros) por acre para todo o trigo de primavera daquele ano. Um vez que esta estimativa consiste de um único valor, ela é chamada de estimativa pontual. Contudo essa estimativa raramente se iguala com o parâmetro da população.

3 Estimação Faz parte da inferência estatística. Estuda como prever parâmetros populacionais a partir de amostras. Aplicabilidade: Custos de produtos são definidos a partir de índices esperados de produção. Vagas oferecidas a terceiros dependem do índice de aprovação dos alunos de escola. Proporção de indivíduos alfabetizados na área urbana ou rural.

4 Estimadores Função de dados que serve de base para avaliação de parâmetros. Estatísticas amostrais: médias, proporções, variâncias e desvios. Estimadores ideais dependem: Amostras aleatórias; Tamanho compatível com a dispersão populacional. Estimadores não enviesados.

5 Tipos de estimativas Pontual: o valor mais provável. As estimativas raramente coincidem com os valores populacionais. Na prática é a mais usada. Deve-se tomar cuidado com a variabilidade. Intervalares: são acompanhadas de um grau de confiança. É a mais adequada pois a probabilidade (grau de confiança) associada a uma estimativa pontual é zero. Dependem do grau de confiança e do desvio padrão e majorar a segurança custa caro (aumentar o tamanho da amostra).

6 Construindo estimativas pontuais das médias A média amostral é uma estimativa não enviesada da média populacional. Exemplo 1: Numero de frases em 54 anúncios de revistas Média amostral=1,4

7 Construindo estimativas intervalares das médias Início Sim σ é conhecido? Não Sim População Normal? Não Sim População Normal? Não Sim n > 30? Não Sim n > 30? Não Distribuição Normal Métodos Não Paramétricos Distribuição t Métodos Não Paramétricos

8 Determinação de Normalidade 1. Histograma: Rejeite se o histograma se afasta muito da forma de sino.. Outliers: rejeite normalidade se houver mais de um outlier. 3. Gráfico dos quantis normais: padrão dos pontos é razoavelmente próximo de uma reta.

9 Construindo estimativas intervalares das médias usando distribuição Normal Nível de confiança (1-α): é a probabilidade de que um intervalo estimado contenha o parâmetro populacional. Níveis mais usados: 99%, 95% e 90%. Nível de significância (α): é a probabilidade de que um intervalo estimado NÃO contenha o parâmetro populacional. Erro máximo da estimativa (tolerância): é a maior distância possível entre a estimativa pontual e o valor do parâmetro. σ s E = zα σ x = zα ou E = tα n n

10 Construindo estimativas intervalares das médias usando distribuição Normal Intervalo de confiança: x E μ x + Usando a amostra de dados do exemplo 1 anterior (média=1,4), assumindo que a variância populacional é igual a variância amostral e 95% de confiança temos. s 5,0 E = zα =1,96 = 1,3 n 54 11,1 μ 13,7 Este intervalo conterá a média populacional com uma confiança de 95%. E

11 Construindo estimativas intervalares das médias usando distribuição Normal Tamanho da amostra mínima para estimar μ. Dado um nível de confiança (1-α) e um erro máximo de estimativa E, o tamanho mínimo a amostra necessária para estimar a média populacional é n = zασ E

12 Construindo estimativas intervalares das médias usando distribuição Normal Usando o exemplo 1 e considerando uma sentença como margem de erro, quantos anúncios devem ser incluídos na amostra se você quer ter 95% de confiança de que a estimativa intervalar contenha a média populacional? Solução: n = zασ E 1,96 5,0 = 1 = é o número mínimo.

13 Construindo estimativas intervalares das médias usando distribuição t Erro máximo da estimativa (tolerância): E = t α s n Para n-1 graus de liberdade Intervalo de confiança x E μ x + E Tamanho da amostra: n tα s = E

14 Construindo estimativas intervalares das médias usando distribuição t Exemplo : 16 restaurantes são selecionados ao acaso e mede-se a temperatura do café vendido em cada um. A temperatura média amostral é de 16 o F, com desvio amostral de 10 o F. Obtenha o intervalo de confiança de 95% para a temperatura média. E = t α s n 10 =,131 = ,67 μ 167,3 5,3

15 Propriedades da distribuição t Se uma variável aleatória X e aproximadamente normal, a distribuição amostral de X é uma distribuição t x μ t = s / n 1. Tem forma de sino e é simétrica em torno da média.. É uma família de curvas, cada uma determinada pelo número de graus de liberdade. Graus de liberdade: número de escolhas livres deixados por uma amostra após uma estatística ter sido calculada.

16 Propriedades da distribuição t 3. A forma de sino reflete maior variabilidade que se espera com pequenas amostras. Quando o número de graus de liberdade cresce, a distribuição tende para a distribuição normal. Tem média zero.

17 Construindo estimativas das proporções A estimativa pontual para p, proporção populacional de sucessos, é dada pela proporção de sucessos em uma amostra. p ˆ = onde x é o número de sucessos em uma a amostra. Exemplo 3. Em um levantamento sobre esportes entre 104 adultos norteamericanos, 87 disseram que preferiram assistir jogos de futebol americano. pˆ = x n 8 %

18 Construindo estimativas intervalares das proporções Suposições: Aleatoriedade na amostra. Condições de um experimento binomial são satisfeitas. Aproximação normal pode ser aplicada. Erro máximo da estimativa. pq ˆ ˆ Intervalo de confiança n E = z α p ˆ E p pˆ + E

19 Construindo estimativas intervalares das proporções Aumentando o tamanho da amostra para melhorar a precisão sem diminuir o grau de confiança. n = pq ˆ ˆ z E Usando exemplo 3 e 95% de confiança temos, p ˆ = 87 > 5 e α n nq ˆ = 737 > 5 0,8 0,7 E = 1,96 = 104 0,08 0,5 p 0,308

20 Construindo estimativas das variâncias e desvios padrões A estimativa pontual para σ és e a estimativa pontual para σ é s onde s 1 = n 1 n i= 1 ( x i x) s 1 n 1 A distribuição qui-quadrado é usada para construir estimativas intervalares para a variância e o desvio padrão. Aplicabilidade: situações de controle de qualidade em processo de produção. = n i= 1 ( x i x)

21 Propriedades da distribuição qui-quadrado De uma população normalmente distribuída com variância σ, selecionarmos aleatoriamente amostras independentes de tamanho n e calculamos a variância amostral s para cada amostra. A estatística n 1 χ = s σ tem distribuição qui-qadrado com n-1 graus de liberdade.

22 Propriedades da distribuição qui-quadrado 1. A distribuição não é simétrica. Quando o número de graus de liberdade aumenta a distribuição se torna mais simétrica e se aproxima da distribuição normal. Os valores qui-quadrados nunca podem ser negativos.

23 Construindo estimativas intervalares das variâncias e desvios padrões Suposições: Amostra aleatória. População normalmente distribuída. Intervalo de confiança para a variância ( n 1) s χ ( n 1) s σ 1 α / χ α / Intervalo de confiança para o desvio padrão ( n 1) s χ σ 1 α / χ α / ( n 1) s

24 Construindo estimativas intervalares das variâncias e desvios padrões Exemplo 4. Seleciona-se aleatoriamente e pesa-se 30 amostras de um determinado antialérgico. O desvio padrão da amostra é de 1, miligramas. Supondo que os pesos tenham uma distribuição normal, construa um intervalo de confiança de 99% para o desvio padrão populacional χ α = χ 13,1 χ1 α / = χ0,995 = 5, 36 / 0,005 = (9)(1,) 5,36 σ (9)(1,) 13,1 0,798 σ 3,183

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

AULA 04 Estimativas e Tamanhos Amostrais

AULA 04 Estimativas e Tamanhos Amostrais 1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

AULAS 08 E 09 Distribuição de Probabilidade Normal

AULAS 08 E 09 Distribuição de Probabilidade Normal 1 AULAS 08 E 09 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 02 e 09 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed.

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Intervalos Estatísticos para Uma Única Amostra

Intervalos Estatísticos para Uma Única Amostra Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Fernando Deeke Sasse 14 de maio de 2010 Introdução Quão boa é uma dada estimação de um parâmetro? Suponha que estimamos

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300

Leia mais

Intervalo de Confiança - Margem de Erro

Intervalo de Confiança - Margem de Erro Intervalo de Confiança - Margem de Erro Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 26, 2014 Souza () Intervalo de Confiança - Margem de Erro October 26, 2014 1 / 31 Margem de erro - relatórios

Leia mais

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

O QUE É AMOSTRAGEM? PARTE II

O QUE É AMOSTRAGEM? PARTE II O QUE É AMOSTRAGEM? PARTE II! Principais métodos aleatórios! A extensão da amostra! Margem de erro Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas graduado pela EAESP/FGV. É Sócio-Diretor

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA META Dimensionar o tamanho ideal de amostra para cada população.

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.

Leia mais

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2 Aula 6 Distribuição amostral da proporção Nesta aula você verá uma importante aplicação do Teorema Central do Limite: iremos estudar a distribuição amostral de proporções. Assim, você verá os resultados

Leia mais

Desvio Padrão ou Erro Padrão

Desvio Padrão ou Erro Padrão NOTAS METODOLÓGICAS ISSN 0871-3413 ArquiMed, 2006 Desvio Padrão ou Erro Padrão Nuno Lunet, Milton Severo, Henrique Barros Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas PLANO DE ENSINO FACULDADE: CIÊNCIAS DA SAÚDE DE JUIZ DE FORA CURSO: FARMÁCIA Período: 2º DISCIPLINA: MATEMÁTICA E BIOESTATÍSTICA Ano: 2015 CARGA HORÁRIA: 40 H PRÉ-REQUISITO: - SEMANAL: 02 T TOTAL: 02 AULAS

Leia mais

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação Parte XIV Técnicas estatísticas para análise de dados e de resultados de modelos de simulação A saída de um modelo de simulação geralmente constitui-se de VA s, muitas das quais podem ter variância grande.

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais índice MENSAGEM DO AUTOR 11 AGRADECIMENTOS 13 Capítulo 1 Introdução Importância da estatística 17 O que é a Estatística? Escalas de medida Escala de medida qualitativa Escalas Nominais Escalas Ordinais

Leia mais

Inspeção de Qualidade

Inspeção de Qualidade Roteiro Inspeção de Qualidade 1. Inspeção para Aceitação 2. Planos de Amostragem Simples 3. Determinação Plano de Amostragem 4. Inspeção Retificadora 5. Plano de Amostragem Dupla 6. Planos de Amostragem

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Estatística. Slide 0. Ana M. Abreu - 2006/07

Estatística. Slide 0. Ana M. Abreu - 2006/07 Estatística Slide 0 Capítulo 1 Estatística Descritiva Slide 1 I-1 Introdução à organização e ao processamento de dados. I-2 Amostra e população; cuidados a ter na recolha da amostra. I-3 Ordenação dos

Leia mais

Tópico 9. Teste t-student

Tópico 9. Teste t-student Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Curso de Análise Estatística Comparação entre variáveis contínuas: correlação e regressão Linear

Curso de Análise Estatística Comparação entre variáveis contínuas: correlação e regressão Linear NÚCLEO DE ESTATÍSTICA E METODOLOGIA APLICADAS Desenvolvendo conhecimento para a excelência dos cuidados em saúde mental UNIVERSIDADE FEDERAL DE SÃO PAULO Curso de Análise Estatística Comparação entre variáveis

Leia mais

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Contabilometria. Análise Discriminante

Contabilometria. Análise Discriminante Contabilometria Análise Discriminante Fonte: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Contabilidade e Administração, Editora Atlas, São Paulo, 010 Cap. 3 Análise Discriminante

Leia mais

Programa de Ciências Experimentais 2012-2013

Programa de Ciências Experimentais 2012-2013 Programa de Ciências Experimentais 2012-2013 I Teoria 1 Introdução 2 Conceitos úteis 2.1 Ordem de grandeza 2.1.1 Introdução 2.1.2 Definição 2.1.3 Representação científica de um número 2.1.4 Ordem de grandeza

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do Quinto Sorteio da Nota Fiscal Paraná 065/16. Quinto Sorteio Eletrônico da Nota Fiscal Paraná Quinto Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este documento apresenta a análise dos resultados

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais ESCOLA SECUNDÁRIA DE AMORA PLANIFICAÇÃO ANUAL Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 11º ANO Ano Letivo 2014 / 2015 PLANIFICAÇÃO A LONGO PRAZO

Leia mais

Tamanho da Amostra e Amostragem

Tamanho da Amostra e Amostragem Tamanho da Amostra e Amostragem Objetivos da aula Qual a relação entre a pergunta de pesquisa e o tamanho da amostra? Por que é necessário calcular o tamanho da amostra? Quem determina o tamanho da amostra?

Leia mais

3 Modelos de Simulação

3 Modelos de Simulação 43 3 Modelos de Simulação 3.1 Simulação de Monte Carlo O método de Monte Carlo foi concebido com este nome nos anos 40 por John Von Neumann, Stanislaw Ulam e Nicholas Metropolis durante o projeto de pesquisa

Leia mais

Controle Estátistico de Processo.

Controle Estátistico de Processo. Relatório de estudo dos fios. Controle Estátistico de Processo. Indice Item Assunto. Pág. Análise estatística C.E.P. 04 1 Introdução. 04 2 Controle estatístico do processo. 04 2.1 Definição. 04 2.3 Objetivo

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

Carta de controle para o desvio-padrão

Carta de controle para o desvio-padrão Carta de controle para o desvio-padrão O desvio padrão é um indicador mais eficiente da variabilidade, principalmente para amostras grandes (a amplitude perde eficiência). Recomenda-se o uso da carta Xb

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Probabilidade e Estatística, 2011/2

Probabilidade e Estatística, 2011/2 média verdadeira de 104F? Estabeleçamos a média 100F como um limite não tolerado:, Probabilidade e Estatística, 2011/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses Problemas Resolvidos em

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires cpires@uevora.pt Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010.

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010 Curso: 12/06/2010 Nome: N o Instruções: Estaprovatemaduraçãode120 minutos e é constituída

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS Em junho de 2014, o Brasil registrou 275,71 milhões de linhas ativas na telefonia móvel e teledensidade de 136,06 acessos por 100 habitantes. Além disso, nesse mesmo mês, houve

Leia mais

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná

Conteúdo. 1 Introdução. Histograma do 1o Sorteio da Nota Fiscal Paraná 152/15. 1º Sorteio Eletrônico da Nota Fiscal Paraná 1º Sorteio Eletrônico da Nota Fiscal Paraná Relatório parcial contendo resultados 1 da análise estatística dos bilhetes premiados Conteúdo 1 Introdução Este relatório apresenta uma análise estatística

Leia mais

Conceitos de Produtividade Industrial. 6. Estudo de Tempos e Métodos. 6. Estudo de Tempos e Métodos 09/05/2012. Profº Spim

Conceitos de Produtividade Industrial. 6. Estudo de Tempos e Métodos. 6. Estudo de Tempos e Métodos 09/05/2012. Profº Spim Conceitos de Produtividade Industrial Profº Spim 6.1 Decisões sobre o projeto do trabalho; 6.2 Considerações físicas no projeto do trabalho; 6.3 Métodos de trabalho; 6.4 Padrões e medida do trabalho. Adm.

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS 1 PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS Instruções: Tenha sempre em mãos uma Calculadora Científica, pois a mesma será utilizada exaustivamente

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 LSD Introdução à Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 LSD 1 2 3 LSD 4 Parte 2 - Conteúdo LSD Quando o F da ANOVA está sendo utilizado

Leia mais

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim

PLANO DE AULA I. Escrito por Eliani Pereira de Souza Nascimento. Supervisionado por Rosana Silva Bonfim PLANO DE AULA I Escrito por Eliani Pereira de Souza Nascimento Funções no Geogebra 1 º Série do Ensino Médio (Matemática) Compreender a construção do gráfico de funções de 1o - grau, sabendo caracterizar

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS» PROBABILIDADE E ESTATÍSTICA «21. Uma fábrica, que produz pequenas peças utilizadas em materiais eletrônicos, armazena essa mercadoria em lotes com 1000 unidades. Inspecionada

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Ensino Técnico. Qualificação: Assistente Administrativo

Administração Central Unidade de Ensino Médio e Técnico - Cetec. Ensino Técnico. Qualificação: Assistente Administrativo .. Plano de Trabalho Docente 2013 Ensino Técnico Etec Prof Massuyuki Kawano Código: 136 Município: Tupã Eixo Tecnológico: Gestão e Negócios Habilitação Profissional: Técnico em Administração Qualificação:

Leia mais

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Título PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Código da disciplina SIA CCE0292 16 Número de semanas de aula 4 Número

Leia mais

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido

Leia mais

Teste de hipóteses para médias e proporções amostrais

Teste de hipóteses para médias e proporções amostrais Teste de hipóteses para médias e proporções amostrais Prof. Marcos Pó Métodos Quantitativos para Ciências Sociais Intervalo de confiança: outro entendimento É o intervalo que contém o parâmetro que queremos

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística The Science of collecting and analyzing data for the purpose of drawing

Leia mais

1 Introdução. 1.1 Importância da Utilização da Amostragem

1 Introdução. 1.1 Importância da Utilização da Amostragem 1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram

Leia mais

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Estatística Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Objetivo da disciplina Adquirir conhecimento dos fundamentos da Estatística, em seus campos

Leia mais

Aula 1 Estatística e Probabilidade

Aula 1 Estatística e Probabilidade Aula 1 Estatística e Probabilidade Anamaria Teodora Coelho Rios da Silva Aula 1 Plano de ensino Planejamento das aulas Referências Bibliográficas Atividades de Aprendizagem Orientadas Sistema de Avaliação

Leia mais

3 Distribuições Teóricas Contínuas

3 Distribuições Teóricas Contínuas 3 Distribuições Teóricas Contínuas Exercício 3.1 Sendo X uma variável aleatória com distribuição exponencial, mostre que P (X a + b/x a) =P (X b), a 0,b 0. Exercício 3.2 Sabe-se que o tempo entre 2 acidentesdeviaçãonumdeterminado

Leia mais

O QUE É AMOSTRAGEM? PARTE I

O QUE É AMOSTRAGEM? PARTE I O QUE É AMOSTRAGEM? PARTE I! Teoria da amostragem! População x Amostra! O problema do censo! Amostragem probabilística e não probabilística Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Iniciação a Pesquisa em Química

Iniciação a Pesquisa em Química Iniciação a Curso de Química 1 a série Módulo VII - Prof. Julio Trevas Programação na Pesquisa Questionários Gráficos Temas de pesquisa 2 1 A na Pesquisa Denomina-se amostragem o processo de seleção e

Leia mais

Aula 00. Raciocínio Lógico Quantitativo para IBGE. Raciocínio Lógico Quantitativo Professor: Guilherme Neves

Aula 00. Raciocínio Lógico Quantitativo para IBGE. Raciocínio Lógico Quantitativo Professor: Guilherme Neves Aula 00 Raciocínio Lógico Quantitativo Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico Quantitativo Apresentação... 3 Modelos de questões resolvidas

Leia mais

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc.

Capítulo 8 Estimativa do Intervalo de Confiança. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Capítulo 8 Estimativa do Itervalo de Cofiaça Statistics for Maagers Usig Microsoft Excel, 5e 2008 Pearso Pretice-Hall, Ic. Chap 8-1 Objetivos: Neste capítulo, você aprederá: Costruir e iterpretar estimativas

Leia mais

Acre. Tabela 1: Indicadores selecionados: mediana, 1 o e 3 o quartis nos municípios do estado do Acre (1991, 2000 e 2010)

Acre. Tabela 1: Indicadores selecionados: mediana, 1 o e 3 o quartis nos municípios do estado do Acre (1991, 2000 e 2010) Acre Em, no estado do Acre (AC) moravam 734 mil pessoas, e uma parcela ainda pequena dessa população, 4,3% (32 mil) tinha 65 ou mais anos de idade. O estado era composto de 22 municípios, dos quais sete

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo Variância conhecida Seja X 1 θ,..., X n θ, θ = (µ, σ 2 ) uma amostra aleatória de X θ N(µ, σ 2 ). Se σ 2 conhecido, e µ N(α, ψ), (família conjugada) então µ x N(ψ α, ψ ), em que ψ = ( n σ 2 + 1 ) 1 ( α

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

6 Intervalos de confiança

6 Intervalos de confiança 6 Intervalos de confiança Estatística Aplicada Larson Farber Seção 6.1 Intervalos de confiança para a média (amostras grandes) Estimativa pontual DEFINIÇÃO: Uma estimativa pontual é a estimativa de um

Leia mais