UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA"

Transcrição

1 UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLIÉCNICA DEPARAMENO DE CONSRUÇÃO E ESRUURAS O ENSOR ENSÃO DE CAUCHY João Augusto de Lima Rocha Módulo didático: DCE MD - 02/2002

2 O ENSOR ENSÃO DE CAUCHY João Augusto de Lima Rocha 1. Introdução A idealização do sólido deformável como um meio contínuo é uma simplificação matemática adequada à aplicação do Cálculo ao estudo de seu comportamento, quando o corpo está sujeito às ações de outros corpos e a restrições impostas a seu movimento. As ações de outros corpos podem ser: de contato direto, ou de ação à distância (ação gravitacional, por exemplo). O desenvolvimento histórico dos métodos imaginados para resolver esse problema foi longo, e passou por uma fase em que se buscou resolvê-lo a partir da avaliação da interação entre as moléculas do corpo, até chegar ao método proposto pelo cientista francês Augustin Cauchy ( ) que, em 1821, introduziu o conceito de tensão. Cauchy imaginou cortar o sólido deformável segundo um plano fictício passando pelo ponto em que estava interessado em conhecer a resposta, isto é, a tensão, surgida em consequência das ações externas e das restrições impostas ao movimento do sólido. Evidentemente, podem-se passar infinitos planos de corte pelo ponto considerado. Cortado, enfim, por um desses planos fictícios (Figura 1), o corpo passa a ser considerado como composto de duas regiões que interagem entre si, exatamente através da seção de corte. Na vizinhança do ponto P, em particular, a interação da sub-região R 1 com a sub-região R 2 (Figura 2), pode ser entendida como sendo a resultante, F, das forças moleculares que, idealizadas segundo o padrão de meio contínuo, podem ser sintetizadas pela expressão: t F = lim, (1) S 0 S onde S é a medida da área de uma vizinhança de P contida no plano de corte. O vetor t, chamado de vetor de Cauchy, tem dimensão de pressão, isto é, N/m 2 ou pascal, no S. I.

3 Figura 1 Cauchy foi adiante e imaginou representar t como uma função linear do vetor, n, normal unitário externo ao plano de corte, no ponto em estudo. al aplicação linear, que leva um elemento espaço de vetores tipo n a um elemento do espaço de vetores tipo t, é denominada tensor de tensão,, também conhecido como tensor de Cauchy. Então, vale a relação: t = n (2) Para um dado estado de carregamento e de restrições ao deslocamento do sólido, há um só valor do tensor tensão, associado a um dado ponto P do sólido. Dado um sistema cartesiano de eixos, no IR 3, é representado por uma matriz,, cujas componentes têm dimensão de pressão. Convém observar que a formulação de Cauchy preserva a erceira Lei de Newton, a da Ação e Reação. Para verificar isto, basta a observação da eq. (2), na qual, ao colocar-se o vetor n em lugar de n, tem-se t para o vetor de Cauchy (Figura 2). Vê-se na figura que t representa a ação da R 2 sobre R 1, no ponto P. Já t representa a reação

4 Figura 2 (igual em módulo e direção, mas de sentido contrário) da região R 1 sobre R 2, nesse mesmo ponto. 1.1.O significado físico das componentes do tensor tensão Considerando-se um sistema triortogonal de eixos coordenados como referência para os pontos do sólido deformável, o tensor é representado pela matriz : = (3) E F A 31 B G 12 H C D Figura 3

5 Para a interpretação das componentes ij, considere-se uma vizinhança infinitesimal, com a forma de um cubo, de um ponto genérico P, do interior do sólido, tal como mostrado na Figura 3. Considerando-se os vetores unitários, n 1, n 2 e n 3, orientados no sentido positivo dos respectivos eixos coordenados, os vetores de Cauchy correspondentes às seis faces são: Face ABCD: t 1 =n 1 =( 11, 21, 31 ), face EFGH: - t 1 = (-n 1) =(- 11, - 21, - 31 ), face BFDH: t 2 =n 2 =( 12, 22, 32 ), face AECG: - t 2 = (-n 2 )=(- 12, - 22, - 32 ), face ABEF: t 3 =n 3 =( 31, 32, 33 ) e face CDGH: -t 3 = (-n 3 )=(- 31, - 32, - 33 ). Isto significa que o equilíbrio de forças ( ou equilíbrio de translação) do cubo está assegurado por essas equações. No entanto, o equilíbrio de momentos (ou equilíbrio de rotação) ainda precisa ser estudado. Admitindo-se que o cubo da Figura 3 tenha uma aresta de comprimento a, o equilíbrio de momentos assegura que: Em torno da direção x 1 : 32. a 2.a- 23. a 2.a=0 32. = 23 Em torno da direção x 2 : 31. a 2.a- 13. a 2.a=0 31. = 13 Em torno da direção x 3 : 21. a 2.a- 12. a 2.a=0 21. = 12. Daí conclui-se que a matriz é simétrica. Como o sistema triortogonal de eixos foi escolhido arbitrariamente, então a representação do tensor tensão, em qualquer sistema de eixos desse tipo, é sempre simétrica. Esta é uma importante propriedade do tensor tensão de Cauchy. 1.2.Os invariantes do tensor Definido em cada ponto interior do sólido, o tensor possui um significado intrínseco, de natureza física, associado ao sistema de ações exercidas sobre o sólido e ao conjunto de restrições, ou vínculos, que condicionam o seu movimento. Surge, então, a pergunta:

6 e se o sistema de eixos de referência for mudado, como será possível saber se a nova matriz representativa do tensor tensão, num ponto dado, representa o mesmo tensor? Em termos concretos, imagine-se que sejam dadas duas matrizes, (1) e (2), referentes aos sistemas de eixos triortogonais de referência S 1 e S 2, respectivamente. Pergunta-se: como fazer para saber se essas duas matrizes representam, cada qual em seu sistema de referência, o mesmo tensor? Obtém-se a resposta a partir da formulação do problema de autovalor. Assim, diz-se que duas matrizes representam o mesmo tensor, se o conjunto dos autovalores (com os respectivos autovetores) de uma, for exatamente equivalente ao conjunto de autovalores e autovetores da outra. E que estes autovalores e autovetores sejam os mesmos do tensor. O problema de autovalor, para o caso, coloca-se da seguinte forma: n = λ n, (4) que é uma equação que equivale à pergunta: existe algum valor de λ para o qual o vetor de Cauchy, t, possui a mesma direção da normal ao plano em que atua? Se existir, qual a orientação desse plano? A eq. (4) pode ser escrita da seguinte forma: n = λ In, onde I é o tensor identidade. Essa equação pode ser transformada para: ( λ I)n = 0. Imaginando-se agora uma representação dessa equação num dado sistema triortogonal arbitrário de eixos, ela equivale a um sistema homogêneo de equações algébricas: Dado que n 0, esse sistema só terá solução se: det[ λ I] = 0, (5) onde e I são agora as matrizes, referentes ao sistema de eixos adotado. A eq. (3) fica:

7 11 λ det λ 23 = 0, que resolvido leva à seguinte equação de terceiro λ grau em λ, conhecida como o polinômio característico do problema de autovalor: 3 2 λ J λ + J λ J = 0. (6) Nessa expressão, as grandezas J 1, J 2 e J 3 são chamados os invariantes do tensor, e correspondem a: J 1 = tr = J 2 = det J 3 = det , + det det e A solução da eq. (6), no caso geral, dará três valores para λ, que são os autovalores do tensor. Esses valores são todos reais, em virtude de uma propriedade das matrizes simétricas. Na verdade eles correspondem às tensões principais, isto é, aos valores que multiplicados pelos respectivos vetores unitários dos planos-solução, dão os vetores t normais a esses planos. O nome tensão principal decorre do fato de que nesses planos o vetor t não possui componente tangencial ou cisalhante. 1.3.As componentes normal e tangencial do vetor t É muito conveniente, na análise de tensões, o conhecimento das componentes normal e tangencial do vetor de Cauchy, t. A projeção normal, σ n, desse vetor, é dada por seu produto escalar com a normal unitária externa,n, ao plano considerado, passando pelo ponto P do sólido, como mostra a figura 4. Assim: σ n= t. n e t n = σ n. n Onde t n é a componente de t. na direção de n. Se o sinal de σ n for positivo, tem-se uma tração. Caso contrário, tem-se compressão. Por outro lado, a componente tangencial de t será: t s = t-t n. ambém pode-se obter essa última componente a partir da projeção de t sobre um vetor unitário que esteja no plano de corte e seja coplanar a t e t n.

8 Figura 4 Exemplo: Obtenha as componentes normal e tangencial do vetor t, no plano de normal unitária n= ( 3/3; - 3/3; 3 /3), em ponto do sólido em que o tensor tensão é dado pela matriz: 20 = [ ] em MPa Solução: a) Cálculo do vetor t: = n= /3 3/3 3/3 55 = 3/ b) Cálculo da projeção σ n.e da componente normal t n σ n= t.. n = 3/3( 55;-55;10). 3/3( 1;-1;1)= 1/3( )=40 o que indica que se tem uma tração de 40 MPa. A componente normal de t será: t n = 40n= 40( 3/3 ) ( 1;-1;1) c) Cálculo da componente tangencial t st t s = t - t n= 3/3( 55;-55;10).-40( 3/3) ( 1;-1;1)= 5 3 (1;-1;-2) O módulo de t, cujo valor é 3 cisalhamento, nesse plano, no ponto P. 50 MPa dá a medida da tendência ao corte, ou

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

CAPíTULO 1. Vetores e tensores Notação indicial

CAPíTULO 1. Vetores e tensores Notação indicial CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com

Leia mais

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

4 SOLUÇÕES ANALÍTICAS

4 SOLUÇÕES ANALÍTICAS 4 SOLUÇÕES ANALÍTICAS 4 Desenvolvimento Dentre os mais diversos tipos de estruturas que fazem uso de materiais compósitos, os tubos cilindricos laminados são um caso particular em que soluções analíticas,

Leia mais

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,

Leia mais

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff.

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Sumário e Objectivos Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Objectivos da Aula: Apreensão das diferenças entre as grandes deformações e as pequenas deformações no contexto da análise

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006

Sumário e Objectivos. Mecânica dos Sólidos não Linear Capítulo 2. Lúcia Dinis 2005/2006 Sumário e Objectivos Sumário: Deformações. Sólido Uniaxial. Descrição Lagrangeana e Euleriana. Gradiente de Deformação. Decomposição Polar. Tensores das Deformações de Green e Lagrange. Deformação de Corte.

Leia mais

ENG01140 Turma C (Prof. Alexandre Pacheco)

ENG01140 Turma C (Prof. Alexandre Pacheco) ENG01140 Turma C (rof. leandre acheco) 32 11 TENSÃO Tensão Normal e Tensão Cisalhante: Na ilustração a seguir, considera-se, primeiramente, a mesma parte seccionada do corpo rígido de forma genérica ilustrado

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G2 de Álgebra Linear I 2013.1 17 de Maio de 2013. Gabarito 1) Considere a transformação linear T : R 3 R 2 definida por: T (1, 1, 0) = (2, 2, 0), T (0, 1, 1) = (1, 0, 0) T (0, 1, 0) = (1, 1, 0). (a) Determine

Leia mais

PEF5917 Elementos de Mecânica dos Sólidos Deformáveis. 15 de março de ª LISTA DE EXERCÍCIOS

PEF5917 Elementos de Mecânica dos Sólidos Deformáveis. 15 de março de ª LISTA DE EXERCÍCIOS ª LISTA DE EXERCÍCIOS Questão 1 Considere a deformação definida pelo seguinte campo de deslocamentos: ( ) u = a x u = 0 u = 0 1 Onde a é uma constante. Considere o ponto P de coordenadas (0,1,0) na configuração

Leia mais

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO 6 MÉTODO DOS ELEMENTOS FINITOS

ESTRUTURAS PARA LINHAS DE TRANSMISSÃO   6 MÉTODO DOS ELEMENTOS FINITOS LINHAS DE 6 MÉTODO DOS ELEMENTOS FINITOS Método de Rayleigh - Ritz É um método de discretização, ou seja, a minimização de um conjunto restrito π = (a 1, a 2,... a n ), que depende de um número finito

Leia mais

As equações governantes do problema poroelástico têm duas parcelas:

As equações governantes do problema poroelástico têm duas parcelas: 4 POROELASTICIDADE 4.1. Introdução Esta teoria que descreve o comportamento acoplado entre os fluidos e sólidos em meios porosos foi primeiramente descrita por Biot que teve início com uma série de artigos

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta

PEF 3302 Mecânica das Estruturas I Segunda Prova (22/11/2016) - duração: 160 minutos Resolver cada questão em uma folha de papel almaço distinta Questão 1 (5,0) A Figura abaixo ilustra um sólido com comportamento elástico linear, solicitado por ações externas. Este sólido possui espessura t sendo t c, t L e está sem qualquer impedimento a deslocamentos

