Modelos de Probabilidade e Inferência Estatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelos de Probabilidade e Inferência Estatística"

Transcrição

1 Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 1 / 32

2 Distribuição Qui-quadrado Definição 9.1: Uma variável aleatória contínua X tem distribuição qui-quadrado com n graus de liberdade, denotada por χn 2, se sua função densidade for dada por: 1 f(x) = 2 n/2 Γ(n/2) x n/2 1 e x/2, x > 0, n > 0 Sendo, Γ(w) = x w 1 e x dx, w > 0. 0 IDEIA Graus de liberdade: Considere um conjunto de dados qualquer. Graus de liberdade é o número de valores deste conjunto de dados que podem variar após terem sido impostas certas restrições a todos os valores. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 2 / 32

3 Distribuição Qui-quadrado Exemplo Consideremos que 10 estudantes obtiveram em um teste média 8.0. Assim, a soma das 10 notas deve ser 80 (restrição). Portanto, neste caso, temos um grau de liberdade de 10 1 = 9, pois as nove primeiras notas podem ser escolhidas aleatoriamente, contudo a 10 a nota deve ser igual a [80 (soma das 9 primeiras)]. A distribuição qui-quadrado pode ser interpretada da seguinte forma: Interpretação Como a soma de normais padronizada ao quadrado. Ou seja, se X i N(0,1), então n i=1 X 2 i χ 2 n Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 3 / 32

4 Distribuição Qui-quadrado Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 4 / 32

5 Distribuição Qui-quadrado A distribuição qui-quadrado possui numerosas aplicações importantes em inferência estatística. Devido a sua importância a distribuição qui-quadrado está tabulada para diferentes valores do parâmetro n. Assim, poderemos achar na tabela o valor χα 2 que satisfaça P(X χ α 2) = α ou P(X χα 2 ) = α, dependendo da tabela. O que é tabelado é a função inversa, em relação a área à direita ou à esquerda de cada curva. Isto é, dado um valor de área na cauda direita, a tabela retorna um valor χα 2 tal que P(X χ α 2 ) = α e dado um valor de área na cauda esquerda a tabela retorna um valor χα 2 tal que P(X χ α 2) = α. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 5 / 32

6 Exemplo de Tabela Qui-quadrado Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 6 / 32

7 Distribuição Qui-quadrado Exemplo 1 Suponha que X segue uma distribuição qui-quadrado com 17 graus de liberdade e queremos encontrar x 1 e x 2 tais que P(x 1 X x 2 ) = OBSERVAÇÃO 9.1: Poderíamos ter encontrado outros valores de x 1 e x 2 para os quais P(x 1 X x 2 ) = 0.95, porém, na prática, sempre buscamos por valores de forma que as probabilidades P(X < x 1 ) = P(X > x 2 ). Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 7 / 32

8 Distribuição Qui-quadrado Exemplo 2 Suponha que X segue uma distribuição qui-quadrado com 7 graus de liberdade. a) Determine P(X > 9). b) Determine o valor x tal que P(X x) = 0.95 c) Determine o valor x tal que P(X > x) = 0.95 Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 8 / 32

9 Propriedades da distribuição Qui-quadrado Propriedades E(X) = n Var(X) = 2n Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 9 / 32

10 Distribuição Qui-quadrado Teorema 9.1: Seja X uma variável aleatória com distribuição normal padronizada. Então X 2 tem distruibuição χ 2 com um grau de liberdade. Teorema 9.2: Sejam X 1,X 2,...,X n variáveis aleatórias independentes normalmente distribuídas com média 0 e variância 1. Então Z = n i=1 X 2 i segue uma distribuição qui-quadrado com n graus de liberdade. Teorema 9.3: Sejam U 1,U 2,...,U k variáveis aleatórias independentes com distribuição qui-quadrado com n 1,n 2,...,n k graus de liberdade resepectivamente. Então a soma W = U 1 + U U k tem distribuição qui-quadrado com n 1 + n n k graus de liberdade. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 10 / 32

11 Distribuição Qui-quadrado Teorema 9.4: Suponha que a variável aleaatória Y tenha distribuição χ 2 n. Então para n suficientemente grande (n 30), a variável aleatória 2Y tem aproximadamente a distribuição N( 2n 1,1). Teorema 9.5: Seja X 1,...,X n uma amostra aleatória de uma distribuição normal com média µ e variância σ 2, então (n 1)S 2 n i=1 = (X i X) 2 χ 2 σ 2 σ 2 (n 1) Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 11 / 32

12 Distribuição t de Student A distribuição t de Student é uma das distribuições mais utilizadas na estatística, com aplicações que vão desde a modelagem estatística até testes de hipóteses. Definição 9.2: Uma variável aleatória contínua X tem distribuição t de Student com ν graus de liberdade, denotada por t ν, se sua função densidade for dada por: f(x) = 1 Γ ν+1 2 νπ Γ 1 + x 2 ν+1 2, ν = 1,2,3,... x ν ν 2 A expressão acima é assustadora???? Boa Notícia: Não precisaremos dela para calcular probabilidades. Mais uma vez, o parâmetro ν, chamado de graus de liberdade, está associado ao número de parcelas independentes em uma soma. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 12 / 32

13 Propriedades da distribuição t de Student Propriedades E(X) = 0 para ν > 1 Var(X) = ν ν 2, para ν > 2 Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 13 / 32

14 Distribuição t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 14 / 32

15 Distribuição t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 15 / 32

16 Distribuição t de Student Principais Características Cada número de graus de liberdade da origem a uma distribuição t diferente. A função densidade tem a mesma forma em sino da distribuição Normal, mas reflete uma maior variabilidade (com curvas mais alargadas) que é de se esperar em amostras pequenas. A distribuição t-student se aproxima da normal quando aumenta o número de graus de liberdade. A curva é simétrica em torno do zero, ou seja, dado um a, tem-se que f(a) = f( a). Logo P(X a) = P(X a). Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 16 / 32

17 Distribuição t de Student Ao contrário da distribuição normal, não existe uma relação entre as diferentes distribuições t, assim seria necessária uma tabela para cada valor de ν. É comum que os livros didáticos apresentem tabelas da distribuição t que envolvem os valores críticos. O motivo para isso é que a maioria das aplicações da distribuição t envolve a construção de intervalos de confiança ou de testes de hipóteses. Nessas aplicações, nosso interesse está no valor crítico associado a um nível de significância α que, como visto no gráfico a seguir, é o valor da abscissa que deixa probabilidade (área) α acima dela. Na tabela t, cada linha corresponde a um número diferente de graus de liberdade e cada coluna corresponde a uma área α na cauda superior. No corpo da tabela temos a abscissa t α que deixa a área α acima dela. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 17 / 32

18 Distribuição t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 18 / 32

19 Exemplo de Tabela t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 19 / 32

20 Distribuição t de Student Teorema 9.6: Sejam Y e Z variáeis aleatórias independentes, Y sendo normalmente distribuída com média 0 e variância 1, e Z tendo distribuição qui-quadrado com ν graus de liberdade. Então, a variável T = Y Z/ν tem distribuição t de Student com ν graus de liberdade. Observação 9.1: Considere X 1,X 2,...,X n variáveis aleatórias independentes com distribuição normal com média µ e desvio padrão σ. Então, a variável t = X µ s/ n onde s é o desvio padrão amostral, tem distribuição t de Student com n 1 graus de liberdade. Este fato é decorrente do teorema acima. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 20 / 32

21 Distribuição t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 21 / 32

22 Distribuição t de Student Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 22 / 32

23 Distribuição F de Snedecor A distribuição F de Snedecor também conhecida como distribuição de Fisher é frequêntemente utilizada na inferência estatística para análise da variância. Definição 9.3: Uma variável aleatória contínua X tem distribuição F de Snedecor com ν 1 e ν 2 graus de liberdade, denotada por F ν1,ν 2, se sua função densidade for dada por: f(x) = Γ ν 1 2 Γ ν 1 +ν 2 2 ν1 ν 2 ν1 /2 x ν 1 /2 1 Γ ν2 ν1 x 2 ν (ν1 +ν 2 )/2, 0 < x <, ν 1,ν 2 = 1,2,3,... Novamente a expressão acima é assustadora???? Boa Notícia: Não precisaremos dela para calcular probabilidades. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 23 / 32

24 Propriedades da distribuição F de Snedecor Propriedades E(X) = ν 2 ν 2 2 para ν 2 > 2 Var(X) = 2ν 2 2 (ν 1 + ν 2 2) ν 1 (ν 2 4)(ν 2 2) 2, para ν 2 > 4 Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 24 / 32

25 Distribuição F de Snedecor Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 25 / 32

26 Distribuição F de Snedecor Principais Características Cada par de graus de liberdade da origem a uma distribuição F diferente. A distribuição F depende de dois parâmetros. O primeiro (ν 1 ) é o grau de liberdade do numerador e o segundo (ν 2 ) do denominador. A variável aleatória F é não-negativa, e a distribuição é assimétrica à direita. A distribuição F se parece com a distribuição qui-quadrado, no entanto, os parãmetros ν 1 e ν 2 fornecem flexibilidade extra em relação à forma. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 26 / 32

27 Exemplo de Tabela F de Snedecor Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 27 / 32

28 Distribuição F de Snedecor Teorema 9.7: Sejam Q 1 e Q 2 variáveis aleatórias independentes, com distribuição qui-quadrado com ν 1 e ν 2 graus de liberdade, respectivamente. Então, a variável aleatória F = Q 1/ν 1 Q 2 /ν 2 tem distribuição F de Snedecor com ν 1 graus de liberdade no numerador e ν 2 graus de liberdade no denominador. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 28 / 32

29 Distribuição F de Snedecor Observação 9.2: Suponha que temos duas populações independentes tendo distribuições normais com variâncias iguais a σ 2. Considere Y 11,...,Y 1n uma amostra aleatória da primeira população com n observações e Y 21,...,Y 2m uma amostra aleatória da segunda população com m observações. Então, a estatística f = (n 1)S 2 1 (n 1)σ 2 (m 1)S 2 2 (m 1)σ 2 tem distribuição F de Snedecor com (n 1) graus de liberdade no numerador e (m 1) graus de liberdadade no denominador, onde s 1 e s 2 sãos os desvios padrão amostrais da primeira e da segunda amostra, respectivamente. Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 29 / 32

30 Distribuição F de Snedecor Observação 9.3: Em geral, as tabelas contêm apenas os pontos percentuais da cauda superior (valores de F α,ν1,ν2 para α 0.50) Os pontos percentuais da cauda inferior F 1 α,ν1,ν2 podem ser encontrados a partir da seguinte relação: F 1 α,ν1,ν 2 = 1 F α,ν2,ν 1 RELAÇÕES IMPORTANTES: F 1 α,1,ν = t 2 1 α/2,ν F α,ν, = χ 2 α,ν ν Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 30 / 32

31 Distribuição F de Snedecor Exemplo 1: Determine a) F 0.01,15,9 b) F 0.95,10,15 c) F 0.99,15,9 Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 31 / 32

32 Distribuição F de Snedecor Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14 32 / 32

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

AULA 04 Estimativas e Tamanhos Amostrais

AULA 04 Estimativas e Tamanhos Amostrais 1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE

A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE Notas de aula 07 1 A vida sem reflexão não merece ser vivida Sócrates Disciplina: ESTATÍSTICA e PROBABILIDADE 1. Medidas de Forma: Assimetria e Curtose. A medida de assimetria indica o grau de distorção

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

ESTATÍSTICA DESCRITIVA:

ESTATÍSTICA DESCRITIVA: UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário de Sinop(CUS) ESTATÍSTICA DESCRITIVA: Medidas de forma: Assimetria e Curtose Profº Evaldo Martins Pires SINOP -MT TEMAS TRABALHADOS ATÉ AGORA Aula

Leia mais

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência

Variáveis Frequências Gráficos Medidas de Posição Medidas de Dispersão Medidas Complementares Inferência Tipos de Variáveis Problema Motivador: Um pesquisador está interessado em fazer um levantamento sobre aspectos sócio-econômicos dos empregados da seção de orçamentos de uma companhia (vide tabela). Algumas

Leia mais

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Fernando Deeke Sasse 14 de maio de 2010 Introdução Quão boa é uma dada estimação de um parâmetro? Suponha que estimamos

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média.

MEDIDAS DE DISPERSÃO. o grau de variabilidade, ou dispersão, dos valores em torno da média. UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal As medidas de posição apresentadas fornecem a informação dos dados apenas a nível pontual, sem ilustrar

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.

Leia mais

Medida de Tendência Central

Medida de Tendência Central Medida de Tendência Central um valor no centro ou no meio de um conjunto de dados 1 Definições Média (Média Aritmética) o número obtido somando-se todos os valores de um conjunto de dados, dividindo-se

Leia mais

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Aula 12 Teste de hipótese sobre proporções amostras grandes

Aula 12 Teste de hipótese sobre proporções amostras grandes Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida.

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Medidas de dispersão e assimetria

Medidas de dispersão e assimetria Metodologia de Diagnóstico e Elaboração de Relatório FASHT Medidas de dispersão e assimetria Profª Cesaltina Pires cpires@uevora.pt Plano da Apresentação Medidas de dispersão Variância Desvio padrão Erro

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Tópico 9. Teste t-student

Tópico 9. Teste t-student Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras

Leia mais

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas PLANO DE ENSINO FACULDADE: CIÊNCIAS DA SAÚDE DE JUIZ DE FORA CURSO: FARMÁCIA Período: 2º DISCIPLINA: MATEMÁTICA E BIOESTATÍSTICA Ano: 2015 CARGA HORÁRIA: 40 H PRÉ-REQUISITO: - SEMANAL: 02 T TOTAL: 02 AULAS

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Título PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Código da disciplina SIA CCE0292 16 Número de semanas de aula 4 Número

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010.

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010 Curso: 12/06/2010 Nome: N o Instruções: Estaprovatemaduraçãode120 minutos e é constituída

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 LSD Introdução à Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 LSD 1 2 3 LSD 4 Parte 2 - Conteúdo LSD Quando o F da ANOVA está sendo utilizado

Leia mais

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação Parte XIV Técnicas estatísticas para análise de dados e de resultados de modelos de simulação A saída de um modelo de simulação geralmente constitui-se de VA s, muitas das quais podem ter variância grande.

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Média, Mediana e Moda 1 Coletando Dados A coleta de dados produz um conjunto de escores de uma ou mais variáveis Para chegar à distribuição dos escores, estes têm de ser arrumados / ordenados do menor

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE Instituto acional de Estudos e Pesquisas Educacionais Anísio Teixeira IEP Ministério da Educação ME álculo do onceito EADE Para descrever o cálculo do onceito Enade, primeiramente é importante definir

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Exercícios Selecionados de Estatística Avançada. Sumário

Exercícios Selecionados de Estatística Avançada. Sumário 1 Exercícios Selecionados de Estatística Avançada Sumário I Probabilidade... 2 II Medidas de Posição e de Dispersão. Assimetria e Curtose... 5 III Variáveis Aleatórias Discretas e Contínuas. Função de

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla

IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla IV Regressão e correlação IV.4. (cont.) Significância Estatística e Regressão Múltipla Significância Estatística Existe uma estatítica, o t-estatístico,associado a cada estimativa O t-estatístico mede

Leia mais

AULAS 08 E 09 Distribuição de Probabilidade Normal

AULAS 08 E 09 Distribuição de Probabilidade Normal 1 AULAS 08 E 09 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 02 e 09 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed.

Leia mais

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula

PARTE I - EVOLUÇÃO DO PENSAMENTO. Curso Análise de Dados e Políticas Públicas. Ementa. Metodologia. Plano de Aula Curso Análise de Dados e Políticas Públicas Professor: Pablo Cerdeira Ementa O que Matemática tem a ver com Direito? Muita coisa. Neste curso de Análise de Dados e Políticas Públicas abordaremos três importantes

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Intervalo de Confiança - Margem de Erro

Intervalo de Confiança - Margem de Erro Intervalo de Confiança - Margem de Erro Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 26, 2014 Souza () Intervalo de Confiança - Margem de Erro October 26, 2014 1 / 31 Margem de erro - relatórios

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

CAPÍTULO 8. de Variância - ANOVA ANOVA. Análise

CAPÍTULO 8. de Variância - ANOVA ANOVA. Análise CAPÍTULO 8 Análise de Variância - UFRGS Os testes de hipótese apresentados até aqui limitaram-se à comparação de duas médias ou duas variâncias. Contudo, há situações onde se deseja comparar várias médias,

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS)

DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) DISTRIBUIÇÃO DE FREQUÊNCIA DE VARIÁVEIS QUALITATIVAS E QUANTITATIVAS DISCRETAS (TABELAS E GRÁFICOS) O QUE É ESTATÍSTICA Estatística é a ciência de obter conclusões a partir de dados. Envolve métodos para

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Hélio Lopes INF2035 - Introdução à Simulação Estocástica 1 Introdução Um processo estocástico é uma família de variáveis aleatórias {X(t), t T } definidas em um espaço de probabilidade,

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

Intervalos Estatísticos para Uma Única Amostra

Intervalos Estatísticos para Uma Única Amostra Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição

Leia mais

Estatística. Slide 0. Ana M. Abreu - 2006/07

Estatística. Slide 0. Ana M. Abreu - 2006/07 Estatística Slide 0 Capítulo 1 Estatística Descritiva Slide 1 I-1 Introdução à organização e ao processamento de dados. I-2 Amostra e população; cuidados a ter na recolha da amostra. I-3 Ordenação dos

Leia mais

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados

BIOESTATÍSTICA. Parte 1 - Estatística descritiva e análise exploratória dos dados BIOESTATÍSTICA Parte 1 - Estatística descritiva e análise exploratória dos dados Aulas Teóricas de 17/02/2011 a 03/03/2011 1.1. População, amostra e dados estatísticos. Dados qualitativos e quantitativos

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Ronei Marcos de Moraes Análise de Variância e Estatística Nãoparamétrica UFPB Maio/2011 ANOVA - Análise de Variância O caso da comparação de várias médias

Leia mais

Desvio Padrão ou Erro Padrão

Desvio Padrão ou Erro Padrão NOTAS METODOLÓGICAS ISSN 0871-3413 ArquiMed, 2006 Desvio Padrão ou Erro Padrão Nuno Lunet, Milton Severo, Henrique Barros Serviço de Higiene e Epidemiologia da Faculdade de Medicina da Universidade do

Leia mais

Programa de Ciências Experimentais 2012-2013

Programa de Ciências Experimentais 2012-2013 Programa de Ciências Experimentais 2012-2013 I Teoria 1 Introdução 2 Conceitos úteis 2.1 Ordem de grandeza 2.1.1 Introdução 2.1.2 Definição 2.1.3 Representação científica de um número 2.1.4 Ordem de grandeza

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS» PROBABILIDADE E ESTATÍSTICA «21. Uma fábrica, que produz pequenas peças utilizadas em materiais eletrônicos, armazena essa mercadoria em lotes com 1000 unidades. Inspecionada

Leia mais

3 Modelos de Simulação

3 Modelos de Simulação 43 3 Modelos de Simulação 3.1 Simulação de Monte Carlo O método de Monte Carlo foi concebido com este nome nos anos 40 por John Von Neumann, Stanislaw Ulam e Nicholas Metropolis durante o projeto de pesquisa

Leia mais

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2 Aula 6 Distribuição amostral da proporção Nesta aula você verá uma importante aplicação do Teorema Central do Limite: iremos estudar a distribuição amostral de proporções. Assim, você verá os resultados

Leia mais

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos

Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Planejamento e Análise Estatística de Experimentos Fatoriais em blocos completos Contexto Já vimos como analisar um experimento em blocos na presença de um único fator de interesse. Podemos ter experimentos

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Aula 1 Assimetria e Curtose

Aula 1 Assimetria e Curtose 2º Bimestre 1 Estatística e Probabilidade Aula 1 Assimetria e Curtose Professor Luciano Nóbrega Medidas de assimetria As medidas de assimetria e curtose (esta última veremos na próxima aula) são as que

Leia mais

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo

Modelo Normal. Aplicações: Parte 1. Prof. Caio Azevedo. Prof. Caio Azevedo Variância conhecida Seja X 1 θ,..., X n θ, θ = (µ, σ 2 ) uma amostra aleatória de X θ N(µ, σ 2 ). Se σ 2 conhecido, e µ N(α, ψ), (família conjugada) então µ x N(ψ α, ψ ), em que ψ = ( n σ 2 + 1 ) 1 ( α

Leia mais

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS Química Analítica IV 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Todas as medidas físicas possuem um certo grau de incerteza. Quando se faz uma medida, procura-se

Leia mais

1 Introdução. 1.1 Importância da Utilização da Amostragem

1 Introdução. 1.1 Importância da Utilização da Amostragem 1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Distribuições Conjuntas (Tabelas de Contingência)

Distribuições Conjuntas (Tabelas de Contingência) Cruzamento de Dados Distribuições Conjuntas (Tabelas de Contingência) Lorí Viali, Dr. DESTAT/FAMAT/PUCRS viali@pucrs.br http://www.pucrs.br/famat/viali Distribuição Conjunta Exemplo (tabela um) Suponha

Leia mais

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA META Dimensionar o tamanho ideal de amostra para cada população.

Leia mais

Probabilidade e Estatística, 2011/2

Probabilidade e Estatística, 2011/2 média verdadeira de 104F? Estabeleçamos a média 100F como um limite não tolerado:, Probabilidade e Estatística, 2011/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses Problemas Resolvidos em

Leia mais

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais

índice Introdução Estatística Descritiva Capítulo 1 Capítulo 2 O que é a Estatística Escalas de medida Escalas Nominais Escalas Ordinais índice MENSAGEM DO AUTOR 11 AGRADECIMENTOS 13 Capítulo 1 Introdução Importância da estatística 17 O que é a Estatística? Escalas de medida Escala de medida qualitativa Escalas Nominais Escalas Ordinais

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas

Aula de Exercícios - Variáveis Aleatórias Discretas Aula de Exercícios - Variáveis Aleatórias Discretas Organização: Airton Kist Digitação: Guilherme Ludwig Valor Médio de uma variável aleatória Considere uma urna contendo três bolas vermelhas e cinco pretas.

Leia mais

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados. 2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.7 Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. Derivadas e Taxas de Variação

Leia mais

Para mais de duas variáveis independentes, em função de uma variável dependente.

Para mais de duas variáveis independentes, em função de uma variável dependente. MÉTODOS QUANTlTATlVOS APLlCADOS À CONTABlLlDADE Prof. Héber Lavor Moreira Plano de Aula TEMA: REGRESSÃO MÚLTlPLA - Caso Multiplan S/A lntrodução Em muitos casos uma variável pode estar relacionada com

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy)

Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy) Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy) 1 Como descrever informações qualitativas? Fatores qualitativos podem ser incorporados a modelos de regressão. Neste

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística The Science of collecting and analyzing data for the purpose of drawing

Leia mais

AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais

AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA MATEMÁTICA B Curso de Artes Visuais ANO LECTIVO: 2015/2016 11º ANO 1º PERÍODO PLANIFICAÇÃO

Leia mais

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais