Aula 12 Teste de hipótese sobre proporções amostras grandes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 12 Teste de hipótese sobre proporções amostras grandes"

Transcrição

1 Aula 12 Teste de hipótese sobre proporções amostras grandes Objetivos Na aula anterior, você aprendeu a construir testes de hipóteses sobre a média de uma população normal com variância σ 2 conhecida. O procedimento baseou-se na distribuição amostral da média amostral que, com as hipóteses de normalidade e conhecimento da variância populacional, sabemos ser normal com a mesma média e variância σ 2 /n. Nesta aula, iremos fazer uso do Teorema Central do Limite para construir testes de hipóteses sobre proporções com base em amostras grandes. Vimos que, para amostras grandes, a distribuição amostral da proporção amostral pode ser aproximada por uma distribuição normal e, assim, o procedimento de teste de hipótese será idêntico ao estudado na aula anterior. Estimação de uma proporção populacional O contexto de interesse é o seguinte: temos uma população em que cada elemento é classificado de acordo com a presença ou ausência de determinada característica. Em termos de variável aleatória, essa população é representada por uma v.a. de Bernoulli, isto é: X = 1 se elemento possui a característica de interesse; X= 0 se elemento não possui a característica de interesse Então, Pr(X = 1) = p, E(X) = p e Var(X) = p(1 p). O parâmetro p é também a proporção de elementos da população que possuem a característica de interesse. Em geral, esse parâmetro é desconhecido e queremos testar hipóteses feitas sobre seu possível valor. Suponha, então, que dessa população seja extraída uma amostra aleatória simples X1,X2,...,Xn com reposição. Vimos que a proporção P de elementos na amostra que possuem a característica de interesse, definida por é um estimador não-viesado para p com variância p(1 p)/n. Mais precisamente, Como a proporção amostral é uma média de uma amostra aleatória simples de uma população com distribuição de Bernoulli com parâmetro p, o Teorema Central do Limite nos diz, então, que a distribuição de P se aproxima de uma normal com média p e variância p(1 p)/n. Como visto, a aproximação deve ser feita se np 5 e n(1 p) 5 e, em geral, essas condições são satisfeitas se n 30. Note que, com n = 30, np 5 sempre que p 0, 1667; logo, essa indicação n 30 em geral funciona, desde que a característica de interesse não seja extremamente rarefeita na população (em estatística, usa-se o termo populações raras nos casos em que p é muito pequeno). Caso haja suspeitas de que p seja muito pequeno, deve-se aumentar o tamanho da amostra. Resumindo, temos o seguinte resultado: Vamos ver, agora, como usar esse resultado para construir testes de hipóteses sobre a verdadeira proporção populacional p. Teste de hipóteses sobre proporções A hipótese nula que consideraremos será uma hipótese simples: H0 : p = p0 As hipóteses alternativas possíveis são: Bilateral: H1 : p p0 Unilateral à Direita: H1 : p > p0 Página 1 de 6

2 Unilateral à Esquerda: H1 : p < p0 Como no caso da média, a escolha das hipóteses nula e alternativa deve ser feita levando-se em conta que a hipótese nula deve ser uma hipótese simples. Assim, você deve traduzir a situação de interesse do problema em uma desigualdade envolvendo a proporção p. Em seguida, determine a desigualdade que nega a desigualdade anterior. A hipótese alternativa envolve a desigualdade que não inclui o sinal de =. A estatística de teste é Dado um nível de significância α, a região crítica é definida como o conjunto de valores que têm probabilidade pequena de ocorrerem sob a veracidade da hipótese nula, ou seja, é o conjunto de valores muito afastados de p0. Bilateral: RC : P > p0 + k ou P < p0 k Unilateral à Direita: RC : P > p0 + k Unilateral à Esquerda: RC : P < p0 k O valor k é encontrado impondo-se a condição de a probabilidade do erro tipo I ser igual a α : Pr ( p RC H0 verdadeira) = α Como essa probabilidade é calculada sob a hipótese de veracidade de H0, a variância de P é estimada por Teste bilateral Com nível de significância α = Pr(erro I), temos de ter: Ou seja, a região crítica para o teste bilateral é Testes unilaterais Com desenvolvimento análogo, obtemos as seguintes regiões críticas: Página 2 de 6

3 Teste Unilateral à Direita : Teste Unilateral à Esquerda : Exemplo 12.1 Uma amostra de 64 elementos é usada para testar H0 : p = 0, 35 H1 : p 0, 35 Estabeleça a região crítica para o nível de significância de 1%. Solução A região crítica é Logo, a região crítica é Exemplo 12.2 Um fabricante afirma que no máximo 10% dos seus produtos são defeituosos. Um órgão de defesa do consumidor testa uma amostra de 81 desses itens, detectando 13,8% de defeituosos. 1. Encontre a região crítica para um nível de significância de 5%. 2. Calcule o valor P. Solução A afirmativa de interesse para o fabricante é p 0, 10. A negação de tal afirmativa (questionamento do órgão de defesa do consumidor) é p > 0, 10. Logo, nossas hipóteses são: H0 : p = 0, 10 H1 : p > 0, 10 Note que todas as proporções estão na forma decimal. Não trabalhe com percentagens! A região crítica é Com α = 0, 05, temos: Página 3 de 6

4 A região crítica é P > 0, 155 ou 15,5%. Como p hipótese nula. Ou seja, nossos dados não fornecem evidência contra o fabricante. 2. = 13, 8% não está na região crítica, não podemos rejeitar a Logo, rejeitamos H0 apenas para níveis de significância maiores que 12,7%. Assim, aos níveis de significância usuais, não devemos rejeitar H0, o que é uma evidência de que o fabricante está dizendo a verdade. Exercícios 1. Em uma pesquisa com 800 estudantes universitários, 385 afirmaram possuir computador. Teste a hipótese de que pelo menos 50% dos estudantes universitários possuem computador. Use α = 0, Uma pesquisa entre 700 trabalhadores revela que 15,8 obtiveram seus empregos por meio de indicações de amigos ou parentes. Teste a hipótese de que mais de 10% dos trabalhadores conseguem seus empregos por indicação de amigos ou parentes, utilizando 5% como nível de significância. 3. O nível de aprovação da qualidade das refeições servidas em um restaurante universitário era 20%, quando houve uma movimentação geral dos estudantes que forçou a direção do restaurante a fazer mudanças. Feitas as mudanças, sorteou-se uma amostra de 64 estudantes usuários do restaurante e 25 aprovaram a qualidade da comida. Você diria, ao nível de significância de 5%, que as mudanças surtiram efeito? 4. Deseja-se testar a honestidade de uma moeda. Para isso, lança-se a moeda 200 vezes, obtendo-se 115 caras. Qual é a sua conclusão sobre a honestidade da moeda? Para responder a essa questão, calcule e interprete o valor P. 5. A direção de um grande jornal nacional afirma que 25% dos seus leitores são da classe A. Se, em uma amostra de 740 leitores, encontramos 156 da classe A, qual é a conclusão que tiraríamos sobre a afirmativa da direção do jornal? Solução dos Exercícios Página 4 de 6

5 A afirmativa de interesse é pelo menos 50% dos estudantes possuem computador, ou seja, p 0, 5. Logo, as hipóteses são H0 : p = 0, 50 H1 : p < 0, 50 α = 0, 10 = z0,1 = 1, 28 e a região crítica é Como o valor observado não pertence à região crítica, não podemos rejeitar a hipótese nula. Ou seja, os dados trazem evidência de que a proporção de estudantes que possuem computador é de pelo menos 50%. 2. As hipóteses são H0 : p = 0, 10 H1 : p > 0, 10 α = 5% = z0,05 = 1, 64. Logo, a região crítica é Rejeita-se, assim, a hipótese nula de que 10% ou menos dos trabalhadores conseguem seus empregos por indicação de parentes ou amigos. 3. O interesse é verificar se p > 0, 20. Logo, H0 : p = 0, 20 H1 : p > 0, 20 Como α = 5% e o teste é unilateral, resulta que z0,05 = 1, 64. Logo, a região crítica é Como o valor observado p = 25/64 = 0, está na região crítica, rejeita-se a hipótese nula, ou seja, as evidências amostrais indicam que houve melhora com as mudanças. 4. As hipóteses são H0 : p = 0, 5 H1 : p 0, 5 Como o valor P é pequeno, a probabilidade de obtermos 115 caras em 200 lançamentos de uma moeda é pequena, o que nos leva a suspeitar da honestidade da moeda. 5. Com as informações disponíveis, nossas hipóteses são: H0 : p = 0, 25 H1 : p 0, 25 Página 5 de 6

6 O valor obtido é p =156/740 = 0, 2108 < 0, 25. Nesse caso, Como o valor P é bastante pequeno, devemos rejeitar a hipótese nula de que a proporção de leitores da classe A é igual a 25%. Bibliografia [1] ANDERSON, David R.; SWEENEY, Dennis J.; WILLIAMS, Thomas A. Estatística Aplicada à Administração e à Economia. São Paulo: Pioneira Thomson Learning, 2002 [2] MOORE, David S.; McCabe, George P.; DUCKWORTH, William M.; SCLOVE, Stanley L. A Prática da Estatística Empresarial Como Usar Dados para Tomar Decisões. Rio de Janeiro: LTC Editora, 2006 [3] MORETTIN, Pedro Alberto; BUSSAB, Wilton de Oliveira. Estatística Básica, 5a Edição. São Paulo: Saraiva, 2006 [4] TRIOLA, Mario F. Introdução à Estatística, 9a. Edição. Rio de Janeiro: LTC Editora, 2005 [5] FARIAS, Ana M.; Métodos Estatísticos I. Rio de Janeiro. Fundação CECIERJ, Página 6 de 6

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

cuja distribuição é t de Student com n 1 graus de liberdade.

cuja distribuição é t de Student com n 1 graus de liberdade. Aula 13 Teste de hipótese sobre a média de uma população normal σ 2 desconhecida Objetivos: Nesta aula você completará seu estudo básico sobre testes de hipóteses, analisando a situação relativa a uma

Leia mais

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2

Então, a distribuição de converge para a distribuição normal com média nμ e variância nσ 2 Aula 6 Distribuição amostral da proporção Nesta aula você verá uma importante aplicação do Teorema Central do Limite: iremos estudar a distribuição amostral de proporções. Assim, você verá os resultados

Leia mais

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida

Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Aula 11 Teste de hipótese sobre a média de uma população normal - σ 2 conhecida Objetivo: Nesta aula, iremos aplicar os conceitos básicos sobre a teoria de teste de hipótese a uma situação específica.

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança

Estimação. Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Estimação Como definir um estimador. Como obter estimativas pontuais. Como construir intervalos de confiança Motivação A partir da média de uma a amostra em uma colheita recente, o conselho de qualidade

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 4. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula 4 Prof.: Patricia Maria Bortolon, D. Sc. Fundamentos do Teste de Hipóteses Teste de Hipóteses - Definições É uma regra de decisão para aceitar, ou rejeitar, uma hipótese estatística

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA. Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Tipos de Pesquisa Censo: é o levantamento de toda população. Aqui não se faz inferência e sim uma descrição

Leia mais

Aula 7 Intervalos de confiança

Aula 7 Intervalos de confiança Aula 7 Intervalos de confiança Nesta aula você aprenderá um método muito importante de estimação de parâmetros. Na aula anterior, você viu que a média amostral X é um bom estimador da média populacional

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

AULA 12 Inferência a Partir de Duas Amostras

AULA 12 Inferência a Partir de Duas Amostras 1 AULA 12 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 15 de setembro de 2011 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

Probabilidade e Estatística, 2009/2

Probabilidade e Estatística, 2009/2 Probabilidade e Estatística, 2009/2 CCT - UDESC Prof. Fernando Deeke Sasse Problemas Resolvidos - Testes de Hipóteses 1. Uma empresa de manufatura têxtil está testando rolos de fio que o fornecedor afirma

Leia mais

AULA 04 Estimativas e Tamanhos Amostrais

AULA 04 Estimativas e Tamanhos Amostrais 1 AULA 04 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 27 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança

Unidade 5.2. Teste de hipóteses. Hipótese estatística. (uma população) Formulando as hipóteses. Teste de Hipóteses X Intervalo de Confiança Hipótese estatística Unidade 5. Teste de Hipóteses (uma população) Hipótese estatística-qualquer afirmação feita sobre um parâmetro populacional desconhecido. Hipótese: Duração média da bateria (µ) > 300

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

Análise de Regressão Linear Simples III

Análise de Regressão Linear Simples III Análise de Regressão Linear Simples III Aula 03 Gujarati e Porter Capítulos 4 e 5 Wooldridge Seção.5 Suposições, Propriedades e Teste t Suposições e Propriedades RLS.1 O modelo de regressão é linear nos

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

AULA 11 Experimentos Multinomiais e Tabelas de Contingência

AULA 11 Experimentos Multinomiais e Tabelas de Contingência 1 AULA 11 Experimentos Multinomiais e Tabelas de Contingência Ernesto F. L. Amaral 24 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG)

Leia mais

Tópico 9. Teste t-student

Tópico 9. Teste t-student Tópico 9 Teste t-student Teste t Teste t pode ser conduzido para Comparar uma amostra com uma população Comparar duas amostras pareadas Mesmos sujeitos em dois momentos distintos Comparar duas amostras

Leia mais

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA

AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA AMOSTRAGEM: DIMENSIONAMENTO DE AMOSTRAS. SELEÇÃO DOS ELEMENTOS DE UMA AMOSTRA. ESTIMATIVA DA CARACTERÍSTICA TOTAL DA POPULAÇÃO INVESTIGADA META Dimensionar o tamanho ideal de amostra para cada população.

Leia mais

Inferência sobre duas proporções

Inferência sobre duas proporções Teste para duas populações duas populações Amostra :,,,, alor comum para delta 0 Amostra 2:,,,, Tamanho Tamanho Média amostral x Média amostral x Desvio-padrão Desvio-padrão Teste para duas populações

Leia mais

Teste de hipóteses para médias e proporções amostrais

Teste de hipóteses para médias e proporções amostrais Teste de hipóteses para médias e proporções amostrais Prof. Marcos Pó Métodos Quantitativos para Ciências Sociais Intervalo de confiança: outro entendimento É o intervalo que contém o parâmetro que queremos

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Probabilidade e Estatística, 2011/2

Probabilidade e Estatística, 2011/2 média verdadeira de 104F? Estabeleçamos a média 100F como um limite não tolerado:, Probabilidade e Estatística, 2011/2 CCT - UDESC Prof. Fernando Deeke Sasse Testes de Hipóteses Problemas Resolvidos em

Leia mais

Aula 4 Inferência Estatística conceitos básicos

Aula 4 Inferência Estatística conceitos básicos Aula 4 Inferência Estatística conceitos básicos Objetivos Nesta aula, você estudará os seguintes conceitos: população e amostra; amostra aleatória simples; estatísticas e parâmetros; estimador; distribuição

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas

Aula de Exercícios - Variáveis Aleatórias Discretas Aula de Exercícios - Variáveis Aleatórias Discretas Organização: Airton Kist Digitação: Guilherme Ludwig Valor Médio de uma variável aleatória Considere uma urna contendo três bolas vermelhas e cinco pretas.

Leia mais

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão

Capítulo 5. Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Capítulo 5 Inferência no Modelo de Regressão Simples: Estimação de Intervalos, Teste de Hipóteses e Previsão Hipóteses do Modelo de Regressão Linear Simples RS1. y x e t 1 t t RS. RS3. RS4. RS5. RS6. Ee

Leia mais

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística

Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO 1. IDENTIFICAÇÃO Disciplina: PROBABILIDADE E ESTATÍSTICA Código: IEE001 Pré-Requisito: IEM011 - CÁLCULO I N O de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: 0 Semestre: 1 O Ano:

Leia mais

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7 AEDB - 2ª BI Probabilidade e Estatística - 2 o Ano 2011 - Prof: Roberto Campos Leoni Simulado 1. Em um arquivo há 4 balancetes de orçamento e 3 balancetes de custos. Em uma auditoria, o auditor seleciona

Leia mais

AULAS 08 E 09 Distribuição de Probabilidade Normal

AULAS 08 E 09 Distribuição de Probabilidade Normal 1 AULAS 08 E 09 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 02 e 09 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed.

Leia mais

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra

Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Probabilidade e Estatística - EST0003 Intervalos Estatísticos para uma única Amostra Fernando Deeke Sasse 14 de maio de 2010 Introdução Quão boa é uma dada estimação de um parâmetro? Suponha que estimamos

Leia mais

Intervalo de Confiança - Margem de Erro

Intervalo de Confiança - Margem de Erro Intervalo de Confiança - Margem de Erro Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 26, 2014 Souza () Intervalo de Confiança - Margem de Erro October 26, 2014 1 / 31 Margem de erro - relatórios

Leia mais

1 Hipótese Nula e Hipótese Alternativa

1 Hipótese Nula e Hipótese Alternativa Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 203 Aula Professor: Carlos Sérgio UNIDADE 7 - TESTES DE HIPÓTESES (NOTAS DE AULA) Hipótese Nula e Hipótese

Leia mais

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira

Análise estatística. Aula de Bioestatística. 17/9/2008 (2.ª Parte) Paulo Nogueira Análise estatística Aula de Bioestatística 17/9/2008 (2.ª Parte) Paulo Nogueira Testes de Hipóteses Hipótese Estatística de teste Distribuição da estatística de teste Decisão H 0 : Não existe efeito vs.

Leia mais

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292

Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Plano de Ensino PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA - CCE0292 Título PROBABILIDADE E ESTATÍSTICA APLICADA À ENGENHARIA Código da disciplina SIA CCE0292 16 Número de semanas de aula 4 Número

Leia mais

UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 6 Testes de Hipóteses UNIDADE 6 TESTES DE HIPÓTESES OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Escolher o teste de hipótese adequado; Formular um

Leia mais

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS

PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS 1 PROBABILIDADE E ESTATÍSTICA I 1º SEMESTRE DE 2015 Docente: Anderson H.R. Ferreira 2º LISTA DE EXERCÍCIOS Instruções: Tenha sempre em mãos uma Calculadora Científica, pois a mesma será utilizada exaustivamente

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Intervalos Estatísticos para Uma Única Amostra

Intervalos Estatísticos para Uma Única Amostra Intervalos Estatísticos para Uma Única Amostra OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Construir intervalos de confiança para a média de uma distribuição

Leia mais

Inspeção de Qualidade

Inspeção de Qualidade Roteiro Inspeção de Qualidade 1. Inspeção para Aceitação 2. Planos de Amostragem Simples 3. Determinação Plano de Amostragem 4. Inspeção Retificadora 5. Plano de Amostragem Dupla 6. Planos de Amostragem

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Razão para rejeitar H 0

Razão para rejeitar H 0 Processo do teste de hipótese Hipótese de pesquisa: a idade média da população é 5 H : μ = 5 H 1 : μ 5 É X = improvável se μ =5? População Selecionar amostra aleatória Sim: Rejeite Ho Para definir pouco

Leia mais

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara

Estatística. Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Estatística Aula 1 -Fundamentos e conceitos básicos (Notas de aula) Prof. Idemauro Antonio Rodrigues de Lara Objetivo da disciplina Adquirir conhecimento dos fundamentos da Estatística, em seus campos

Leia mais

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS Química Analítica IV 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Todas as medidas físicas possuem um certo grau de incerteza. Quando se faz uma medida, procura-se

Leia mais

Aula 3 A distribuição normal - aplicação

Aula 3 A distribuição normal - aplicação Aula 3 A distribuição normal - aplicação Objetivos Nesta aula serão apresentados resultados básicos sobre a distribuição normal que permitirão a você calcular probabilidades associadas a qualquer variável

Leia mais

Aula 10 Testes de hipóteses

Aula 10 Testes de hipóteses Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

Regressão linear múltipla. Prof. Tatiele Lacerda

Regressão linear múltipla. Prof. Tatiele Lacerda Regressão linear múltipla Prof Tatiele Lacerda Yi = B + Bx + B3X3 + u Plano de resposta E(Y i ) = 0,00 Y i i 0 (,33;,67) Y i 0 X i Xi X p i, p i 3 Modelo de regressão linear múltipla em termos matriciais,

Leia mais

Testes Não Paramétricos

Testes Não Paramétricos Testes Não Paramétricos Nos testes abordados até agora, ditos testes paramétricos, as hipóteses envolvem apenas parâmetros populacionais, como a média, a variância, uma proporção, etc. Além disso, em geral,

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010.

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010. Curso: 12/06/2010. ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Teste Final 2009/2010 Curso: 12/06/2010 Nome: N o Instruções: Estaprovatemaduraçãode120 minutos e é constituída

Leia mais

25 a 30 de novembro de 2013

25 a 30 de novembro de 2013 LSD Introdução à Programa de Pós-Graduação em Estatística e Experimentação Agronômica ESALQ/USP 25 a 30 de novembro de 2013 LSD 1 2 3 LSD 4 Parte 2 - Conteúdo LSD Quando o F da ANOVA está sendo utilizado

Leia mais

Cálculos com a distribuição normal

Cálculos com a distribuição normal AULA 15 Aula 15 A distribuição normal - conclusão Nesta aula serão apresentados resultados básicos sobre a distribuição normal que permitirão que você calcule probabilidades associadas a qualquer variável

Leia mais

Matemática Aplicada às Ciências Sociais

Matemática Aplicada às Ciências Sociais ESCOLA SECUNDÁRIA DE AMORA PLANIFICAÇÃO ANUAL Matemática Aplicada às Ciências Sociais Ensino Regular Curso Geral de Ciências Sociais e Humanas 11º ANO Ano Letivo 2014 / 2015 PLANIFICAÇÃO A LONGO PRAZO

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Uniforme 11/13 1 / 19 Distribuições Contínuas Apresentaremos agora alguns dos

Leia mais

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação

Técnicas estatísticas para análise de dados e de resultados de modelos de simulação Parte XIV Técnicas estatísticas para análise de dados e de resultados de modelos de simulação A saída de um modelo de simulação geralmente constitui-se de VA s, muitas das quais podem ter variância grande.

Leia mais

Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy)

Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy) Análise de Regressão Múltipla com informação qualitativa: variáveis binárias (dummy) 1 Como descrever informações qualitativas? Fatores qualitativos podem ser incorporados a modelos de regressão. Neste

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Probabilidade e Estatística The Science of collecting and analyzing data for the purpose of drawing

Leia mais

Testes de variância e Análise de Variância (ANOVA)

Testes de variância e Análise de Variância (ANOVA) Testes de variância e Análise de Variância (ANOVA) Introdução à Inferência Estatística Introdução à Inferência Estatística TESTE DE VARIÂNCIAS E DISTRIBUIÇÃO F Testes sobre variâncias Problema: queremos

Leia mais

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015. de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média.

é 4. Portanto, o desvio padrão é 2. Neste caso 100% dos valores da população estão a um desvio padrão da média. Desvio Padrão From Wikipedia, the free encyclopedia probabilidade e estatística, o desvio padrão de uma distribuição de probabilidade, de uma variável aleatória, ou população é uma medida do espalhamento

Leia mais

1 Introdução. 1.1 Importância da Utilização da Amostragem

1 Introdução. 1.1 Importância da Utilização da Amostragem 1 Introdução Um dos principais objetivos da maioria dos estudos, análises ou pesquisas estatísticas é fazer generalizações seguras com base em amostras, sobre as populações das quais as amostras foram

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5

Testes de Hipóteses 5.1 6 8.8 11.5 4.4 8.4 8 7.5 9.5 Testes de Hipóteses Supoha que o ível crítico de ifestação por um iseto-praga agrícola é de 10% das platas ifestadas. Você decide fazer um levatameto em ove lotes, selecioados aleatoriamete, de uma área

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS Em junho de 2014, o Brasil registrou 275,71 milhões de linhas ativas na telefonia móvel e teledensidade de 136,06 acessos por 100 habitantes. Além disso, nesse mesmo mês, houve

Leia mais

ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA

ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA ROTEIRO PARA ELABORAÇÃO DO PROJETO DE PESQUISA O objetivo desse roteiro é orientar os estudantes de Estatística para a realização do trabalho proposto conforme previsto no plano de ensino da disciplina.

Leia mais

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas

PLANO DE ENSINO CONTEÚDO PROGRAMÁTICO. Unidade 1: MEDIDAS E GRANDEZAS. 1.1.- Introdução. 1.2.- Padrões usados para avaliar grandezas físicas PLANO DE ENSINO FACULDADE: CIÊNCIAS DA SAÚDE DE JUIZ DE FORA CURSO: FARMÁCIA Período: 2º DISCIPLINA: MATEMÁTICA E BIOESTATÍSTICA Ano: 2015 CARGA HORÁRIA: 40 H PRÉ-REQUISITO: - SEMANAL: 02 T TOTAL: 02 AULAS

Leia mais

A Significância Estatística do Proger na Redução da Taxa de Desemprego por Haroldo Feitosa Tajra

A Significância Estatística do Proger na Redução da Taxa de Desemprego por Haroldo Feitosa Tajra A Significância Estatística do Proger na Redução da Taxa de Desemprego por Haroldo Feitosa Tajra 1. INTRODUÇÃO O objetivo desta análise é verificar a significância estatística das aplicações do Programa

Leia mais

Pernambuco. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Pernambuco (1991, 2000 e 2010)

Pernambuco. Tabela 1: Indicadores selecionados: mediana, 1º e 3º quartis nos municípios do estado de Pernambuco (1991, 2000 e 2010) Pernambuco Em, no estado de Pernambuco (PE), moravam 8,8 milhões de pessoas, onde parcela relevante (7,4%; 648,7 mil habitantes) tinha 65 ou mais anos de idade. O estado era composto de 185 municípios,

Leia mais

Cálculo I -A- Humberto José Bortolossi. Aula 1 18 de agosto de 2009. Departamento de Matemática Aplicada Universidade Federal Fluminense

Cálculo I -A- Humberto José Bortolossi. Aula 1 18 de agosto de 2009. Departamento de Matemática Aplicada Universidade Federal Fluminense Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 18 de agosto de 2009 Aula 1 Cálculo I -A- 1 Apresentação do curso Aula 1 Cálculo I -A-

Leia mais

3 Metodologia de Pesquisa

3 Metodologia de Pesquisa 58 3 Metodologia de Pesquisa 3.1. Tipo de Pesquisa A classificação quanto ao tipo de pesquisa foi feita baseada na taxionomia de Vergara (2005), considerando a pesquisa quanto aos fins e quanto aos meios:

Leia mais

PROBABILIDADE: DIAGRAMAS DE ÁRVORES

PROBABILIDADE: DIAGRAMAS DE ÁRVORES PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 5 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: cruzamentos e medidas de associação variáveis nominais e ordinais e variáveis

Leia mais

Lição 5 Medidas Descritivas Medidas de Dispersão

Lição 5 Medidas Descritivas Medidas de Dispersão 99 Lição 5 Medidas Descritivas Medidas de Dispersão Após concluir o estudo desta lição, esperamos que você possa: identifi car o objetivo das medidas de dispersão; identifi car o conceito de variância;

Leia mais

Capítulo 1. Uma Introdução à Econometria

Capítulo 1. Uma Introdução à Econometria Capítulo 1 Uma Introdução à Econometria Livro Texto:Econometria Hill, Grifith e Judge Editora Saraiva 1a. Edição 1999. Software: GRETL 1.1 Por que se estuda Econometria? Econometria é um conjunto de ferramentas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Acre. Tabela 1: Indicadores selecionados: mediana, 1 o e 3 o quartis nos municípios do estado do Acre (1991, 2000 e 2010)

Acre. Tabela 1: Indicadores selecionados: mediana, 1 o e 3 o quartis nos municípios do estado do Acre (1991, 2000 e 2010) Acre Em, no estado do Acre (AC) moravam 734 mil pessoas, e uma parcela ainda pequena dessa população, 4,3% (32 mil) tinha 65 ou mais anos de idade. O estado era composto de 22 municípios, dos quais sete

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Ronei Marcos de Moraes Análise de Variância e Estatística Nãoparamétrica UFPB Maio/2011 ANOVA - Análise de Variância O caso da comparação de várias médias

Leia mais

População e Amostra POPULAÇÃO AMOSTRA AMOSTRAGEM TIPOS DE AMOSTRAGEM I. Amostra probabilística: II. Amostra não-probabilística

População e Amostra POPULAÇÃO AMOSTRA AMOSTRAGEM TIPOS DE AMOSTRAGEM I. Amostra probabilística: II. Amostra não-probabilística População e Amostra POPULAÇÃO A palavra população, na sua acepção mais comum, representa o conjunto de habitantes de uma dada região em determinado período. Em estatística, população (ou universo) é o

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior TESTE DE HIPÓTESES 1 Introdução Considere a seguinte situação:

Leia mais

Jogos Bayesianos Estratégias e Equilíbrio Aplicações. Jogos Bayesianos. Prof. Leandro Chaves Rêgo

Jogos Bayesianos Estratégias e Equilíbrio Aplicações. Jogos Bayesianos. Prof. Leandro Chaves Rêgo Jogos Bayesianos Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Estatística - UFPE Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Outubro de 2014 Jogos Bayesianos Jogos

Leia mais