Leia mais

Teoria Clássica de Campos

Teoria Clássica de Campos Teoria Quântica de Campos I 7 No passo (1) o que estamos fazendo é quantizar (transformar em operadores) uma função definida em todo espaço (um campo) e cuja equação de movimento CLÁSSICA é de Dirac ou

Leia mais

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P Cap. 3. Tensão 1. Existência das forças internas 2. Princípio das tensões de Euler e Cauchy 3. Vector das tensões no ponto P 3.1 Componentes cartesianas 3.2 Componentes intrínsecas 4. Tensor das tensões

Leia mais

AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA. Prof. Augusto Montor Mecânica dos Solos

AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA. Prof. Augusto Montor Mecânica dos Solos AULA 13: ESTADO DE TENSÕES E CRITÉRIOS DE RUPTURA Prof. Augusto Montor Mecânica dos Solos 9 INTRODUÇÃO Os solos, como vários outros materiais, resistem bem a compressão, mas tem resistência limitada aos

Leia mais

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia David J. Griffiths SOLUÇÃO ELETRODINÂMICA Bacharel e Mestre em Física pela Universidade Federal da Bahia Maracás Bahia Novembro de 2015 Sumário 1 Análise Vetorial 3 1.1 Álgebra vetorial...................................

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Resistência dos Materiais I

Resistência dos Materiais I Resistência dos Materiais I Luciano Pessanha Moreira, D.Sc. Professor Associado Departamento de Engenharia Mecânica Escola de Engenharia Metalúrgica Industrial de Volta Redonda Universidade Federal Fluminense

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I. Capítulo 1 Tensão Capítulo 1 Tensão 1.1 - Introdução Resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das forças internas que

Leia mais

São Carlos, outubro de 2001

São Carlos, outubro de 2001 - Solicitação por Força Normal - 1 Aula2a : SOLICITAÇÃO POR FORÇA NORMAL São Carlos, outubro de 2001 Sergio Persival Baroncini Proença - Solicitação por Força Normal - 2 1-) SOLICITAÇÃO POR FORÇA NORMAL

Leia mais

UFRPE: Física 11 Márcio Cabral de Moura 1. 2 aulas, 5 horas Capítulos 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição.

UFRPE: Física 11 Márcio Cabral de Moura 1. 2 aulas, 5 horas Capítulos 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição. UFRPE: Física 11 Márcio Cabral de Moura 1 1. Introdução 1 e 3 do Fundamentos de Física 1, de D. Halliday e R. Resnick, 3ª edição. 1.1 O objeto da Física O objeto da física é a natureza 1.2 O método físico.

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Resistência dos Materiais 2 AULA 3-4 TRANSFORMAÇÃO DE TENSÕES

Resistência dos Materiais 2 AULA 3-4 TRANSFORMAÇÃO DE TENSÕES Resistência dos Materiais 2 AULA 3-4 TRANSFORMAÇÃO DE TENSÕES PROF.: KAIO DUTRA Transformação no Estado Plano de Tensões O estado geral de tensão em um ponto é caracterizado por seis componentes independentes

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

MAE125 Álgebra Linear /2 Turmas EQN/QIN

MAE125 Álgebra Linear /2 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/2 Turmas EQN/QIN Planejamento (última revisão: 26 de outubro de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na aula seguinte e valem nota Todas as

Leia mais

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira:

GAAL - Terceira Prova - 15/junho/2013. Questão 1: Analise se a afirmação abaixo é falsa ou verdadeira: GAAL - Terceira Prova - /junho/3 SOLUÇÕES Questão : Analise se a afirmação abaio é falsa ou verdadeira: [ A matriz A é diagonalizável SOLUÇÃO: Sabemos que uma matriz n n é diagonalizável se ela possuir

Leia mais

2.1 TENSÕES NORMAIS E DEFORMAÇÕES ESPECÍFICAS NO PONTO GENÉRICO

2.1 TENSÕES NORMAIS E DEFORMAÇÕES ESPECÍFICAS NO PONTO GENÉRICO 2 ESTADO TRIPLO DE TENSÕES No ponto genérico de um corpo carregado, para cada plano que o contém, define-se um vetor tensão. Como o ponto contém uma família de planos, tem-se também uma família de vetores

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3, MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e

Leia mais

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II

Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Estado Triaxial de Tensões Nota de aula 5 - Estado Triaxial de Tensões - Resistência dos Materiais II Flávia Bastos (retirado da apostila do Prof. Elson Toledo) MAC - Faculdade de Engenharia - UFJF o.

