Inteligência Artificial IA IV. RACIOCÍNIO BASEADO EM REGRAS
|
|
- Rafael Belém Peixoto
- 2 Há anos
- Visualizações:
Transcrição
1 Inteligência Artificial IA Prof. João Luís Garcia Rosa IV. RACIOCÍNIO BASEADO EM REGRAS Parte Introdução A forma como um corpo de conhecimento sobre um certo campo é expresso por um especialista deste campo, freqüentemente contém informação importante sobre como esse conhecimento pode ser usado da melhor forma. Suponha, por exemplo, que um matemático diga: Se X e Y são ambos maiores que zero, o produto de X e Y também é maior que zero. No cálculo de predicados esta sentença ficaria: X Y ((m(x,0) m(y,0)) m(vezes(x,y),0)). Entretanto, pode-se usar a seguinte fórmula equivalente: X Y ((m(x,0) m(vezes(x,y),0)) m(y,0)). IA-2004-IV slide 2 1
2 Introdução O conteúdo lógico da sentença do matemático é independente das muitas formas equivalentes do cálculo de predicados que poderiam representá-la. Mas, na forma que as sentenças do Português são construídas, freqüentemente contêm informação de controle extra-lógica ou heurística. No exemplo acima, a sentença parece indicar que se está habituado ao fato de que se X e Y são individualmente maiores que zero, então é óbvio provar que X multiplicado por Y é maior que zero. IA-2004-IV slide 3 Introdução Muito do conhecimento usado por sistemas de IA é diretamente representável por expressões gerais de implicação. Veja as seguintes sentenças: (1) Todos os vertebrados são animais. X (vertebrado (X) animal (X)) (2) Todos do departamento de computação acima de 30 anos são casados. X Y ((trabalha_em(dep_computação,x) idade (X,Y) ma(y,30)) casado (X)) (3) Existe um cubo acima de todo cilindro vermelho. X ((cilindro (X) vermelho (X)) Y (cubo (Y) acima (Y,X))) IA-2004-IV slide 4 2
3 Introdução O sistema descrito aqui não converte fórmulas em cláusulas; eles as usam numa forma perto da sua forma original dada. As fórmulas que representam conhecimento de asserção sobre o problema são separadas em duas categorias: regras e fatos. As regras consistem das asserções dadas na forma implicacional. Tipicamente, elas expressam conhecimento geral sobre uma área particular e são usadas como regras de produção. Os fatos são as asserções que não são expressas como implicações. Tipicamente, eles representam conhecimento específico relevante a um caso particular. A tarefa dos sistemas de produção é provar uma fórmula meta a partir destes fatos e regras. IA-2004-IV slide 5 Introdução Em sistemas por encadeamento progressivo (forward ou data-driven ), as implicações usadas como regras-p operam numa base de dados global de fatos até que uma condição de terminação envolvendo a fórmula meta seja alcançada. Em sistemas por encadeamento regressivo (backward ou goal-driven ) as implicações usadas como regras-r operam numa base de dados global de metas até que uma condição de terminação envolvendo os fatos seja alcançada. Combinar operação progressiva e regressiva também é possível. IA-2004-IV slide 6 3
4 Introdução Este tipo de sistema de prova de teorema é um sistema direto ao contrário do sistema de refutação. Um sistema direto não é necessariamente mais eficiente que um sistema de refutação, mas sua operação parece ser intuitivamente mais fácil para as pessoas entenderem. Sistemas deste tipo são freqüentemente chamados de sistemas de dedução baseados em regras, para enfatizar a importância de se usar regras para fazer deduções. A pesquisa em IA tem produzido muitas aplicações de sistemas baseados em regras. IA-2004-IV slide 7 Um Sistema de Dedução Progressivo A forma E/OU para Expressões de Fatos O sistema progressivo tem como sua base de dados global inicial uma representação para o conjunto de fatos dado. Em particular, não se pretende converter estes fatos em forma de cláusulas. Os fatos são representados como fórmulas do cálculo de predicados que foram transformadas em formas livres de implicações chamadas formas E/OU. Para converter uma fórmula na forma E/OU, os símbolos (se existirem) são eliminados, usando a equivalência W1 W2 W1 W2. (Tipicamente, existem poucos símbolos entre os fatos porque as implicações são preferivelmente representadas como regras.) Depois, os símbolos de negação são movidos para dentro (usando as leis de De Morgan) até que seus escopos incluam, no máximo, um único predicado. A expressão resultante é então Skolemizada e prenexada; as variáveis dentro dos escopos dos quantificadores universais são padronizadas através da renomeação, as variáveis quantificadas existencialmente são substituídas por funções de Skolem, e os quantificadores universais são eliminados. Qualquer variável restante é assumida ter quantificação universal. Ou seja, na verdade é aplicado o algoritmo da representação clausal até o passo imediatamente anterior a obtenção da forma normal conjuntiva, complementando com a eliminação dos quantificadores universais. IA-2004-IV slide 8 4
5 Um Sistema de Dedução Progressivo Por exemplo, a expressão fato: U V (q(v,u) ((r(v) p(v)) s(u,v))) é convertida para q(v,a) (( r(v) p(v)) s(a,v))) As variáveis podem ser renomeadas de tal forma que a mesma variável não ocorra em conjunções diferentes (principais) da expressão fato. A renomeação de variáveis neste exemplo leva à expressão: q(w,a) (( r(v) p(v)) s(a,v)). Uma expressão na forma E/OU consiste de subexpressões de literais conectados por símbolos e. Note que uma expressão na forma E/OU não está na forma de cláusula. Está muito mais perto da expressão original. IA-2004-IV slide 9 Usando Grafos E/OU para Representar Expressões de Fatos Um grafo E/OU pode ser usado para representar uma expressão fato na forma E/OU. Por exemplo, a árvore E/OU a seguir representa a expressão fato posta na forma E/OU acima. Cada subexpressão da expressão fato é representada por um nó no grafo. As subexpressões relacionadas disjuntivamente, E1,...,Ek, de um fato, (E1... Ek), são representadas por nós descendentes conectados a seus nós pais por um conector-k (que contém um arco de ligação entre os descendentes). Cada subexpressão conjuntiva, E1,...,En, de uma expressão, (E1... En), é representada por um único nó descendente conectado ao nó pai por um conector-l. IA-2004-IV slide 10 5
6 Usando Grafos E/OU para Representar Expressões de Fatos IA-2004-IV slide 11 Usando Grafos E/OU para Representar Expressões de Fatos Os nós folhas da representação de grafo E/OU de uma expressão fato estão rotulados pelos literais que ocorrem na expressão. Chama-se o nó no grafo que rotula a expressão fato inteira de nó raiz. O nó raiz não tem nenhum ancestral no grafo. Uma propriedade interessante da representação de grafo E/OU de uma fórmula é que o conjunto de cláusulas no qual a fórmula pode ser convertido, pode ser visto como o conjunto de grafos solução (terminando em nós folhas) do grafo E/OU. Então, as cláusulas que resultam da expressão q(w,a) (( r(v) p(v)) s(a,v)) são: q(w,a) s(a,v) r(v) s(a,v) p(v) IA-2004-IV slide 12 6
7 Usando Regras para Transformar Grafos E/OU As regras de produção usadas pelo sistema de produção progressivo são aplicadas a estruturas de grafos E/OU para produzir estruturas de grafos transformadas. Estas regras são baseadas em fórmulas implicacionais que representam conhecimento assercional geral sobre um domínio de problema. Para simplificar, limitou-se os tipos de fórmulas permitidas como regras àquelas da forma: L W, onde L é um literal único, W é uma fórmula arbitrária (assumida estar na forma E/OU), e quaisquer variáveis ocorrendo na implicação são assumidas ter quantificação universal sobre a implicação inteira. As variáveis nos fatos e regras são padronizadas de tal forma que nenhuma variável ocorra em mais que uma regra e que as variáveis das regras sejam diferentes das dos fatos. IA-2004-IV slide 13 Usando a Fórmula Meta para Terminação O objetivo do sistema de produção progressivo descrito é provar alguma fórmula meta a partir de uma fórmula fato e de um conjunto de regras. Este sistema progressivo é limitado em relação ao tipo de expressões metas que ele pode provar; especificamente, ele pode provar apenas as fórmulas metas cuja forma seja uma