Tópico 3. Estudo de Erros em Medidas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tópico 3. Estudo de Erros em Medidas"

Transcrição

1 Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão e também com o processo de medição. Por isso, este tópico visa introduzir conceitos importantes sobre erros de medidas Erros de uma Medida Algumas grandezas possuem seus valores reais conhecidos e outras não. Quando conhecemos o valor real de uma grandeza e experimentalmente encontramos um resultado diferente, dizemos que o valor obtido está afetado de um erro. ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. Matematicamente: erro = valor medido valor real A determinação do erro de medida não é simples, pois há na maioria dos casos uma combinação de inúmeros fatores que influem, de forma decisiva, no resultado da medição. Portanto, o erro verdadeiro de uma medida é sempre impossível de ser conhecido, sendo possível apenas uma estimativa do erro máximo aceitável. Nesta seção irar-se-á dar uma pequena introdução sobre tipos de erros e o cálculo do erro aleatório provável, dado pelo cálculo do desvio padrão. Existem diversas classificações de erros na literatura especializada, entretanto, há três principais que são: 1. Erro de escala: é o erro associado ao limite de resolução da escala do instrumento de medida.. Erro sistemático: é o erro em que o medidor sofre, de maneira constante, em todo o processo de medição. No momento da descoberta da sua origem, o erro sistemático é possível de ser minimizado ou até mesmo sanado; 3. Erro aleatório: é o erro que decorre de perturbações estatísticas impossíveis de serem previstas, sendo assim, difícil de evitá-los. O erro aleatório pode ser calculado utilizando-se os postulados de Gauss, que por motivo de brevidade não será citado aqui, entretanto, aos estudantes interessados neste assunto consulte o livro Introdução ao Laboratório de Física Valor mais provável de uma grandeza Sejam, x, x 3,..., x n as n medidas realizadas de uma mesma grandeza física X. O valor médio desta grandeza denotado por x é definido pela média aritmética dos valores medidos, ou seja, x = (+x +x 3 + +x n ) n = 1 n n i=1 x i (1)

2 Deste modo, x representa o valor mais provável da grandeza medida. Ao se realizar várias medidas, os valores obtidos tendem a estarem mais próximos deste valor. O valor médio é o que melhor representa o valor real da grandeza Desvio das medidas No entanto, não se pode afirmar que o valor mais provável seja o valor real da grandeza. Assim, representando-se uma medida qualquer da grandeza X por Xi, não se pode dizer que a diferença (Xi - X = δx) seja o erro da medida Xi. Neste caso quando se conhece o valor mais provável, não se fala em erro, mas sim em Desvio ou Discrepância da medida (ou Incerteza). Desvio de uma medida, δx, é a diferença entre um valor medido e o valor adotado que mais se aproxima do valor real (em geral o valor médio). É interessante saber de quanto as medidas individuais Xi se afastam do valor médio, ou seja, de que maneira as medidas Xi se distribuem em torno do valor médio. A esse fato denominamos dispersão. Para medir a dispersão são utilizadas algumas propriedades da série de medidas, tais como a Variância e o Desvio Padrão: Variância (s ): A variância é definida como a soma dos quadrados dos desvios de todos os valores da grandeza dividida pelo número de medidas menos uma. A variância é representada por s, sendo calculada pela fórmula: s = x + x x + +(x n x) = n i=1 x i x () O denominador n 1 da variância é determinado pelos graus de liberdade. O principio dos graus de liberdade é constantemente utilizado na estatística. Considerando um conjunto de n observações (dados) e fixando uma média para esse grupo, existe a liberdade de escolher os valores numéricos de n 1 observações, o valor da última observação estará fixado para atender ao requisito de ser a soma dos desvios da média igual a zero. No caso especifico do cálculo da variância, diz-se que os n graus de liberdade originalmente disponíveis no conjunto sofreram a redução de uma unidade porque numa estatística, a média já foi calculada dos dados do grupo e aplicada na determinação da variância. Desvio padrão (σ x ): O desvio padrão é simplesmente a raiz quadrada da variância e, portanto, expresso na mesma unidade da grandeza medida (kg, cm, atm, etc.): σ x = x + x x + +(x n x) = n i=1 x i x (3) Para um conjunto com n medições, o desvio padrão experimental representa uma estimativa da dispersão de X i em torno do valor médio x. Isso significa que se os resultados forem bastante próximos uns dos outros, então o desvio padrão será "pequeno", e se os resultados forem dispersos, o desvio padrão será "grande".