Leia mais

Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1

Questões. 2ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 ª Lista de Exercícios (Geometria Analítica e Álgebra Linear) Prof. Helder G. G. de Lima 1 Questões 1. Sejam A, B, C e D vértices de um quadrado. Quantos vetores diferentes entre si podem ser definidos

Leia mais

1. Tensão - conceitos básicos e guia de estudo

1. Tensão - conceitos básicos e guia de estudo 1. Tensão - conceitos básicos e guia de estudo Recomenda- se estudar o Turcotte & Schubert: partes 2.1, 2.2 (até o problema 2.4), 2.3 e 2.4. Inclui aplicações importantes de isostasia! Bom entendimento

Leia mais

LOM Teoria da Elasticidade Aplicada

LOM Teoria da Elasticidade Aplicada Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de orena (EE) Universidade de São Paulo (USP) OM3 - Teoria da Elasticidade Aplicada Parte 4 - Análise Numérica de Tensões e Deformações

Leia mais

4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO

4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO 4 EXTENSÃO DAS FORMULAÇÕES AO PROBLEMA DO ACOPLAMENTO FLUIDO-MECÂNICO Neste capítulo são apresentadas as equações governantes do acoplamento fluido-mecânico para um corpo cortado por uma descontinuidade.

Leia mais

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro

Mecânica Un.2. Momento em relação a um Ponto. Créditos: Professor Leandro Mecânica Un.2 Momento em relação a um Ponto Créditos: Professor Leandro Equilíbrio Equilíbrio Para que uma partícula esteja em equilíbrio, basta que a o resultante das forças aplicadas seja igual a zero.

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

LOM Introdução à Mecânica dos Sólidos

LOM Introdução à Mecânica dos Sólidos LOM 3081 - CAP. ANÁLISE DE TENSÃO E DEFORMAÇÃO PARTE 1 ANÁLISE DE TENSÃO VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE Seja por exemplo uma barra sujeita a um carregamento axial. Ao aplicar o MÉTODO DAS SEÇÕES,

Leia mais

aula6 Projeções Planas 2017/2 IC / UFF

aula6 Projeções Planas 2017/2 IC / UFF http://computacaografica.ic.uff.br/conteudocap2.html aula6 P p O Projeções Planas 2017/2 IC / UFF Relembrando Transformações De corpo rígido (semelhança). Distância entre 2 pontos quaisquer é inalterada.

Leia mais

Cinemática da partícula fluida

Cinemática da partícula fluida Cinemática da partícula fluida J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Cinemática da partícula fluida 1 / 16 Sumário 1 Descrição do movimento 2 Cinemática

Leia mais

Escola Superior de Tecnologia e Gestão

Escola Superior de Tecnologia e Gestão Escola Superior de Tecnologia e Gestão Curso de Engenharia Civil Duração: 60 min. Sem consulta e sem calculadora Nome: Nº Exercício 1 (50%) Responda classificando com V (verdadeiro) ou F (falso) as afirmações

Leia mais

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U). 11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se

Leia mais

2 MÉTODO DIRETO 2.2 ELEMENTO DE MOLA 1-D. Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Civil

2 MÉTODO DIRETO 2.2 ELEMENTO DE MOLA 1-D. Escola Engenharia Universidade Presbiteriana Mackenzie Departamento de Engenharia Civil Escola Engenharia Universidade Presbiteriana Macenzie MÉTODO DIRETO. ELEMENTO DE MOLA -D Escola Engenharia Universidade Presbiteriana Macenzie. ELEMENTO DE MOLA -D HIPÓTESES BÁSICAS Material elástico-linear

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Cap.05 1 Objetivos deste capítulo Desenvolver as equações de equilíbrio para um corpo rígido. Introduzir o conceito

Leia mais

Análise de Tensões. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil

Análise de Tensões. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos Código: ECIV3 rofessor: Eduardo Nobre Lages Análise de Tensões Maceió/AL Agosto/14 Motivação

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força

Leia mais

3 Modelo analítico 3D para corte em rocha

3 Modelo analítico 3D para corte em rocha 54 3 Modelo analítico 3D para corte em rocha 3.1 Cortador afiado a pressão atmosférica No caso de um corte em três dimensões, o corte é caracterizado por uma orientação lateral, chamado de ângulo de saída

Leia mais

MAE125 Álgebra Linear /1 Turmas EQN/QIN

MAE125 Álgebra Linear /1 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas

Leia mais

AULA 2: RESPOSTAS DOS MATERIAIS SEGUNDO A MECÂNICA DOS MEIOS CONTÍNUOS

AULA 2: RESPOSTAS DOS MATERIAIS SEGUNDO A MECÂNICA DOS MEIOS CONTÍNUOS Universidade de São Paulo Escola Politécnica Departamento de Engenharia de Estruturas e Fundações Laboratório de Mecânica Computacional Universidade de São Paulo Escola de Engenharia de São Carlos Departamento

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II

UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGIAS CURSO DE ENGENHARIA CIVIL MECÂNICA DOS SÓLIDOS II Aula 01 Teoria das Tensões Eng. Civil Augusto Romanini

Leia mais

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia Prof. Neckel Leis de Newton e suas aplicações As leis de Newton são responsáveis pelo tratamento e compreensão da grandeza que representa a interação entre corpos: a Força. Porém, antes da definição formal

Leia mais

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido Corpo rígido Sistema de partículas sujeitas aos vínculos holonômicos 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA Embora um corpo com Npartículas possa ter 3Ngraus de liberdade, os vínculos

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke

Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Mecânica dos Sólidos I Aula 07: Tensões normais, deformação, Lei de Hooke Engenharia Aeroespacial Universidade Federal do ABC 07 de março, 2016 Conteúdo 1 Introdução 2 Tensão 3 Deformação 4 Lei de Hooke

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

Tensão. Introdução. Introdução

Tensão. Introdução. Introdução Capítulo 1: Tensão Adaptado pela prof. Dra. Danielle Bond Introdução A resistência dos materiais é um ramo da mecânica que estuda as relações entre as cargas externas aplicadas a um corpo deformável e

Leia mais

3 IMPLEMENTAÇÃO DO ELEMENTO FINITO

3 IMPLEMENTAÇÃO DO ELEMENTO FINITO 3 IMPLEMEAÇÃO DO ELEMEO FIIO este capítulo apresentam-se as considerações mais importantes para a implementação do elemento finito generalizado com funções spline. 3.1. Hipóteses Cinemáticas a formulação

Leia mais

Conceito de tensões Exercícios O Tensor de tensões Exercício. Tensões. 24 de agosto de Profa. Patrícia Habib Hallak Prof Afonso Lemonge.

Conceito de tensões Exercícios O Tensor de tensões Exercício. Tensões. 24 de agosto de Profa. Patrícia Habib Hallak Prof Afonso Lemonge. 24 de agosto de 2016 Profa. Patrícia Habib Hallak Prof Afonso Lemonge Conceito de tensão Conceito de tensões 2 F 2 Com os conceitos da física a pressão P no interior do duto é constante e tem valor: P=

Leia mais

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS

CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS CAPÍTULO I REVISÃO DE MECÂNICA GERAL CONCEITOS BÁSICOS I. FORÇA A. CONCEITO: Força é toda a grandeza capaz de provocar movimento, alterar o estado de movimento ou provocar deformação em um corpo. É uma

Leia mais

2 ANÁLISE LIMITE NUMÉRICA

2 ANÁLISE LIMITE NUMÉRICA AÁLISE LIMIE UMÉRICA O objetivo principal da Análise Limite é determinar a carga que leva uma estrutura ao colapso (carga de colapso). As formulações existentes na Análise Limite para o cálculo da carga

Leia mais

1 Matrizes Ortogonais

1 Matrizes Ortogonais Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/22 2/22 Introdução Até o momento consideramos que a força de atração exercida pela terra num corpo rígido poderia ser representada por uma única força W, aplicada no centro de gravidade do corpo. O quê

Leia mais

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas

RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas RESISTÊNCIA DOS MATERIAIS II - Notas de Aulas Prof. José Junio Lopes BIBLIOGRAFIA BÁSICA HIBBELER, Russell Charles. Resistência dos Materiais ed. São Paulo: Pearson Prentice Hall, 2009. 1 - CONCEITOS FUNDAMENTAIS

Leia mais

2 Fundamentos Teóricos

2 Fundamentos Teóricos 8 Fundamentos Teóricos Todos os elementos estruturais correspondem a domínios tridimensionais, mas podem ter sua formulação simplificada quando se introduem algumas hipóteses, tais como: a. fibras paralelas

Leia mais

APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1

APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1 Disciplinarum Scientia. Série: Ciências Exatas, S. Maria, v.2, n.1, p.59-68, 2001 59 APLICAÇÃO DO TEOREMA DO PONTO FIXO DE BANACH A UM PROBLEMA EM PROBABILIDADE 1 APPLICATION OF BANACH FIXED POINT THEOREM

Leia mais

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II

CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II CURSO SUPERIOR DE ENGENHARIA CIVIL TEORIA DAS ESTRUTURAS II PROFESSOR: Eng. CLÁUDIO MÁRCIO RIBEIRO ESPECIALISTA EM ESTRUTURAS Estrutura Definição: Estrutura é um sistema destinado a proporcionar o equilíbrio

Leia mais

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico Física III-A - 2018/2 Lista 1: Carga Elétrica e Campo Elétrico 1. (F) Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma terceira partícula

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/1 Resistência dos Materiais 3/4 Curso de Gestão e Engenharia Industrial 4ª Aula Duração - Horas Data - de Outubro de 3 Sumário: Mudança de Eixos de Referência. Tensões Principais e Direcções Principais.

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. 1. Análise Vetorial O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados. Os princípios eletromagnéticos são encontrados em diversas aplicações:

Leia mais

Princípios Físicos do Controle Ambiental

Princípios Físicos do Controle Ambiental Princípios Físicos do Controle Ambiental Capítulo 02 Conceitos Básicos Sobre Mecânica Técnico em Controle Ambiental 18/05/2017 Prof. Márcio T. de Castro Parte I 2 Mecânica Mecânica: ramo da física dedicado

Leia mais

RESISTÊNCIA DOS MATERIAIS AULAS 02

RESISTÊNCIA DOS MATERIAIS AULAS 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCIA DOS MATERIAIS AULAS 02 Prof Daniel Hasse Tração e Compressão Vínculos e Carregamentos Distribuídos SÃO JOSÉ DOS CAMPOS, SP Aula 04 Vínculos Estruturais

Leia mais

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc.

REVISAO GERAL. GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. MECÂNICA APLICADA 5º Período de Engenharia Civil REVISAO GERAL GRANDEZA ESCALAR É caracterizada por um número real. Como, por exemplo, o tempo, a massa, o volume, o comprimento, etc. GRANDEZA VETORIAL

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

O Tensor de tensões. Tensões. 11 de dezembro de Tensões

O Tensor de tensões. Tensões. 11 de dezembro de Tensões 11 de deembro de 2012 Duas peças de madeira de seção retangular 80mm 140mm são coladas uma à outra em um entalhe inclinado, conforme mostra a figura 2. Calcular as tensões na cola para P=16 k e para: a)θ=30

Leia mais

Aula 4: Diagramas de Esforços internos

Aula 4: Diagramas de Esforços internos ula 4: Diagramas de Esforços internos Estudo das Vigas Isostáticas Como já mencionado, vigas são peças (barras) da estrutura onde duas dimensões são pequenas em relação a terceira. Isto é, o comprimento

Leia mais

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula

Sumário e Objectivos. 2007/2008 Lúcia M.J.S.Dinis. Mecânica dos Sólidos 2ªAula Sumário e Objectivos Sumário: Equações de Equilíbrio de Forças e Momentos. Mudança de Eixos de Referência. Tensões Principais e Direcções Principais. Invariantes das Tensões. Tensor Hidrostático ou Isotrópico.

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por:

DEPARTAMENTO DE ENGENHARIA MECÂNICA. ) uma base ortonormal positiva de versores de V. Digamos que a lei de transformação do operador T seja dada por: PME-00 - Mecânica dos Sólidos a ista de Exercícios Apresentar as unidades das seguintes grandezas, segundo o Sistema nternacional de Unidades (S..: a comprimento (l; i rotação (θ; b força concentrada (P;

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

ficha 5 transformações lineares

ficha 5 transformações lineares Exercícios de Álgebra Linear ficha 5 transformações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 5 Notação

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE

, Equação ESFORÇO NORMAL SIMPLES 3.1 BARRA CARREGADA AXIALMENTE 3 ESFORÇO NORMAL SIMPLES O esforço normal simples ocorre quando na seção transversal do prisma atua uma força normal a ela (resultante) e aplicada em seu centro de gravidade (CG). 3.1 BARRA CARREGADA AXIALMENTE

Leia mais