disjunção de literais. Representa-se esta fórmula meta por um conjunto de literais e assume-se que os membros deste conjunto estão relacionados disjuntivamente. Os literais metas (assim como as regras) podem ser usados para adicionar descendentes ao grafo E/OU. Quando um dos literais metas casa com um literal rotulando um nó literal, n, do grafo, adiciona-se um novo descendente do nó n, rotulado pelo literal meta casado, ao grafo. Este descendente é chamado de nó meta. Os nós metas são conectados aos seus pais por matching arcs. O sistema de produção termina de forma bem sucedida quando ele produz um grafo E/OU contendo um grafo de solução que termina em nós metas. (Na terminação, o sistema inferiu uma cláusula idêntica a alguma subparte da cláusula meta.) IA-2004-IV slide 14 7
8 Receita para resolução por encadeamento progressivo Para resolver um problema através do encadeamento progressivo, é necessária a execução de alguns passos: Verificar se os elementos estão no formato adequado: o fato deve estar na forma E/OU; as regras devem ter apenas um literal como antecedente e a meta deve ser uma disjunção de literais. Se a meta não obedecer a esta exigência, não é possível resolver através do encadeamento progressivo; Construir o grafo E/OU para a expressão fato; Construir o grafo do conhecimento para a expressão fato, aplicando as regras no grafo E/OU; Obter as cláusulas-p a partir do grafo do conhecimento; Verificar se a meta foi alcançada a partir do conjunto de cláusulas obtidas. Lembre-se de que este conjunto é uma conjunção de cláusulas-p, ou seja, uma conjunção de disjunções. IA-2004-IV slide 15 8
SISTEMAS BASEADOS EM CONHECIMENTO I. INTRODUÇÃO
SISTEMAS BASEADOS EM CONHECIMENTO João Luís Garcia Rosa Instituto de Informática PUC-Campinas joaol@ii.puc-campinas.br www.ii.puc-campinas.br/joaoluis I. INTRODUÇÃO 1.1. Histórico - Sistemas Baseados em
Inteligência Artificial IA II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO
Inteligência Artificial IA Prof. João Luís Garcia Rosa II. LÓGICA DE PREDICADOS PARA REPRESENTAÇÃO DO CONHECIMENTO 2004 Representação do conhecimento Para representar o conhecimento do mundo que um sistema
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
Lógica para computação - Linguagem da Lógica de Predicados
DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
Fundamentos 1. Lógica de Predicados
Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional
Lógica Proposicional. LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08. c Inês Lynce c Luísa Coheur
Capítulo 2 Lógica Proposicional Lógica para Programação LEIC - Tagus Park 2 o Semestre, Ano Lectivo 2007/08 c Inês Lynce c Luísa Coheur Programa Apresentação Conceitos Básicos Lógica Proposicional ou Cálculo
Lógica para Computação Primeiro Semestre, Aula 10: Resolução. Prof. Ricardo Dutra da Silva
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 10: Resolução Prof. Ricardo Dutra da Silva A resolução é um método de inferência em que: as fórmulas devem estar na Forma Clausal; deduções
Lógica predicados. Lógica predicados (continuação)
Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo
Cálculo proposicional
O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/59 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Inteligência Artificial. Prolog. Aula 2 Introdução (cont.)
Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Prolog Aula 2 Introdução (cont.) Características
Lógica para Programação
Licenciatura Engenharia Informática e de Computadores Lógica para rogramação epescagem do rimeiro Teste 13 de Julho de 2010 09:00 10:30 Nome: Número: Esta prova, individual e sem consulta, tem 9 páginas
Capítulo 3 Lógica de Primeira Ordem
Capítulo 3 Lógica de Primeira Ordem Lógica para Programação LEIC - Tagus Park 1 o Semestre, Ano Lectivo 2007/08 c Inês Lynce and Luísa Coheur Bibliografia Martins J.P., Lógica para Programação, Capítulo
Aula 1 Aula 2. Ana Carolina Boero. Página:
Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática
Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.
Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos
Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza
Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja
Aula 8: Tableaux Analíticos
Lógica para Computação Segundo Semestre, 2014 Aula 8: Tableaux Analíticos DAINF-UTFPR Prof. Ricardo Dutra da Silva O métodos de Dedução Natural não permite inferir a falsidade de um sequente, ou seja,
LÓGICA EM COMPUTAÇÃO
CEC CENTRO DE ENGENHARIA E COMPUTAÇÃO UNIVERSIDADE CATÓLICA DE PETRÓPOLIS LÓGICA EM COMPUTAÇÃO TAUTOLOGIA - EQUIVALÊNCIA E INFERÊNCIA VERSÃO: 0.1 - MARÇO DE 2017 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO
Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65
Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados
Prof. Jorge Cavalcanti
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 01 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais
DAINF - Departamento de Informática Lógica para computação - Propriedades Semânticas da Lógica Proposicional (parte 2/2) Alfabeto Simplificado e Formas Normais Prof. Alex Kutzke (http://alex.kutzke.com.br/courses)
Lógica Computacional
Aula Teórica 9: Forma Normal Conjuntiva Departamento de Informática 21 de Março de 2011 O problema Como determinar eficazmente a validade de uma fórmula? Objectivo Determinar a validade de raciocínios
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues
Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma
Dedução Natural e Sistema Axiomático Pa(Capítulo 6)
Dedução Natural e Sistema Axiomático Pa(Capítulo 6) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Definições 2. Dedução Natural 3. Sistemas axiomático Pa 4. Lista
Matemática discreta e Lógica Matemática
AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação
Planificação do 1º Período
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano
Lógica Proposicional Parte 2
Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas
ANÁLISE MATEMÁTICA I. Curso: EB
ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.
Métodos para determinação de propriedades semânticas de fórmulas da Lógica Proposicional(Capítulo 4)
Métodos para determinação de propriedades semânticas de fórmulas da Lógica Proposicional(Capítulo 4) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Tabela-Verdade
Lyneker Amorim (T1) Philipe Farias Rafael Mota Yure Bonifacio
Lyneker Amorim (T1) Philipe Farias Rafael Mota Yure Bonifacio A teoria de Herbrand foi criada por Jacques Herbrand (1908-1931), um matemático francês. Ela constata que um conjunto de -sentenças Φ é insatisfazível
n. 19 QUANTIFICADOR UNIVERSAL QUANTIFICADOR EXISTENCIAL QUANTIFICADOR EXISTENCIAL DE UNICIDADE SENTENÇAS ABERTAS
n. 19 QUANTIFICADOR UNIVERSAL QUANTIFICADOR EXISTENCIAL QUANTIFICADOR EXISTENCIAL DE UNICIDADE SENTENÇAS ABERTAS As sentenças em que não é possível atribuir valor lógico verdadeiro ou falso, porque isso
Lógica de Predicados. Quantificadores
Lógica de Predicados Quantificadores Conteúdo Correção de Exercícios Operações Lógicas Quantificadores Rosen (pg 33) Tradução Português Lógica Rosen (pg 42) Exercícios Determinar o conjunto verdade em
Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da
istemas de Apoio à Decisão Clínica, 09-1 1 Linguagem com sintaxe e semântica precisas: lógica. Mecanismo de inferência: derivado da sintaxe e da semântica. Importante: distinguir entre os fatos e sua representação
Aula 4: Consequência Lógica e Equivalência Lógica
Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B
Programação Lógica. A Linguagem Prolog. Paulo Henrique Ribeiro Gabriel Faculdade de Computação Universidade Federal de Uberlândia
Programação Lógica A Linguagem Prolog Paulo Henrique Ribeiro Gabriel phrg@ufu.br Faculdade de Computação Universidade Federal de Uberlândia 21 de agosto de 2015 Paulo H. R. Gabriel (FACOM/UFU) Programação
Aula 6: Dedução Natural
Lógica para Computação Primeiro Semestre, 2015 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Lógica Proposicional (Consequência lógica / Dedução formal)
Faculdade de Tecnologia Senac Pelotas Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas Matemática Aplicada Prof. Edécio Fernando Iepsen Lógica Proposicional (Consequência lógica /
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 21 de maio de 2008 1 A linguagem da Lógica Proposicional Introdução Alfabeto da Lógica Proposicional Definição 1.1 (alfabeto)
Lógica Computacional
Aula Teórica 8: Forma Normal Conjuntiva António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática, Faculdade
Inteligência Artificial 2016/2017. Grupo 1 Perguntas obrigatórias (15 Minutos)
EI (diurno e PL) ETI (diurno e PL) IGE (diurno e PL) Inteligência Artificial 2016/2017 Teste Tipo de Sistemas Baseados em Conhecimento Lê cuidadosamente as instruções desta prova feita em moldes não habituais.
Afirmações Matemáticas
Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,
PORTAS NOR e NAND OR - AND - NOT. Considerando as entradas A e B, teremos na saída a complementação ou negação das mesmas.
PORTAS NOR e NAND As portas NOR e NAND são obtidas a partir da complementação das funções OR e AND. Podemos então dizer que o operador booleano lógico NOR é a negação do operador booleano OR enquanto que
Lógica Proposicional. Prof. Dr. Silvio do Lago Pereira. Departamento de Tecnologia da Informação Faculdade de Tecnologia de São Paulo
Lógica Proposicional Prof. Dr. Silvio do Lago Pereira Departamento de Tecnologia da Informação aculdade de Tecnologia de São Paulo Motivação IA IA estuda estuda como como simular simular comportamento
Inteligência Artificial
Inteligência Artificial Taguspark Segundo Teste 14 de Junho de 006 9H00-10H30 Nome: Número: Este teste tem 8 perguntas e 11 páginas. Escreva o número em todas as páginas. Deve ter na mesa apenas o enunciado
1. Métodos de prova: Construção; Contradição.
Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5)
Relações semânticas entre os conectivos da Lógica Proposicional(Capítulo 5) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Conjunto de conectivos completo 2. na
A linguagem da Lógica de Predicados. (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO. Professor: Rosalvo Ferreira de Oliveira Neto
A linguagem da Lógica de Predicados (Capítulo 8) LÓGICA APLICADA A COMPUTAÇÃO Professor: Rosalvo Ferreira de Oliveira Neto Estrutura 1. Contextualização 2. Definições 3. Exemplos 4. Lista 3 O que não é
Descrição do Mundo de Wumpus. Inteligência Artificial
Descrição do Mundo de Wumpus Mundo de Wumpus Mundo de Wumpus -1 Mundo de Wumpus - 2 Mundo de Wumpus - 3 Mundo de Wumpus - 4 Wumpus Outros Pontos Críticos Descrição Lógica do Mundo de Wumpus Identidades
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas
Noções básicas de Lógica
Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado
IME, UFF 3 de junho de 2014
Lógica IME, UFF 3 de junho de 2014 Sumário A lógica formal e os principais sistemas A lógica formal Um dos objetivos da lógica formal é a mecanização do raciocínio, isto é, a obtenção de nova informação
aula 01 (Lógica) Ementa Professor: Renê Furtado Felix Site:
aula 01 (Lógica) Ementa Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Plano de Ensino CURSO: Tecnologia em Análise e Desenvolvimento de Sistemas
Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial
Lógica de primeira ordem (Capítulo 8 - Russell) Inteligência Artificial Estrutura 1- Contextualização 2- Definições 3- Lista de exercício 4- Prolog 5- Regras em Prolog - Mundo Wumpus 6- Aplicação do Mundo
Linguagens Lógicas. Aluno: Victor Rocha
Linguagens Lógicas Aluno: Victor Rocha Roteiro Introdução Cálculo de Predicados Proposições Conectores Lógicos Variáveis Tipos de Cláusulas fatos regras Banco de Dados Prolog Fatos em Prolog Questões Unificação
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k
Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Cristina Boeres Instituto de Computação (UFF) Fundamentos de Arquiteturas de Computadores Material de Fernanda Passos
INTRODUÇÃO À LÓGICA MATEMÁTICA
INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição
Lógica Computacional Aula 4
Lógica Computacional Aula 4 DCC/FCUP 2017/18 Conteúdo 1 Lógica proposicional 1 1.1 Fórmulas de Horn.......................................... 1 1.2 Satisfazibilidade............................................
ESTRUTURA DE DADOS. Arvore Binária Jose. Arvore Ternaria Direção
ESTRUTURA DE DADOS 1. Árvores: Uma das mais importantes classes de estruturas de dados em computação são as árvores. Aproveitando-se de sua organização hierárquica, muitas aplicações são realizadas usando-se
Lógica para Computação Segundo Semestre, Aula 10: SAT. Prof. Ricardo Dutra da Silva. ( p (q ( q r))) ( p r) ( p q) ( p q r) p r.
Lógica para Computação Segundo Semestre, 2014 Aula 10: SAT DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. SAT é o problema de decidir se existe uma valoração que satisfaça uma fórmula proposicional.
Instituto de Matemática e Estatística, UFF Março de 2011
Instituto de Matemática e Estatística, UFF Março de 2011 Sumário.... Venn Matemático inglês. Levou os diagramas a sério. John Venn (1834 1923) Dados: Letras maiúsculas: A, B, C,..., A 1, B 1, C 1,...,
Cálculo de Predicados. Matemática Discreta. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG. março
Matemática Discreta Cálculo de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2017 Quantificadores Como expressar a proposição Para todo número inteiro x, o valor de x é positivo. usando
Campos Sales (CE),
UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:
2 Lógica Fuzzy. 2 Lógica Fuzzy. Sintaxe da linguagem
2 Lógica Fuzzy 2.1 Cálculo proposicional (lógica proposicional) 2.2 Lógica de Predicados 2.3 Lógica de múltiplos valores 2.4 Lógica Fuzzy Proposições fuzzy Inferência a partir de proposições fuzzy condicionais
Gestão Empresarial Prof. Ânderson Vieira
NOÇÕES DE LÓGICA Gestão Empresarial Prof. Ânderson ieira A maioria do texto apresentado neste arquivo é do livro Fundamentos de Matemática Elementar, ol. 1, Gelson Iezzi e Carlos Murakami (eja [1]). Algumas
Lógica. Cálculo Proposicional. Introdução
Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras
Lógica Nebulosa (Fuzzy)
Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Lógica Nebulosa (Fuzzy) Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com
Lógica Computacional
Aula Teórica 13: Dedução Natural em Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de
1 Lógica de primeira ordem
1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e
UNIP Ciência da Computação Prof. Gerson Pastre de Oliveira
Aula 6 Lógica Matemática Álgebra das proposições e método dedutivo As operações lógicas sobre as proposições possuem uma série de propriedades que podem ser aplicadas, considerando os conectivos inseridos
Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.
NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo
CAPÍTULO I. Lógica Proposicional
Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação
TGR BCC Representação Computacional de Grafos. Prof. Ricardo José Pfitscher
TGR BCC Representação Computacional de Grafos Prof. Ricardo José Pfitscher Cronograma Representação Matriz de djacências Lista de djacências Matriz de Incidências Representação Como podemos representar
01/09/2014. Capítulo 1. A linguagem da Lógica Proposicional
Capítulo 1 A linguagem da Lógica Proposicional 1 Introdução O estudo da Lógica é fundamentado em: Especificação de uma linguagem Estudo de métodos que produzam ou verifiquem as fórmulas ou argumentos válidos.
Uma representação do conhecimento envolvendo nós, ligações e rótulos. Nós representam categorias, propriedades ou objetos.
Uma rede semântica é: Redes semânticas: definição Uma representação do conhecimento envolvendo nós, ligações e rótulos. Nós representam categorias, propriedades ou objetos. Ligações são orientadas e definem
JOÃO NUNES de SOUZA. LÓGICA para CIÊNCIA da COMPUTAÇÃO. Uma introdução concisa
JOÃO NUNES de SOUZA LÓGICA para CIÊNCIA da COMPUTAÇÃO Uma introdução concisa 2 de junho de 2009 1 A linguagem da Lógica Proposicional Errata Caso você encontre algum erro nesse capítulo ou tenha algum
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções
Sistemas Digitais Álgebra de Boole Binária e Especificação de Funções João Paulo Baptista de Carvalho (Prof. Auxiliar do IST) joao.carvalho@inesc.pt Álgebra de Boole Binária A Álgebra de Boole binária
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor
1 TEORIA DOS CONJUNTOS
1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,
Sistemas Dedutivos Lógica de 1ª. Ordem (LPO)
Sistemas Dedutivos Lógica de 1ª. Ordem (LPO) UTFPR/Curitiba Prof. Cesar A. Tacla http://www.pessoal.utfpr.edu.br/tacla 28/03/2016 12:51 MÉTODO DE PROVA POR RESOLUÇÃO Plano Resolução em LPO método de prova
INF 1771 Inteligência Artificial
Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 06 Lógica Proposicional Lógica Proposicional Lógica simples. A sentenças são formadas por conectivos como: e, ou, então.
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico
Aula demonstrativa Apresentação... 2 Negação de proposições quantificadas Relação das questões comentadas Gabaritos...
Aula demonstrativa Apresentação... 2 Negação de proposições quantificadas... 10 Relação das questões comentadas... 14 Gabaritos... 15 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa
Lógica de Predicados
Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Equivalências lógicas (Rosen 39) Negando expressões com quantificadores
Cálculo proposicional
Notas de aula de MAC0329 (2003) 9 2 Cálculo proposicional Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961]. Proposição Proposições são sentenças afirmativas
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Lógica para Computação
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br Sistemas Dedutivos Um Sistema Dedutivo (SD) tem por objetivo obter, a partir de um conjunto
Sistemas Especialistas. Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6)
Sistemas Especialistas Sistemas de Informação/Ciências da Computação UNISUL Aran Bey Tcholakian Morales, Dr. Eng. (Apostila 6) Sistemas Baseados em Conhecimento Os Sistemas Especialistas (SE) e os Sistemas
Inteligência Artificial
https://www.pinterest.com/carlymundo/decision-tree-infographics/ Universidade Federal de Campina Grande Departamento de Sistemas e Computação Pós-Graduação em Ciência da Computação Inteligência Artificial
Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG
Matemática Discreta Lógica de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Quantificadores Como expressar a sentença Para todo número inteiro x, o valor de x é positivo. usando
Lógica Computacional
Aula Teórica 6: Semântica da Lógica Proposicional Departamento de Informática 3 de Março de 2011 Motivação Expressividade Os conectivos são independentes? Definiu-se a Lógica Proposicional com os símbolos
Sistemas Especialistas
Agenda Sistemas Especialistas Revisão Conceitos Básicos Entender uma ferramenta para S.E. Sistemas de Informação Inteligentes Prof. Esp. MBA Heuber G. F. Lima Aula2 Page 2 Conceitos I.A. Sistemas Especialistas
Aritmética Binária. Adição. Subtração. Aqui tudo nasce do cálculo.
Aritmética Binária Aqui tudo nasce do cálculo. Todo o hardware computacional está sustentado sobre cálculos de adição e subtração de elementos binários (bits), portanto o estudo da aritmética binária é
Capítulo 3. Álgebra de Bool
Capítulo 3 Álgebra de Bool Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Objectivos Compreender a relação entre lógica Booleana e os circuitos
Fundamentos de Lógica Matemática
Webconferência 3-01/03/2012 Inferência Lógica Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Análise
Professor conteudista: Ricardo Holderegger
Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA
INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/81 1 - LÓGICA E MÉTODOS DE PROVA 1.1) Lógica Proposicional
Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.
Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.