3 3.1. Desvio padrão final Até agora, ainda não informamos como deve ser relatado o valor de uma grandeza submetida a medições. Já sabemos, a princípio, que a grandeza pode ser representada, de modo satisfatório pelo seu valor médio. Porém, quando efetuamos um conjunto de medições devemos ser capazes de informar com qual qualidade a média pode ser uma estimativa do valor verdadeiro. Ou seja, devemos sempre informar uma incerteza associada à média encontrada. Poderíamos pensar, num primeiro nível, que a incerteza possa ser estimada pelo desvio padrão da média. Porém, devemos atentar que o cálculo do desvio padrão da média leva em conta somente as contribuições dos erros aleatórios, e não considera os erros sistemáticos. Existe, pois, uma incerteza residual que ainda não foi considerada. Essa incerteza residual (σ r ), no caso de instrumentos de medida, costuma vir indicada pelo fabricante. Quando não é indicada, podemos adotar, pelo bom senso, que se trata da metade da menor divisão da escala. Assim, o resultado de um conjunto de medições é: x = x ± σ f em que σ f é o desvio (ou incerteza) padrão final e pode ser calculada por: σ f = σ f + σ r Como exemplo da teoria acima proposta, dada a seguinte tabela abaixo, com valores de medidas de comprimento de um corpo de prova qualquer, iremos calcular o seu valor mais provável (média) e o seu desvio padrão. Tabela 3.1. Valores de medidas de comprimento de um corpo de prova qualquer. Note que aqui não é necessário usar o desvio residual pois não foi fornecido. Medida Comprimento (m) 1 1,4 1,40 3 1,38 4 1,41 5 1,43 6 1,4 7 1,39 8 1,40 Assim, o valor mais provável da medida, X, é dado por: X = 1 11,5 1,4 + 1,40 + 1,38 + 1,41 + 1,43 + 1,4 + 1,39 + 1,40 = = 1,4065m 8 8 X = 1,41m O desvio padrão será dado por

4 σ X = (1,4 1,41) + 1,40 1,41 + 1,38 1,41 + 1,41 1,41 + 1,43 1,41 + 1,4 1,41 + 1,39 1,41 + (1,40 1,41) 8 1 σ X = 0, , , , , , , σ X = 0,0173m σ X = 0,0m Portanto, o modo correto de representar o valor mais provável do corpo de prova e o seu respectivo erro é o seguinte: 1,41 ± 0,0 m Note que o número de casas após a vírgula para ambos os valores têm que ser compatíveis. 3.. Propagação de Incertezas Este assunto é de grande relevância em todas as áreas de atividade onde são realizadas medidas experimentais. O objetivo deste assunto é justamente estudar a propagação de incertezas associadas a cada medida em particular. Imagine que queiramos fazer a soma de duas grandezas e x, para obter uma grandeza y. Sabemos que para expressar corretamente o resultado de nossa operação devemos relatar um valor médio e uma incerteza associada a este valor. De maneira geral, um resultado y deve ser expresso como: Se y é uma função de outras variáveis f(, x ), então: No caso da soma, por exemplo, y = + x, então: y = y ± σ y (4) y = f(, x ) (5) y = + x (6) Já o cálculo de σ y é mais complicado. O processo rigoroso para o cálculo das incertezas envolve uma equação com derivadas parciais, também conhecida como lei de propagação de incertezas o qual é apresentada a seguir. Lei de Propagação de Incertezas Suponha que um certo experimento necessite de vários instrumentos para ser realizado. E que cada um destes instrumentos têm uma variabilidade diferente em suas medições. Os resultados de cada instrumento são dados como:, x, x 3,.... O resultado final desejado é y, de modo que y é dependente de, x, x 3,.... Então, pode-se escrever que y é uma função dessas variáveis: y = f(, x, x 3 ) (7)

5 Uma vez que cada medida tem uma incerteza sobre sua média, pode-se escrever que a incerteza de dy i da i-ésima medição de x depende da incerteza das i-ésimas medições de, x, x 3,... : dy i = f(di, dx i, dx 3i ) (8) O desvio total de y é então obtido da derivada parcial de y com respeito a cada uma das variáveis: dy = y d, y x dx, y x 3 dx 3 (9) A relação entre os desvios padrão de y e, x, x 3,... é dada em duas etapas: i) pela quadratura da equação 9, e ii), tomando a soma total de i = 1 para i = n, onde n é o número total de medições. Logo: dy i = y di + y x dx i + (10) Dividindo ambos os lados por n-1: dy i = y dx 1i + y dx i + x (11) Da equação 3 tem-se que: σ y = dy i reescrita como: = y i y, logo a equação onde pode ser σ y = y σ x x1 + y σ 1 x x + (1) Assim, tendo a equação que expressa y em função de suas componentes, x,..., deve-se, primeiramente, obter as expressões das derivadas parciais da função y em relação a cada uma das componentes. Obtidas essas expressões, substituem-se os valores apropriados e calcula-se o valor de cada derivada parcial em questão. A seguir, deve-se multiplicar cada valor obtido pela incerteza da respectiva componente. Por fim, procede-se a soma de todas as parcelas, sendo cada parcela relativa a uma determinada componente da função. Exemplo: Calcule o volume de um cilindro de comprimento L = (4,0±0,1)mm e diâmetro D = (,0±0,)mm. Resolução: O volume do cilindro é dado por: V = πd L = π (,0) 4,0 4 4 = 1,566 mm 3 = 1,6 mm 3

6 Agora iremos utilizar as incertezas das medidas de comprimento e diâmetro do cilindro, para calcular a incerteza propagada para V: V = f D, L σ V = V σ D D + V σ L L σ π DL V = σ π D D + σ 4 L σ V = π,0 4,0 0, + 6, ,0314 = 6,3478 mm 6 σ V = 6,3478 σ V =.5 mm 3 π (,0) 4 0,1 = O resultado final deve ser expresso da seguinte maneira: V = (1.6±.5) mm Propagação de Incertezas nas Operações Básicas Abaixo estão listadas as equações da incerteza propagada para as operações mais utilizadas. 1. Adição ou Subtração: y = + x ou y = - x σ y = σ x1 + σ x. Multiplicação ou Divisão: y =.x ou y = /x σ y y = σ x1 + σ x x 3. Potenciação: y = a σ y y = a σ x1 No caso da função do tipo y = a. x b, tem-se: σ y y = a σ x1 + b σ x x

7 4. Logaritmo: y = log( ) σ y = 0,434. σ x1 EXERCÍCIOS PROPOSTOS 1) Mediram-se, experimentalmente, o período e o comprimento de um pêndulo simples, obtendo-se os seguintes resultados: L = (59,90 ± 0,05) cm e T = (1,555 ± 0,001) s. Utilizando a equação do pêndulo simples T = π L g, calcule o valor da aceleração da gravidade (g). ) Em uma mola de constante elástica k = (,56 ± 0,003).10 4 dyn/cm colocou-se a oscilar uma massa m = (49,86 ± 0,01)g. Calcule o período do oscilador para os valores dados acima, sabendo que ele está relacionado com a massa e a constante elástica através da equação T = π m k.

EXPERIMENTO I MEDIDAS E ERROS

EXPERIMENTO I MEDIDAS E ERROS EXPERIMENTO I MEDIDAS E ERROS Introdução Na leitura de uma medida física deve-se registrar apenas os algarismos significativos, ou seja, todos aqueles que a escala do instrumento permite ler mais um único

Leia mais

Prof. Paulo Vitor de Morais

Prof. Paulo Vitor de Morais Física Experimental I Prof. Paulo Vitor de Morais paulovitordmorais91@gmail.com Cronograma de práticas P1 tem 19 dias letivos; P2 tem 17 dias letivos; Serão aproximadamente 11 experimentos; A princípio

Leia mais

MEDIDAS: ERROS E INCERTEZAS

MEDIDAS: ERROS E INCERTEZAS FACULDADES OSWALDO CRUZ FÍSICA I - ESQ MEDIDAS: ERROS E INCERTEZAS 1. INTRODUÇÃO - A medida de uma grandeza qualquer é função do instrumental empregado e da habilidade e discernimento do operador. Definiremos

Leia mais

Medidas em Laboratório

Medidas em Laboratório Medidas em Laboratório Prof. Luis E. Gomez Armas Lab. de Física Unipampa, Alegrete 1 o Semestre 2014 Sumário O que é fazer um experimento? Medidas diretas e indiretas Erros e sua classificação Algaritmos

Leia mais

MEDIÇÃO NO LABORATÓRIO

MEDIÇÃO NO LABORATÓRIO MEDIÇÃO NO LABORATÓRIO Medição e medida de grandezas físicas Uma grandeza física é uma propriedade de um corpo ou uma característica de um fenómeno que pode ser medida. A medição é a operação pela qual

Leia mais

Experiência II (aulas 03 e 04) Densidade de sólidos

Experiência II (aulas 03 e 04) Densidade de sólidos Experiência II (aulas 03 e 04) Densidade de sólidos 1. Objetivos. Introdução 3. Procedimento experimental 4. Análise de dados 5. eferências 6. Apêndice: Propagação de incertezas 1. Objetivos O objetivo

Leia mais

Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB

Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB Aula 2 Prof. Dr. Ederio D. Bidoia Monitor: Lucas Balduino Departamento de Bioquímica e Microbiologia, IB Unesp campus de Rio Claro, SP Erros 1. Algarismos Significativos: Na matemática 3 é igual a 3,0000...

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Capítulo I Noções básicas sobre incertezas em medidas

Capítulo I Noções básicas sobre incertezas em medidas Capítulo I Noções básicas sobre incertezas em medidas Verdadeiro valor de uma grandeza Erros de observação: erros sistemáticos e acidentais Precisão e rigor Algarismos significativos e arredondamentos

Leia mais

LABORATÓRIO DE HIDRÁULICA

LABORATÓRIO DE HIDRÁULICA UNIVERSIDADE FEDERAL DE ALAGOAS CENTRO DE TECNOLOGIA LABORATÓRIO DE HIDRÁULICA Vladimir Caramori Josiane Holz Irene Maria Chaves Pimentel Davyd Henrique de Faria Vidal Guilherme Barbosa Lopes Júnior Marllus

Leia mais

Incertezas de Medição

Incertezas de Medição Incertezas de Medição Prof. Marcos Antonio Araujo Silva Dep. de Física "I can live with doubt and uncertainty and not knowing. I think it is much more interesting to live not knowing than to have answers

Leia mais

Lista de revisão para a prova

Lista de revisão para a prova Turma: Licenciatura em Física Período: 1º Disciplina: Introdução à Física Experimental Profª Marcia Saito Lista de revisão para a prova I) Leitura de equipamentos 1) Fazer a leitura dos seguintes instrumentos:

Leia mais

MEDIDAS E ALGARISMOS SIGNIFICATIVOS

MEDIDAS E ALGARISMOS SIGNIFICATIVOS MEDIDAS E ALGARISMOS SIGNIFICATIVOS 1. Introdução A química é uma ciência cujo objeto de estudo é a Natureza. Assim, ocupa-se das ações fundamentais entre os constituintes elementares da matéria, ou seja,

Leia mais

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO

Medidas de Dispersão para uma Amostra. Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Conteúdo: AMPLITUDE VARIÂNCIA DESVIO PADRÃO COEFICIENTE DE VARIAÇÃO Medidas de Dispersão para uma Amostra Para entender o que é dispersão, imagine que quatro alunos

Leia mais

REGRAS DE CÁLCULO COM NÚMEROS APROXIMADOS NÃO ACOMPANHADOS DE DESVIOS

REGRAS DE CÁLCULO COM NÚMEROS APROXIMADOS NÃO ACOMPANHADOS DE DESVIOS REGRAS DE CÁLCULO COM NÚMEROS APROXIMADOS NÃO ACOMPANHADOS DE DESVIOS Com base no estudo com números acompanhados de desvio e lembrando a convenção já estabelecida de que um número, resultado de medida

Leia mais

Tratamento de dados e representação das incertezas em resultados experimentais

Tratamento de dados e representação das incertezas em resultados experimentais Tratamento de dados e representação das incertezas em resultados experimentais Medida, erro e incerteza Qualquer medida física sempre possui um valor verdadeiro, que é sempre desconhecido e um valor medido.

Leia mais

Método numérico para propagação da incerteza. Neste apêndice, apresentamos um procedimento numérico alternativo que é pelo menos

Método numérico para propagação da incerteza. Neste apêndice, apresentamos um procedimento numérico alternativo que é pelo menos APÊNDICE 01 Método numérico para propagação da incerteza Neste apêndice, apresentamos um procedimento numérico alternativo que é pelo menos tão válido quanto a lei de propagação de incerteza (LIMA JUNIOR

Leia mais

Física Experimental I

Física Experimental I Medidas em Física Teoria do Erro Física Experimental I Medidas Físicas Diretas: leitura de uma magnitude mediante o uso de instrumento de medida, ex: Comprimento de uma régua, a corrente que passa por

Leia mais

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA

EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA UFSC CFM DEPARTAMENTO DE FÍSICA LABORATÓRIO DE MECÂNICA, ACÚSTICA E TERMODINÂMICA EXPERIÊNCIA M018-TE CONSTANTE ELÁSTICA DA MOLA 1 OBJETIVOS Determinar experimentalmente o valor da constante elástica k

Leia mais

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS 1.0 Objetivos Utilizar algarismos significativos. Distinguir o significado de precisão e exatidão. 2.0 Introdução Muitas observações na química são de natureza

Leia mais

CORRETO DUVIDOSO. Introdução. Algarismo Significativo

CORRETO DUVIDOSO. Introdução. Algarismo Significativo Teoria de Erros Introdução As grandezas físicas são determinadas experimentalmente, por medidas ou combinações de medidas, as quais têm uma incerteza intrínseca advinda dos métodos de medidas, das características

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I)

Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I) Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I) 1 Medida L (cm) 1 150.0 2 150.1 3 150.8 4 150.0 5 150.0 6 144.1 7 150.0 8 150.3 9 149.9 10 150.0 11 150.0 12 150.1 13 150.2

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma

Leia mais

Medições indiretas e propagação da incerteza. umas às outras e podemos inferir uma a partir das medidas de outras.

Medições indiretas e propagação da incerteza. umas às outras e podemos inferir uma a partir das medidas de outras. Medições indiretas e propagação da incerteza Medições indiretas Os instrumentos de medida realmente necessários em um laboratório de mecânica são poucos. Porém, munidos de uma trena, um cronômetro e uma

Leia mais

Em Laboratório de Física Básica fenômenos ou propriedades físicas são estudados à luz de grandezas

Em Laboratório de Física Básica fenômenos ou propriedades físicas são estudados à luz de grandezas 1 Em Básica fenômenos ou propriedades físicas são estudados à luz de grandezas físicas mensuráveis (comprimento, tempo, massa, temperatura etc.) obtidas através de instrumentos de medida. Busca-se o valor

Leia mais

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar

Leia mais

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATERIAIS DIFERENÇAS ENTRE PROCESSOS FÍSICOS E QUÍMICOS DIFERENÇAS ENTRE PROPRIEDADES FÍSICAS E QUÍMICAS Exa,dão x Precisão Algarismos significa,vos

Leia mais

1- Medidas Simples e Diretas

1- Medidas Simples e Diretas 1- Medidas Simples e Diretas Três regras básicas: 1) A incerteza (ou erro) associada a uma medida simples e direta é dada por: a) metade da menor divisão da escala do instrumento de medida, quando esta

Leia mais

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L.

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L. ATIVIDADE 01 Texto de Apoio III Medições indiretas e propagação da incerteza Medições indiretas Os instrumentos de medida realmente necessários em um laboratório de mecânica são poucos Porém, munidos de

Leia mais

QUÍMICA ANALÍTICA V 2S Prof. Rafael Sousa. Notas de aula:

QUÍMICA ANALÍTICA V 2S Prof. Rafael Sousa. Notas de aula: QUÍMICA ANALÍTICA V 2S 2011 Aulas 1 e 2 Estatística Aplicada à Química Analítica Prof. Rafael Sousa Departamento de Química - ICE rafael.arromba@ufjf.edu.br Notas de aula: www.ufjf/baccan Algarismos significativos

Leia mais

MÓDULO 2. Estatística Aplicada à Química Analítica. Introdução

MÓDULO 2. Estatística Aplicada à Química Analítica. Introdução QUÍMICA ANALÍTICA AVANÇADA 1S 2017 MÓDULO 2 Estatística Aplicada à Química Analítica Introdução Prof. Rafael Arromba de Sousa Departamento de Química - ICE rafael.arromba@ufjf.edu.br Notas de aula: www.ufjf.br/baccan

Leia mais

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS

MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATÉRIA, TRANSFORMAÇÕES E ALGARISMOS SIGNIFICATIVOS MATERIAIS DIFERENÇAS ENTRE PROCESSOS FÍSICOS E QUÍMICOS DIFERENÇAS ENTRE PROPRIEDADES FÍSICAS E QUÍMICAS Exa+dão x Precisão Algarismos significa+vos

Leia mais

Medidas Físicas. 1. Introdução

Medidas Físicas. 1. Introdução 1. Introdução Medidas Físicas Quando se afirma que a Física é o estudo dos fenômenos naturais, está implícita sua característica fundamental: a natureza como o parâmetro de referência desse conhecimento.

Leia mais

PROPAGAÇÃO DE ERROS Conceitos básicos. Limitação das medições experimentais: há sempre uma incerteza associada.

PROPAGAÇÃO DE ERROS Conceitos básicos. Limitação das medições experimentais: há sempre uma incerteza associada. Erro: Existência Será possível obter o valor verdadeiro pela medição? Não Limitação das medições experimentais: há sempre uma incerteza associada. Qualquer processo experimental está sujeito a erros com

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

ERRO E TRATAMENTO DE DADOS ANALÍTICOS

ERRO E TRATAMENTO DE DADOS ANALÍTICOS Universidade Federal de Juiz de Fora Instituto de Ciências Exatas Departamento de Química Introdução a Analise Química - I sem/2013 Profa Ma Auxiliadora - 1 Disciplina QUIO94 - Introdução à Análise Química

Leia mais

Apostila de Metrologia (parcial)

Apostila de Metrologia (parcial) Apostila de Metrologia (parcial) Introdução A medição é uma operação muito antiga e de fundamental importância para diversas atividades do ser humano. As medições foram precursoras de grandes teorias clássicas

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM Laboratório de Engenharia Térmica Data : / / Aluno :

UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM Laboratório de Engenharia Térmica Data : / / Aluno : UFPR - Setor de Tecnologia Departamento de Engenharia Mecânica TM-58 - Laboratório de Engenharia Térmica Data : / / Aluno : Tabela de controle de presença e entrega de relatórios Data Assinatura Entrega

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

Erros e tratamento de dados experimentais

Erros e tratamento de dados experimentais Erros e tratamento de dados experimentais Química Geral Experimental Profa. Daniela Gonçalves de Abreu Profa. Glaucia Maria da Silva 1º semestre de 2016 1 É possível obter o valor verdadeiro de uma grandeza

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Caracterização Estática

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Caracterização Estática Instrumentação Industrial Fundamentos de Instrumentação Industrial: Caracterização Estática Caracterização Estática de Instrumentos Definição: determinação da relação entre a entrada e a saída do instrumento,

Leia mais

2 Medida de Incertezas: Fundamentos

2 Medida de Incertezas: Fundamentos 2 Medida de Incertezas: Fundamentos 2. Introdução O resultado de um processo de medição fornece uma determinada informação que usualmente é chamada de conhecimento. A fim de quantificar quão completo é

Leia mais

Aulas 2 e 3. Estatística Aplicada à Química Analítica

Aulas 2 e 3. Estatística Aplicada à Química Analítica QUÍMICA ANALÍTICA AVANÇADA 1S 2014 Prof. Rafael Arromba de Sousa Departamento de Química ICE Aulas 2 e 3 Estatística Aplicada à Química Analítica Notas de aula: www.ufjf.br/baccan rafael.arromba@ujfj.edu.br

Leia mais

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L.

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L. ATIVIDADE 02 Texto de Apoio I Desvio Padrão da Média e Intervalos de Confiança Variabilidade e desvio padrão Quando realizamos uma série de observações do mesmo mensurando sob as mesmas condições, podemos

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

Roteiro de Cálculo de Incertezas Análise de Experimentos Virtuais

Roteiro de Cálculo de Incertezas Análise de Experimentos Virtuais Roteiro de Cálculo de Incertezas Análise de Experimentos Virtuais 1. Introdução A análise de um experimento de física exige a avaliação da confiabilidade dos valores medidos por meio dos instrumentos.

Leia mais

Química e Estatística

Química e Estatística Revisão dos Conceitos Básicos de Química e Revisão dos Conceitos Básicos de Definições Básicas de Média Separatrizes (Quartil, Decis e Percentil) Desvio Padrão Variância Função de Distribuição de Probabilidade

Leia mais

Avaliação e Expressão de Medições e de Suas Incertezas

Avaliação e Expressão de Medições e de Suas Incertezas Avaliação e Expressão de Medições e de Suas Incertezas INTRODUÇÃO A Física assim como todas as outras ciências é baseada em observações e medições quantitativas. A partir de observações e dos resultados

Leia mais

Medição em Química e Física

Medição em Química e Física Medição em Química e Física Hás-de fazê-la desta maneira: o comprimento será de trezentos côvados; a largura, de cinquenta côvados; e a altura, de trinta côvados. Génesis, VI, 15 Professor Luís Gonçalves

Leia mais

1) A variância de um conjunto de dados é 16. O desvio padrão será: 1.1 DESVIO MÉDIO ABSOLUTO (Dm) Distribuição de Dados não- Agrupados

1) A variância de um conjunto de dados é 16. O desvio padrão será: 1.1 DESVIO MÉDIO ABSOLUTO (Dm) Distribuição de Dados não- Agrupados RESUMO É de extrema importância para a análise dos dados, verificar o comportamento dos valores tabelados em relação à média. Isto é, estudar a dispersão dos dados em relação à média. No estudo dessa dispersão

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Propagação da incerteza de medição ou incerteza combinada

Propagação da incerteza de medição ou incerteza combinada UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ENGENHARIA MECÂNICA ENG0308 - MEDIÇÕES TÉRMICAS Energia e Fenômenos de Transporte Prof. Paulo S. Schneider pss@mecanica.ufrgs.br Medições Térmicas - Engenharia

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I)

Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I) Física Geral - Laboratório (2014/1) Estimativas e erros em medidas diretas (I) 1 Experimentos: medidas diretas Experimento de medidas diretas de uma grandeza: Aquisição de um conjunto de dados através

Leia mais

PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano

PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano PLANO CURRICULAR DISCIPLINAR Matemática 5º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUB-TÓPICOS METAS DE APRENDIZAGEM 1º Período Compreender as propriedades das operações e usá-las no cálculo. Interpretar uma

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

NOTA I MEDIDAS E ERROS

NOTA I MEDIDAS E ERROS NOTA I MEDIDAS E ERROS O estudo de um fenômeno natural do ponto de vista experimental envolve algumas etapas que, muitas vezes, necessitam de uma elaboração prévia de uma seqüência de trabalho. Antes de

Leia mais

Cálculo Numérico Noções básicas sobre erros

Cálculo Numérico Noções básicas sobre erros Cálculo Numérico Noções básicas sobre erros Profa. Vanessa Rolnik 1º semestre 2015 Fases da resolução de problemas através de métodos numéricos Problema real Levantamento de Dados Construção do modelo

Leia mais

7 Resultados de Medições Diretas. Fundamentos de Metrologia

7 Resultados de Medições Diretas. Fundamentos de Metrologia 7 Resultados de Medições Diretas Fundamentos de Metrologia Motivação definição do mensurando procedimento de medição resultado da medição condições ambientais operador sistema de medição Como usar as informações

Leia mais

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016

Avaliação Prática Seleção Final 2016 Olimpíadas Internacionais de Física 11 de Abril 2016 Caderno de Questões Avaliação Experimental Instruções 1. Este caderno de questões contém DEZ folhas, incluindo esta com as instruções e rascunhos. Confira antes de começar a resolver a prova. 2. A prova

Leia mais

Introdução e Conceitos básicos. Laboratório de Fenômenos Mecânicos

Introdução e Conceitos básicos. Laboratório de Fenômenos Mecânicos Introdução e Conceitos básicos Laboratório de Fenômenos Mecânicos Aula 1 1. Apresentação da parte prática 2. Conceitos básicos da teoria de erros I. Medidas e incertezas II. Propagação de erros 3. Início

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: OLIMPÍADA BRASILEIRA DE FÍSICA 2015 3ª FASE 10 DE OUTUBRO DE 2015 PROVA EXPERIMENTAL NÍVEL II Ensino Médio 1ª e 2ª série. LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01 - Esta prova destina-se exclusivamente

Leia mais

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um

Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria

Leia mais

OPERAÇÕES COM NÚMEROS INTEIROS

OPERAÇÕES COM NÚMEROS INTEIROS ADIÇÃO DE NÚMEROS INTEIROS COM SINAIS IGUAIS OPERAÇÕES COM NÚMEROS INTEIROS 1º Caso: (+3 ) + (+4) = + 7 +3 + 4 = + 7 ADIÇÃO DE NÚMEROS INTEIROS Quando duas parcelas são positivas, o resultado da adição

Leia mais

Introdução ao Estudo dos Fenômenos Físicos

Introdução ao Estudo dos Fenômenos Físicos Universidade Federal do Espírito Santo Centro de Ciências Exatas Departamento de Física Introdução ao Estudo dos Fenômenos Físicos Aula 06 Medidas físicas Erros experimentais. Incertezas. Análise estatística.

Leia mais

UEL - UNIVERSIDADE ESTADUAL DE LONDRINA DEP. ENGENHARIA ELÉTRICA CTU 2ELE005 LABORATÓRIO DE MEDIDAS ELÉTRICAS PROF

UEL - UNIVERSIDADE ESTADUAL DE LONDRINA DEP. ENGENHARIA ELÉTRICA CTU 2ELE005 LABORATÓRIO DE MEDIDAS ELÉTRICAS PROF AULA #1 Introdução à Medidas Elétricas 1. Considerações Gerais Um meio para determinar uma variável ou quantidade física pode envolver artifícios próprios de uma pessoa. Assim, um juiz de futebol mede

Leia mais

Experimento 1: O que gera o desvio padrão?

Experimento 1: O que gera o desvio padrão? Experimento 1: O que gera o desvio padrão? FEP113 - Física Experimental 1 IFUSP 26 de abril 2008 O que é uma medida O que é uma medida A medida de uma grandeza envolve: uma grandeza bem determinada um

Leia mais

RESUMO TRAÇADO DE RETAS, ALGARISMOS SIGNIFICATIVOS E PROPAGAÇÃO DE ERROS

RESUMO TRAÇADO DE RETAS, ALGARISMOS SIGNIFICATIVOS E PROPAGAÇÃO DE ERROS RESUMO TRAÇADO DE RETAS, ALGARISMOS SIGNIFICATIVOS E PROPAGAÇÃO DE ERROS Dados experimentais em um gráfico. Quando se obtém dados experimentais em um gráfico nunca pode se contentar com quantidade de dados

Leia mais

NOTA SOBRE ANÁLISE DE DADOS EXPERIMENTAIS

NOTA SOBRE ANÁLISE DE DADOS EXPERIMENTAIS NOTA SOBRE ANÁLISE DE DADOS EXPERIMENTAIS INTRODUÇÃO A obtenção de qualquer resultado experimental pressupõe a realização de pelo menos uma medição de uma ou várias grandezas. Essas grandezas podem ser

Leia mais

3.1 - Medidas de Posição Medidas de Dispersão Quantis Empiricos Box-plots Graficos de simetria 3.

3.1 - Medidas de Posição Medidas de Dispersão Quantis Empiricos Box-plots Graficos de simetria 3. 3 - MEDIDAS RESUMO 3.1 - Medidas de Posição 3.2 - Medidas de Dispersão 3.3 - Quantis Empiricos 3.4 - Box-plots 3.5 - Graficos de simetria 3.6 - Transformações 1/17 3.1 - Medidas de Posição Muitas vezes

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

Matéria: Matemática Assunto: Variância e desvio padrão Prof. Dudan

Matéria: Matemática Assunto: Variância e desvio padrão Prof. Dudan Matéria: Matemática Assunto: Variância e desvio padrão Prof. Dudan Matemática VARIÂNCIA Na estatística, a variância de uma variável aleatória é uma medida da sua dispersão estatística, indicando quão

Leia mais

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5

POTENCIAÇÃO. Por convenção temos que: 1) Todo o número elevado ao expoente 1 é igual à própria base, exemplo: a) 8¹ = 8 b) 5¹ = 5 POTENCIAÇÃO 6º ANO - Prof. Patricia Caldana Consideremos uma multiplicação em que todos os fatores são iguais Exemplo: 5 x 5 x 5, indicada por 5³, ou seja, 5³ = 5 x 5 x 5 = 125 onde: 5 é a base (fator

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Colégio Adventista de Porto Feliz

Colégio Adventista de Porto Feliz Colégio Adventista de Porto Feliz Nome: Nº: Turma:7ºano Nota Alcançada: Disciplina: Matemática Professor(a): Rosemara 1º Bimestre Data: /03/2016 Conteúdo: POTENCIAÇÃO E RADICIAÇÃO DE NÚMEROS INTEIROS Valor

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Teoria Elementar dos Erros, precisão e acurácia e Escala. ProfªMA Agnes Silva de Araujo

Teoria Elementar dos Erros, precisão e acurácia e Escala. ProfªMA Agnes Silva de Araujo Teoria Elementar dos Erros, precisão e acurácia e Escala ProfªMA Agnes Silva de Araujo AULA 04 Objetivos Apresentar as diferentes classificações de erros de observação; Levar a compreensão a relação entre

Leia mais

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A

ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES 1A ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES A Exemplos: 9 7 9 9 7 7 9 0 0 0 0 0 0 Denominadores iguais: Na adição e subtração de duas ou mais frações que têm denominadores iguais, conservamos o denominador comum e somamos

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

27/03/2009 INCERTEZA DE APLICADA AO USO DO GÁS NATURAL. Esp.Henrique Diniz. Objetivos. Abordar os aspectos práticos sobre Incerteza de Medição

27/03/2009 INCERTEZA DE APLICADA AO USO DO GÁS NATURAL. Esp.Henrique Diniz. Objetivos. Abordar os aspectos práticos sobre Incerteza de Medição INCERTEZA DE APLICADA AO USO DO GÁS NATURAL Esp.Henrique Diniz Objetivos Abordar os aspectos práticos sobre Incerteza de Medição 1 Bibliografia para Consulta Guia para Expressão da Incerteza nas Medições

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

Física Geral - Agronomia

Física Geral - Agronomia Física Geral - Agronomia O que é Física? Como todas as outras ciências, a física é baseada em observações experimentais e medições quantitativas. O principal objetivo da física é descobrir um número limitado

Leia mais

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade

Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas de Variabilidade Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 3 Análise Descritiva: Medidas de Tendência Central Medidas

Leia mais

Medidas e Erros. Tipo de Medidas

Medidas e Erros. Tipo de Medidas Medidas e Erros O que é medir? É o ato de comparar duas grandezas físicas de mesma natureza, tomando-se uma delas como padrão! Ex de grandezas físicas: Distância, tempo, massa etc Tipo de Medidas Medidas

Leia mais

NOTA 1: 7,0. Medidas Físicas de volume

NOTA 1: 7,0. Medidas Físicas de volume 1 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIAS E TECNOLOGIA DA BAHIA IFBA - CAMPUS PAULO AFONSO UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA DISCIPLINA FÍSICA EXPERIMENTAL I NOTA 1: 7,0 Experimento:Teoria do erro

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais