3º Ano do Ensino Médio. Aula nº06

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "3º Ano do Ensino Médio. Aula nº06"

Transcrição

1 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta e interpreta conjuntos de dados. MAS AFINAL, O QUE SÃO DADOS? Quando falamos de determinado universo de dados, há dois conceitos importantes: População: conjunto de elementos que tem pelo menos uma característica em comum. Amostra: subconjunto de elementos de uma população, que são representativos para se estudar determinada característica de interesse da população. VOCÊ CONSEGUE IDENTIFICAR EXEMPLOS? A PARTIR DE UMA AMOSTRA, O QUE CONCLUÍMOS A RESPEITO DA POPULAÇÃO? Grau de incerteza: Não podemos dizer que as afirmações feitas são falsas ou verdadeiras, pois foi estudado um grupo restrito de indivíduos. Existe, portanto, um grau de incerteza que é medido através da probabilidade. 1

2 Exemplos de sala a) Estudo de mercado Contexto: O fabricante de álbuns de figurinha da copa quer estimar a percentagem de potenciais compradores do produto. População: conjunto de toda a população do país. Amostra: conjunto aleatório de uma parte da população Problema: pretende-se, a partir da percentagem de respostas afirmativas, obter uma estimativa do número de compradores na População. b) Medicina Contexto: Pretende-se estudar o efeito de um novo medicamento para curar determinada doença. É selecionado um grupo de 20 doentes, administrando-se o novo medicamento a 10 desses doentes escolhidos ao acaso e o medicamento habitual aos restantes. População: Amostra: Problema: c) Controle de Qualidade Contexto: O administrador de uma fábrica de parafusos pretende assegurar-se de que a percentagem de peças defeituosas não excede um determinado valor, a partir do qual determinada encomenda poderia ser rejeitada. População: Amostra: Problema: 2

3 2. Medidas de Posição Representação: Para fins de representação dos elementos de uma amostra, utilizaremos a seguinte notação: Dada uma amostra, representada pelo conjunto A, podemos representar seus elementos, de maneira ordenada, da seguinte maneira: =,,,, EXEMPLO DE APLICAÇÃO: Considere as notas de uma avaliação de matemática aplicada em determinada sala: Nome Nota Antônio 1 João 7 José 5 Maria 3 Otávio 7 Paula 9,5 Pedro 3 Rafael 6 Roberto 8 Utilizando a notação de conjuntos, ordene a amostra das notas apresentadas. A partir do ordenamento de uma amostra, utilizamos medidas de posição para estudar este conjunto. Vejamos as principais. Moda: A moda de um conjunto de valores é o valor que apresenta a maior frequência, podendo ou não ser única. Com relação ao exemplo anterior, qual será o valor da moda do conjunto de notas? Mediana: Ordenados os elementos da amostra, a mediana é o valor (pertencente ou não à amostra) que a divide ao meio, isto é, 50% dos elementos da amostra são menores ou iguais à mediana e os outros 50% são maiores ou iguais à mediana. 3

4 Com relação ao exemplo dado, qual será o valor da mediana do conjunto de notas? PARA PENSAR: E se o número de elementos do conjunto for par? Média aritmética: A média aritmética é calculada somando-se os valores dos dados da amostra e dividindo-se o resultado pelo número de valores (n). Ela é representada pela notação: = Com relação ao exemplo dado, qual será o valor da média das notas do conjunto? PARA PENSAR: Comparando os valores da moda, mediana e média do exemplo dado, o que podemos afirmar? 4

5 Exercícios de sala 1. (ENEM 2010) O quadro seguinte mostra o desempenho de um time de futebol no último campeonato. A coluna da esquerda mostra o número de gols marcados e a coluna da direita informa em quantos jogos o time marcou aquele número de gols. Se X, Y e Z são, respectivamente, a média, a mediana e a moda desta distribuição, então: a) X = Y < Z b) Z < X = Y c) Y < Z < X d) Z < X < Y e) Z < Y < X 2. Considere um grupo de pessoas apresenta as idades de 17, 15, 13, 10 e 15 anos. a) Determine a moda, a mediana e a média aritmética desse conjunto. b) Se uma pessoa de 20 anos se juntar ao grupo, o que acontecerá com as medidas de posição? Calcule os novos valores da moda, mediana e média aritmética. 5

6 3. Medidas de dispersão Além das medidas de posição, é importante compreender os parâmetros de dispersão de uma amostra, ou seja, se há grande variabilidade de dados com relação aos parâmetros de posição, como, por exemplo, a média. As principais medidas de dispersão são: Variância: A variância (representada por ) analisa o grau de variabilidade dos dados com relação à média. É calculada por: = Desvio padrão: O desvio-padrão é a raiz quadrada da variância. S = VOLTANDO AO EXEMPLO DE APLICAÇÃO: Considerando as notas das avaliações de matemática, qual será o valor da variância e do desvio padrão? Nome Nota Antônio 1 João 7 José 5 Maria 3 Otávio 7 Paula 9,5 Pedro 3 Rafael 6 Roberto 8 Média = 5,5 Somatório = PARA PENSAR: O que significa o desvio padrão de um conjunto de dados? 6

7 VOLTANDO AO EXEMPLO DE APLICAÇÃO: Imagine três cenários distintos a respeito das notas da avaliação de matemática, Nome Cenário 1 Cenário 2 Cenário 3 Antônio 1 0 5,5 João 7 0 5,5 José 5 0 5,5 Maria 3 0 5,5 Otávio 7 9,5 5,5 Paula 9,5 10 5,5 Pedro ,5 Rafael ,5 Roberto ,5 Média = Variância = Desvio Padrão = O que é comum aos três cenários? E o que é diferente? Exercícios de sala 1. (ENEM 2010) Marcos e Paulo foram classificados em um concurso. Para classificação no concurso o candidato deveria obter média aritmética na pontuação igual ou superior a 14. Em caso de empate na média, o desempate seria em favor da pontuação mais regular. No quadro a seguir são apresentados os pontos obtidos nas provas de Matemática, Português e Conhecimentos Gerais, a média, a mediana e o desvio padrão dos dois candidatos. O candidato com pontuação mais regular, portanto mais bem classificado no concurso, é: a) Marco, pois a média e a mediana são iguais. b) Marco, pois obteve menor desvio padrão. c) Paulo, pois obteve a maior pontuação da tabela, 19 em Português. d) Paulo, pois obteve maior mediana. e) Paulo, pois obteve maior desvio padrão. 2. Calcule o desvio-padrão das notas da turma 1 e da turma 2: Turma 01 Turma

8 4. Tipos de médias Nas medidas de posição, vimos como calculamos a média aritmética de um conjunto de dados. Apesar de ser uma das mais recorrentes, a média aritmética não é o único tipo de média existente. Dessa forma, em ordem de relevância, citamos os principais tipos de médias. Média aritmética: A média aritmética é calculada somando-se os valores dos dados da amostra e dividindo-se o resultado pelo número de valores. Ela é representada pela notação:!"é!$ = Média ponderada: Assemelha-se ao cálculo da média aritmética, no entanto, há pesos (representados por ) para cada elemento. %&'( ' = Média geométrica: Define-se média geométrica como sendo a raiz n-ésima do produto dos termos do conjunto analisado., )(&"é! $ = * Média harmônica: Define-se como média harmônica de n termos do conjunto analisado como sendo: - "ô$ = PARA TREINAR: Na Poli, temos 3 provas durante o semestre. Suponha que um aluno tenha tirado 8 na primeira prova, 9 na segunda prova e 3 na terceira prova. Sendo a média igual a 6, em quais situações ele seria aprovado? a) A média aritmética do aluno b) A média ponderada caso sejam atribuídos os pesos 1, 2 e 3 para as provas P1, P2 e P3, respectivamente. 8

9 c) A médica geométrica d) A média harmônica Exercícios de sala 1. Com base no exemplo anterior, considerando outro aluno da Poli que tirou 4 na P1 e 6 na P2, calcule: a) Quanto o aluno precisa tirar na P3 para passar segundo o critério da média aritmética? b) Mantendo-se os critérios de pesos do exemplo anterior, quanto o aluno precisa tirar na P3 para passar segundo o critério da média ponderada? 2. Uma pesquisa visa saber a média de livros que os estudantes leem por ano. Em uma sala de aula temos 15 meninas que leem em média 7 livros por ano. Nessa mesma sala, a média de livros lidos pelos meninos é 4. Qual a média total dos livros que todos os alunos da sala leem anualmente? 9

10 Exercícios de Casa 1. O gráfico abaixo apresenta o comportamento de emprego formal surgido, segundo o CAGED, no período de janeiro de 2010 a outubro de Com base no gráfico, o valor da parte inteira da mediana dos empregos formais surgidos no período é: a) b) c) d) e) A tabela a seguir mostra a evolução da receita bruta anual nos três últimos anos de cinco microempresas (ME) que se encontram à venda. Um investidor deseja comprar duas das empresas listadas na tabela. Para tal, ele calcula a média da receita bruta anual dos últimos três anos (de 2009 até 2011) e escolhe as duas empresas de maior média anual. As empresas que este investidor escolhe comprar são: a) Balas W e Pizzaria Y. b) Chocolates X e Tecelagem Z. c) Pizzaria Y e Alfi netes V. d) Pizzaria Y e Chocolates X. e) Tecelagem Z e Alfinetes V. 3. A média das notas dos 50 alunos de uma classe é 7,7. Se considerarmos apenas as notas dos 15 meninos, a nota média é igual a 7. Qual a média das notas se considerarmos apenas as meninas? a) 8,0 b) 7,5 c) 7,7 d) 7,0 e) 8,5 10

11 4. Em uma corrida de regularidade, a equipe campeã é aquela em que o tempo dos participantes mais se aproxima do tempo fornecido pelos organizadores em cada etapa. Um campeonato foi organizado em 5 etapas, e o tempo médio de prova indicado pelos organizadores foi de 45 minutos por prova. No quadro, estão representados os dados estatísticos das cinco equipes mais bem classificadas Dados estatísticos das equipes mais bem classificadas (em minutos): Utilizando os dados estatísticos do quadro, a campeã foi a equipe: a) I. b) II. c) III. d) IV. e) V. 5. Um estudo caracterizou 5 ambientes aquáticos, nomeados de A a E, em uma região, medindo parâmetros, físico-químicos de cada um deles, incluindo o ph. O gráfico I representa o ph dos 5 ambientes. Utilizando o gráfico II, que representa a distribuição estatística de diferentes espécies em diferentes faixas de ph, pode-se esperar um maior número de espécies no ambiente: a) A. b) B. c) C. d) D. e) E. 6. A distribuição dos salários de uma empresa é dada na tabela abaixo: Salário em R$ Nº De funcionários Total: 7 Qual é a média e a mediana dos salários da empresa? a) 125 e 125 b) 100 e 100 c) 100 e 50 d) 100 e 125 e) 125 e Considerando os dados da questão anterior, qual será o valor do desvio padrão? (Utilize 2 1,4 e 7 2,6). a) 20,0 b) 33,45 c) 49,82 d) 53,84 e) 62,97 11 RESPOSTAS 1. D) 2. D) 3. A) 4. C) 5. D) 6. B) 7. D)

12 1. Equações de primeiro grau Raciocínio Lógico Assunto: Equações de 1º Grau Definição: Equação do primeiro grau é toda equação que pode ser reduzida à forma 6 = 7, onde: = incógnita = coeficientes da equação, sendo números reais com Princípio da Igualdade: Devemos ter em mente que, jamais tornaremos falsa uma igualdade quando da realização de qualquer operação em ambos os membros. Acompanhe: 8 = 8 [+2 a cada membro]: 8+2= = 10 (a igualdade permanece verdadeira!) [-3 a cada membro]: 83 = 83 5=5 (a igualdade permanece verdadeira!) [+5 a cada membro]: 8+5 = = 40 (a igualdade permanece verdadeira!) [?2 a cada membro]: 8?4 = 8?4 2 = 2 (a igualdade permanece verdadeira!) Um tanto quanto óbvio, não? Mas vejamos o caso de uma equação do tipo 6+7 Para isolarmos o x, vamos utilizar o princípio da igualdade. [b a cada membro]: ax+bb = cb ax = cb (a igualdade deve permanece verdadeira!) [?6 a cada membro]: EF = GH$ = GH$ (a igualdade deve permanece verdadeira!) De maneira geral: Buscamos isolar a incógnita e, para isso, utilizamos o princípio da igualdade, ou, de maneira mais prática, fazemos operações inversas. No 1º membro o número é somado no 2º membro é subtraído. No 1º membro o número é multiplicado no 2º membro é dividido. Exemplo: 3x+5 = 2 3x = 25 x = HJ x = 1 Equivalência de razões: Quando temos uma igualdade envolvendo razões, a partir do princípio da igualdade, podemos concluir que temos uma multiplicação cruzada. Por exemplo: 12 K = L MNJ L Exemplos: 8+1 = = 8 = MNJ = = 8+20 = 5

13 1. Calcule, detalhando as etapas de cálculo: Exercícios de casa a) = 17 b) = 65 c) = d) 10P 5 (1 + P) = 3 (2P 2) 20 e) MHR = MHL J MHJ f) + HM S J = HM L 2. A população de uma cidade A é o triplo da população da cidade B. Se as duas cidades juntas têm uma população de habitantes, quantos habitantes tem a cidade B? a) b) c) d) e) Um número cuja soma de sua metade, seu triplo e sua quinta parte com 26 é igual ao quíntuplo do próprio número vale: a) 20 b) 21 c) 22 d) 23 e) Em uma família há 3 irmãos. O irmão do meio tem o dobro da idade do caçula. Por sua vez, o irmão mais velho nasceu 16 anos após o irmão caçula. Sabendo que, hoje, a soma das idades dos três irmãos é igual ao quádruplo da idade do irmão do meio, as idades dos três irmãos são: a) 5, 10 e 21 anos b) 4, 8 e 20 anos c) 6, 12 e 22 anos d) 5, 12 e 20 anos e) 4, 10 e 21 anos 13

De acordo com esses dados, o valor da mediana das cotações mensais do ovo extra branco nesse período era igual a

De acordo com esses dados, o valor da mediana das cotações mensais do ovo extra branco nesse período era igual a Estatística Material de Apoio para Monitoria 1. (ENEM) Em sete de abril de 2004, um jornal publicou o ranking de desmatamento, conforme gráfico, da chamada Amazônia Legal, integrada por nove estados. Considerando-se

Leia mais

Depois passamos para a Tabela de Frequências, separar os valores da variável e depois numa outra coluna, colocar sua frequência absoluta, assim:

Depois passamos para a Tabela de Frequências, separar os valores da variável e depois numa outra coluna, colocar sua frequência absoluta, assim: Aula 2 5Tabelas de frequência Para atingir os objetivos de uma pesquisa, é preciso que os dados estejam organizados de forma a facilitar o entendimento do leitor A primeira etapa após o levantamento dos

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Rodrigo Molinari) (Gabriella Teles) Este conteúdo pertence ao Descomplica.

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Rodrigo Molinari) (Gabriella Teles) Este conteúdo pertence ao Descomplica. 17 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Rodrigo Molinari) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia Estatística 16 jun Medidas de centralidade e

Leia mais

c) I e II, apenas. d) II e III, apenas. e) I, II e III. Questão 03) a) R$ 22,50 b) R$ 22,00 c) R$ 19,20 d) R$ 12,50 e) R$ 12,00 Questão 04)

c) I e II, apenas. d) II e III, apenas. e) I, II e III. Questão 03) a) R$ 22,50 b) R$ 22,00 c) R$ 19,20 d) R$ 12,50 e) R$ 12,00 Questão 04) Questão 0) c) I e II, apenas d) II e III, apenas e) I, II e III Questão 0) Um artesão fabrica certo tipo de peças a um custo de R$ 0,00 cada e as vende no mercado de artesanato com preço variável que depende

Leia mais

A Estatística é aplicada como auxílio nas tomadas de decisão diante de incertezas para justificar cientificamente as decisões

A Estatística é aplicada como auxílio nas tomadas de decisão diante de incertezas para justificar cientificamente as decisões A IMPORTÂNCIA DA ESTATÍSTICA A Estatística é aplicada como auxílio nas tomadas de decisão diante de incertezas para justificar cientificamente as decisões Governo Indústria Ciências Econômicas, sociais,

Leia mais

Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3.

Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3. MATEMÁTICA MARCÃO Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3. Média de V = (200+220+240)/3 = 220 Média de W = (200+230+200)/3 = 210 Média de X = (250+210+215)/3

Leia mais

Fixação dos Conceitos. 7 ano E.F. Professores Cleber Assis e Tiago Miranda

Fixação dos Conceitos. 7 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Noções Básicas de Estatística Fixação dos Conceitos 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Fixação dos Conceitos 1 Exercícios Introdutórios Exercício 1.

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 16 ESTATÍSTICA

MATEMÁTICA - 3 o ANO MÓDULO 16 ESTATÍSTICA MATEMÁTICA - 3 o ANO MÓDULO 16 ESTATÍSTICA 13% 7% 25% 55% Como pode cair no enem (ENEM) Um sistema de radar é programado para registrar automaticamente a velocidade de todos os veículos trafegando por

Leia mais

Matemática - Professor: Leonardo Maciel. ESTATÍSTICA

Matemática - Professor: Leonardo Maciel. ESTATÍSTICA Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel. ESTATÍSTICA 1. (Enem 2012) O gráfico mostra a variação da extensão média de gelo marítimo, em milhões de quilômetros quadrados,

Leia mais

Exercícios de Revisão: Estatística

Exercícios de Revisão: Estatística Exercícios de Revisão: Estatística Exercícios de Revisão: Estatística 1. (Enem) O gráfico apresenta as taxas de desemprego durante o ano de 2011 e o primeiro semestre de 2012 na região metropolitana de

Leia mais

Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:

Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site: ESTATÍSTICA Ao realizar uma pesquisa é aconselhável realizar um estudo estatístico dos dados apresentados. Através desse estudo podemos tirar as conclusões necessárias sobre o universo pesquisado. A estatística

Leia mais

Noções de Estatística

Noções de Estatística Noções de Estatística 1. Os gráficos ilustram a distribuição percentual de energia elétrica no Brasil dos diversos setores e do setor industrial. Assinale a alternativa incorreta sobre o consumo de energia

Leia mais

Estatística. Exercícios Objetivos

Estatística. Exercícios Objetivos Exercícios Objetivos 1. (2009) O Indicador do CadÚnico (ICadÚnico), que compõe o cálculo do Índice de Gestão Descentralizada do Programa Bolsa Família (IGD), é obtido por meio da média aritmética entre

Leia mais

Medidas de tendência Central. Leandro Marinho

Medidas de tendência Central. Leandro Marinho Medidas de tendência Central Leandro Marinho Introdução Na estatística, ao analisarmos dados, temos algumas medidas que podem caracterizar um grupo inteiro, são medidas representativas. Nessa aula, estudaremos

Leia mais

Estatística Descritiva Lista 1 de exercícios (nivelamento)

Estatística Descritiva Lista 1 de exercícios (nivelamento) 1. População é um conjunto de: a) Pessoas. b) Elementos quaisquer. c) Pessoas com uma característica comum. d) Elementos com pelo menos uma característica em comum. e) Indivíduos de um mesmo município,

Leia mais

QUESTÃO 1 (ENEM 2009)

QUESTÃO 1 (ENEM 2009) QUESTÃO 1 (ENEM 2009) Na tabela, são apresentados dados da cotação mensal do ovo extra branco vendido no atacado, em Brasília, em reais, por caixa de 30 dúzias de ovos, em alguns meses dos anos 2007 e

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

ESTATÍSTICA. Prof.º Mário Castro

ESTATÍSTICA. Prof.º Mário Castro ESTATÍSTICA Prof.º Mário Castro Estatística O que é: É a ciência que coleta, organiza e interpreta dados colhidos entre um grupo aleatório de pessoas. Divisão da estatística: Estatística geral Visa elaborar

Leia mais

Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Turma: 9º Ano

Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Turma: 9º Ano Matemática 1ª) A tabela a seguir mostra a evolução da receita bruta anual nos três últimos anos de cinco microempresas (ME) que se encontram à venda. Um investidor deseja comprar duas das empresas listadas

Leia mais

Estatística Profº Driko

Estatística Profº Driko Estatística Profº Driko Estatística O que é: É a ciência que coleta, organiza e interpreta dados colhidos entre um grupo aleatório de pessoas. Divisão da estatística: Estatística geral Visa elaborar métodos

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Exercícios Complementares de Estatística

Exercícios Complementares de Estatística Exercícios Complementares de Estatística 1. UEM Joaquim coleciona artrópodes e, em sua coleção, encontra-se um animal com 20 patas, um animal com 18 patas, quatro animais com 8 patas e oito animais com

Leia mais

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana: Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,

Leia mais

ESTATÍSTICA BÁSICA. Freqüência Absoluta: Número de vezes que um elemento ocorre em uma amostra.

ESTATÍSTICA BÁSICA. Freqüência Absoluta: Número de vezes que um elemento ocorre em uma amostra. ESTATÍSTICA BÁSICA. Apresentação Estatística é a parte da Matemática que organiza e analisa dados coletados em uma amostra de um conjunto. Com base nos resultados, faz projeções para todo o conjunto com

Leia mais

LISTA DE EXERCÍCIOS 2017

LISTA DE EXERCÍCIOS 2017 CURSO LISTA DE EXERCÍCIOS 2017 DISCIPLINA ESTUDANTE PROFESSOR (A) DATA Questão 1) Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

Medidas Descritivas de Posição, Tendência Central e Variabilidade

Medidas Descritivas de Posição, Tendência Central e Variabilidade Medidas Descritivas de Posição, Tendência Central e Variabilidade Prof. Gilberto Rodrigues Liska UNIPAMPA 24 de Agosto de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores

Leia mais

AULA INAUGURAL QUESTÕES DO ENEM ESTATÍSTICA. ETAPA SÉRIE ENSINO TURNO PROFESSORES 2ª 3ª Médio M/T

AULA INAUGURAL QUESTÕES DO ENEM ESTATÍSTICA. ETAPA SÉRIE ENSINO TURNO PROFESSORES 2ª 3ª Médio M/T MATEMÁTICA 2014 UNIDADE BH SÉRIES FINAIS AULA INAUGURAL QUESTÕES DO ENEM ESTATÍSTICA ETAPA SÉRIE ENSINO TURNO PROFESSORES 2ª 3ª Médio M/T Aluno(a): Nº: Turma: QUESTÃO 01 ENEM 2009 (prova cancelada) Cinco

Leia mais

4) No concurso da questão anterior, qual é a mediana das pontuações dos candidatos?

4) No concurso da questão anterior, qual é a mediana das pontuações dos candidatos? EXERCÍCIOS COMPLEMENTARES Medidas de posição e dispersão 2 a / 3 a SÉRIE ENSINO MÉDIO MANHÃ ASSUNTOS : Média, Moda e Mediana de variáveis agrupadas ou não Desvio médio, Variância, Desvio Padrão e Coeficiente

Leia mais

Resumo de Matemática para o ENEM

Resumo de Matemática para o ENEM Resumo de para o ENEM 1. (Enem 2014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Aula 4 Conceitos Básicos de Estatística

Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos Básicos de Estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa e interpreta informações numéricas para

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

MATEMÁTICA MEDIDAS DE TENDÊNCIA CENTRAL

MATEMÁTICA MEDIDAS DE TENDÊNCIA CENTRAL MATEMÁTICA Prof. Marcelo Renato MEDIDA DE TENDÊNCIA CENTRAL. (Livro Novo Olhar da Matemática) O gráfico mostra as notas obtidas na prova da a fase de certo processo de seleção. abendo que se classificaram

Leia mais

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Luiz Felix

Unidade I ESTATÍSTICA APLICADA. Prof. Luiz Felix Unidade I ESTATÍSTICA APLICADA Prof. Luiz Felix O termo estatística Provém da palavra Estado e foi utilizado originalmente para denominar levantamentos de dados, cuja finalidade era orientar o Estado em

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE

Leia mais

Introdução à Probabilidade e Estatística I

Introdução à Probabilidade e Estatística I Introdução à Probabilidade e Estatística I População e Amostra Medidas resumo Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Passos iniciais O primeiro

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo Estatística Básica Professora conteudista: Maria Ester Domingues de Oliveira Revisor: Francisco Roberto Crisóstomo Sumário Estatística Básica Unidade I 1 CICLO SEMPRE CRESCENTE...2 2 ESTATÍSTICA: CIÊNCIA

Leia mais

Equação e Função do 1º Grau. Rafael Carvalho

Equação e Função do 1º Grau. Rafael Carvalho Equação e Função do 1º Grau Rafael Carvalho Equação do 1º Grau Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com

Leia mais

! ( ) Se todos os policiais em questão estiverem habilitados a dirigir, então, formadas as equipes, a quantidade de maneiras distintas de se organizar uma equipe dentro de um veículo com cinco lugares

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA

QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA QUESTÕES DE CONCURSOS PÚBLICOS ESTATÍSTICA DESCRITIVA 1) Um pesquisador que ordena uma lista de cidades segundo o ritmo de vida, do mais lento para o mais acelerado, está operando no nível de medida: (A)

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

NOME 3ª SÉRIE AM DATA: / / PROPESSOR: HENRIQUE LISTA 3 Noções de Estatística I UNIDADE

NOME 3ª SÉRIE AM DATA: / / PROPESSOR: HENRIQUE LISTA 3 Noções de Estatística I UNIDADE COLÉGIO MODELO LUIZ EDUARDO MAGALHÃES CAMAÇARI BA ENSINO MÉDIO ANO: 2016 NOME 3ª SÉRIE AM DATA: / / PROPESSOR: HENRIQUE LISTA 3 Noções de Estatística I UNIDADE 1) Os conceitos de uma turma de um curso

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios 1. Calcule a média dos seguintes números. a) 1; 4; 5 e 9 b) 13; 16; 18; 1 e 91 c) 1; 34; 5,6; 7,8 e 90 d) 3,; 5,6; 4,8; 57,5 e 8,8 e) 1,9;,3; 3,43; 104,65; 105, e 06. Encontre

Leia mais

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 3. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 3 Prof.: Patricia Maria Bortolon, D. Sc. Estatística: Prof. André Carvalhal Dados quantitativos: medidas numéricas Propriedades Numéricas Tendência Central Dispersão Formato Média Mediana

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Para entender o que é dispersão, imagine que quatro alunos

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

ESCOLA SECUNDÁRIA DR. JOSÉ AFONSO

ESCOLA SECUNDÁRIA DR. JOSÉ AFONSO ESCOLA SECUDÁRIA DR. JOSÉ AFOSO úcleo Gerador: Saberes Fundamentais Sociedade, Tecnologia e Ciência EFA_EF_SE1 Ano Lectivo 010/11 Ficha de Trabalho º 1 - Estatística Unidade de Competência 7 - Identificar,

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

Militar e 1 2. a) 2 b) 3 c) 4 d) 5 e) 1 TESTES. 01.Calcular a média aritmética entre os números 3, 4, 6, 9 e 13.

Militar e 1 2. a) 2 b) 3 c) 4 d) 5 e) 1 TESTES. 01.Calcular a média aritmética entre os números 3, 4, 6, 9 e 13. Matática TESTES 0.Calcular a média aritmética entre os números,, 6, 9 e. 0. Calcular a média geométrica entre os números, 5 e 50. a) b) c) d) 5 e). Qual a média harmônica entre os números e? 0. Calcular

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO

Leia mais

Aula 3 MEDIDAS DE DISPERSÃO, ASSIMETRIA E CURTOSE.

Aula 3 MEDIDAS DE DISPERSÃO, ASSIMETRIA E CURTOSE. MEDIDAS DE DISPERSÃO, ASSIMETRIA E CURTOSE. Aula META Mensurar a dimensão média do afastamento dos valores de um conjunto de dados em relação à determinada Medida de Tendência Central, bem como de que

Leia mais

Módulo III Medidas de Tendência Central ESTATÍSTICA

Módulo III Medidas de Tendência Central ESTATÍSTICA Módulo III Medidas de Tendência Central ESTATÍSTICA Objetivos do Módulo III Determinar a média, mediana e moda de uma população e de uma amostra Determinar a média ponderada de um conjunto de dados e a

Leia mais

Estatística: Objetivos e fundamentos

Estatística: Objetivos e fundamentos AULA/TEMA Estatística Básica Estatística: Objetivos e fundamentos Profa. Vanessa Ziotti Conteúdo Programático Estatística. O que é? Inferência estatística Estatística descritiva e experimental Termos estatísticos

Leia mais

Neste artigo abordaremos um pouco sobre média, mediana e desvio padrão assim como o seus respectivos desenvolvimentos no Excel. Acompanhe a seguir.

Neste artigo abordaremos um pouco sobre média, mediana e desvio padrão assim como o seus respectivos desenvolvimentos no Excel. Acompanhe a seguir. Este conteúdo faz parte da série: Excel Estatística Básica Ver 3 posts dessa série Fazer média, mediana e desvio padrão no Excel não é tão complicado quanto parece. Dentro da matéria de estatística existem

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

Tarefas 09, 10, 11 e 12 Professor Mário

Tarefas 09, 10, 11 e 12 Professor Mário 8º ano Matemática Tarefas 09, 10, 11 e 12 Professor Mário 01. Em uma amostra formada por 50 casais, associados de um clube, constatou-se que tinham os números de filhos que estão na tabela ao lado. a)

Leia mais

MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano) Propostas de resolução MATEMÁTICA - o ciclo Organização e Tratamento de Dados (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Organizando as idades das 16 raparigas da turma da Ana numa

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

Bioestatística. Aula 3. MEDIDAS SEPARATRIZES Quartis, Decis e percentis. Profa. Alessandra Bussador

Bioestatística. Aula 3. MEDIDAS SEPARATRIZES Quartis, Decis e percentis. Profa. Alessandra Bussador Bioestatística Aula 3 MEDIDAS SEPARATRIZES Quartis, Decis e percentis Profa. Alessandra Bussador Quartis dados não agrupados Dividem os dados ordenados em quatro partes: Primeiro Quartil (Q1): valor que

Leia mais

Mas, para começar a aplicar métodos estatísticos, é preciso conhecer alguns conceitos básicos.

Mas, para começar a aplicar métodos estatísticos, é preciso conhecer alguns conceitos básicos. Na Criptologia, assim como em outras ciências, são realizados estudos experimentais ou obser vacionais que resultam numa coleção de dados numéricos. O propósito da investigação é responder uma questão

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16)

Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Probabilidade e Estatística (Aula Prática - 23/05/16 e 24/05/16) Resumo: Veremos nesta aula tabelas, cálculos de porcentagem e gráficos; amostras e tipo de amostragem; Medidas de tendência central e medidas

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m. Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.

Leia mais

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES

PROJETO KALI MATEMÁTICA B AULA 3 FRAÇÕES PROJETO KALI - 20 MATEMÁTICA B AULA FRAÇÕES Uma ideia sobre as frações Frações são partes de um todo. Imagine que, em uma lanchonete, são vendidos pedaços de pizza. A pizza é cortada em seis pedaços, como

Leia mais

Importantes propriedades da Média, da Variância e do Desvio Padrão:

Importantes propriedades da Média, da Variância e do Desvio Padrão: Importantes propriedades da Média, da Variância e do Desvio Padrão: É importantíssimo o perfeito conhecimento de algumas propriedades da Média, da Variância e do Desvio Padrão para resolver, com facilidade,

Leia mais

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES

Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 5º ANO ESPECIALIZADO E CURSO PREPARATÓRIO 1º SIMULADO/2016-1ª ETAPA MATEMÁTICA Nome do(a) Aluno(a): Turma: RECOMENDAÇÕES IMPORTANTES 01) Verifique o total de folhas (08) deste Simulado. Ele contém 20 (vinte)

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010

Notas de Aula Disciplina Matemática Tópico 02 Licenciatura em Matemática Osasco -2010 Notas de Aula Disciplina Matemática Tópico 0 Licenciatura em Matemática Osasco -010 Equações Polinomiais do primeiro grau Significado do termo Equação : As equações do primeiro grau são aquelas que podem

Leia mais

LISTA DE MATEMÁTICA I

LISTA DE MATEMÁTICA I Ensino Médio Unidade São Judas Tadeu Professor (a): Michael Rocha Aluno (a): Série: ª Data: / 0 / LISTA DE MATEMÁTICA I *Obs.: Entregar apenas os cálculos escritos de forma organizada. Questão_0 - (ENEM

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix

Unidade II ESTATÍSTICA APLICADA. Prof. Luiz Felix Unidade II ESTATÍSTICA APLICADA Prof. Luiz Felix Distribuição de frequências - média Cálculo da Média x = X i. f i n Onde: x média aritmética da distribuição de frequência X i ponto médio de cada classe

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão.

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Medidas Resumo Medidas de Posição/ Medidas de Dispersão A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Prof. MSc. Herivelto Marcondes Março/2009 1 Medidas Resumo

Leia mais

Curso de IPE Aula 1 de Estatística Descritiva. Prof. Dr. Valdecir Marvulle 2013

Curso de IPE Aula 1 de Estatística Descritiva. Prof. Dr. Valdecir Marvulle 2013 Curso de IPE Aula 1 de Descritiva Prof. Dr. Valdecir Marvulle 2013 Dados: Coleção de fatos numéricos observados. Exemplos: Peso dos pacientes atendidos numa unidade de saúde. Freqüência respiratória após

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Tarefas de 1 a 4 Professor Mário

Tarefas de 1 a 4 Professor Mário 7º ano Matemática Tarefas de 1 a 4 Professor Mário 01. Um grupo de pessoas apresenta as idades de 10, 13, 15 e 17 anos. Se uma pessoa de 12 anos se juntar ao grupo, o que acontecerá com a média de idade

Leia mais

Tarefas 05, 06, 07 e 08 Professor Mário

Tarefas 05, 06, 07 e 08 Professor Mário 8º ano Matemática Tarefas 05, 06, 07 e 08 Professor Mário 01. Um grupo de pessoas apresenta as idades de 10, 13, 15 e 17 anos. Se uma pessoa de 12 anos se juntar ao grupo, o que acontecerá com a média

Leia mais

COMENTÁRIOS DA PROVA DA PETROBRAS 2011 ADMINISTRADOR PROF PIO

COMENTÁRIOS DA PROVA DA PETROBRAS 2011 ADMINISTRADOR PROF PIO OMENTÁRIOS DA PROVA DA PETRORAS 2011 ADMINISTRADOR PROF PIO Prezados concurseiros, segue abaixo os comentários das questões de lógica, matemática financeira e estatística propostas pela ESGRANRIO no último

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Aula 2 MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE POSIÇÃO

Aula 2 MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE POSIÇÃO MEDIDAS DE TENDÊNCIA CENTRAL E MEDIDAS DE POSIÇÃO Aula META Visualizar o comportamento de um conjunto de dados por intermédio de um único valor, neste caso representado pelo parâmetro médio, bem como em

Leia mais

Unidade: Risco e Retorno. Unidade I:

Unidade: Risco e Retorno. Unidade I: Unidade I: 0 Unidade: Risco e Retorno A análise de investimentos está baseada nas estimativas dos fluxos de caixa de um projeto. Nem sempre essas previsões de fluxo de caixa coincidem com os resultados

Leia mais

3.1 - Medidas de Posição Medidas de Dispersão Quantis Empiricos Box-plots Graficos de simetria 3.

3.1 - Medidas de Posição Medidas de Dispersão Quantis Empiricos Box-plots Graficos de simetria 3. 3 - MEDIDAS RESUMO 3.1 - Medidas de Posição 3.2 - Medidas de Dispersão 3.3 - Quantis Empiricos 3.4 - Box-plots 3.5 - Graficos de simetria 3.6 - Transformações 1/17 3.1 - Medidas de Posição Muitas vezes

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais