MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução"

Transcrição

1 MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas dos lados são, respetivamente, o perímetro da base e a altura do cilindro, calculando o perímetro da base, temos: P = πr = π = 6π cm E assim, calculando a área da superfície lateral do cilindro, em centímetros quadrados e arredondando o resultado às unidades, temos: A SL = P BG = 6π cm Prova Final o Ciclo 016, a fase. Como CH é a medida da altura do cilindro e também do prisma, podemos determinar expressões do volume do prisma (V P ) e do volume do cilindro (V C ), em função de CH: V P = A Base altura = AB CH = 0 CH = 400CH ( ) AB V C = A Base altura = πr CH = π CH = π Com a diferença dos volumes, é de 000 cm, vem que: ( ) 0 CH = 100πCH V P V C = CH 100πCH = 000 CH( π) = 000 CH = Assim, o valor de CH, em centímetros, arredondado às unidades, é CH 5 cm π Prova Final o Ciclo 016, 1 a fase. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular regular, V = h (L + L l + l ), temos para o tronco de pirâmide [ABCDEF GH], que L = AB = 8 cm e l = F G = cm Para determinar a medida h, consideramos o ponto K, o centro do quadrado [EF GH], e temos que IJ = IK + KJ, pelo que h = IJ IK Como IK é a altura da pirâmide [EF GHI], que tem volume 6 cm, podemos calcular IK recorrendo à expressão do volume da pirâmide: Substituindo os valores conhecidos, vem V [EF GHI] = 1 A b a = 1 F G IK 6 = 1 IK 6 = 9 IK 6 = IK 6 = IK = IK Logo, vem que h = IJ IK = 15 = 1 E assim, recorrendo à expressão do volume do tronco de pirâmide quadrangular para calcular o volume em cm, do tronco de pirâmide [ABCDEF GH], e arredondando o resultado às unidades, temos: V [ABCDEF GH] = 1 ( ) = 1 97 = cm Prova Final o Ciclo 015, Época especial Página 1 de 14

2 4. Como a altura do prisma [LKNMHGJI] é da altura dos outros dois prismas, podemos considerar o sólido composto por 8 prismas com alturas e bases iguais entre si (como se ilustra na figura seguinte), e cujas bases são também iguais às bases dos três prismas descritos no enunciado, ou seja, bases com área s Assim, cada um destes 8 prismas tem 1 do volume do sólido: = 1 cm Temos ainda que a altura de cada um destes 8 prismas é, CM = DE = 9 = cm Assim, o volume (V 8 ) de cada um destes 8 prismas pode ser calculado como V 8 = s CM, e substituindo os valores calculados antes vem V 8 = s CM 1 = s 1 = s D E C M Pelo que, arredondando a área s das bases dos prismas às décimas (em centímetros quadrados) é s = 1 10,cm Prova Final o Ciclo 015, a fase 5. O volume total do sólido (V T ) pode ser calculado como a soma dos volumes da semiesfera (V SE ) e do cilindro (V C ). Calculando o volume da semiesfera, temos: 4 V SE = πr 4π 4π 7 = = 6 6 Podemos calcular A, a área da base do cilindro, como = 4π 7 6 A = πr = π = 9π cm = 18π cm Assim, designado por BC a altura do cilindro, o volume do cilindro V C, é dado por Logo, como o volume total é 58 cm, temos que V T = V SE + V C V C = A h = 9π BC cm 58 = 18π + 9π BC 58 18π = 9π BC Pelo que o valor da altura do cilindro, BC, arredondado às décimas é de BC 8,1 cm 58 18π 9π = BC Prova Final o Ciclo 015, 1 a fase 6. Como o terraço foi pavimentado com 400 ladrilhos quadrados, cada um com 9 dm de área, a área do terraço (A T ) é dada por A T = = 600 dm Como o mesmo terraço, pode ser pavimentado com 5 ladrilhos, iguais entre si, a área (A L ) de cada um destes ladrilhos pode ser calculada como A L = 600 = 16 dm 5 Como estes ladrilhos são quadrados, o comprimento dos lados (l L ) de cada um destes ladrilhos é l L = 16 = 4 dm Prova Final o Ciclo - 015, 1 a fase Página de 14

3 7. Tendo em conta os dados do enunciado podemos calcular A SC, a área do semicírculo, como A SC = πr = π 5 = 5π Podemos igualmente calcular A [ABC], a área do triângulo [ABC], observando que a medida da base é o dobro do raio (AC = r = 5 = 10 cm), pelo que A [ABC] = AC BD = 10 4 = 40 cm = 0 cm E assim, A S, a área sombreada é a diferença das áreas do semicírculo e do triângulo [ABC], pelo que, fazendo os cálculos e arredondando o resultado às décimas, vem: A S = A SC A [ABC] = 5π 0 19, cm Prova Final o Ciclo - 015, 1 a fase 8. O volume de um prisma com a altura da pirâmide é V 4 O volume da pirâmide é um terço do prisma anterior, ou seja, V = 4 = V V 1 Assim, temos que V V = V 1 V = V 1V = 1 1 Prova Final o Ciclo 014, a chamada 9. O volume total (V T ) do sólido pode ser calculado como a soma dos volumes do paralelepípedo retângulo (V P R ) e do prisma triangular (V P T ). Calculando o volume do paralelepípedo retângulo, temos: V P R = DE DJ CD = = 150 Calculando o volume do prisma triangular, considerando como base o triângulo [ABC] e a altura a medida da aresta [CI], como CI = DJ e AC = DE, vem Assim, temos que V P T = A [ABC] DJ = AC h Logo o volume total do sólido é 05 cm DJ = 15 6 V T = V P R + V P T = = = = 675 Prova Final o Ciclo 014, 1 a chamada Página de 14

4 10. Calculando o volume do cilindro (V Ci ), em decímetros cúbicos, cujo raio é 6 = dm (porque o diâmetro é 6), vem que: V Ci = A Base altura = π 6 = π 9 6 = 54π Logo temos que o volume do cone (V Co ), em decímetros cúbicos, é a diferença entre o volume total do sólido (V T ) e o volume do cilindro: V Co = V T V Ci = π 5,5 Com o volume do cone é dado por: V Co = 1 A Base h 6 dm dm dm h 6 dm Substituindo os valores conhecidos na fórmula, determinamos o valor de h: 5,5 = 1 π h 5,5 = 9π h 5,5 9π Assim, temos que o valor da altura do cone, arredondado às décimas é,7 dm. = h,69 h Teste Intermédio 9 o ano Como o recipiente cilíndrico estava cheio, o volume de líquido que transbordou é igual ao volume do cubo, pelo que o volume de líquido que ficou no recipiente (V Final ) é a diferença entre o volume do cilindo (V Cilindro ) e o volume do cubo (V Cubo ): V Final = V Cilindro V Cubo Calculando o volume do cubo, como a aresta tem 6 cm de medida, temos: V Cubo = a = 6 = 16 cm Calculando o volume do cilindro, como a altura é igual á aresta do cubo (6 cm de medida) e a medida do raio da base é 5 cm, temos: V Cilindro = π r h = π ,4 cm Assim, calculando o volume de líquido que ficou no recipiente, e arredondando o resultado às unidades, vem: V Final 471, ,4 55 cm Prova Final o Ciclo - 01, a chamada 1. Como o volume do prisma é 4 cm e o cubo tem o mesmo volume do prisma, temos que a medida a, da aresta do cubo, em centímetros, arredondada às décimas, é tal que a = 4 Logo, Resposta: Opção C a = 4,5 Prova Final o Ciclo - 01, 1 a chamada Página 4 de 14

5 Como os triângulos [ABC] e [CDE] são semelhantes, e os lados [BC] e [CD] são correspondentes (porque são os lados que se opõem ao ângulo reto, em cada um dos triângulos), então CD BC = 0,5 é a razão de semelhança. Como o quociente das áreas de figuras semelhantes, é igual ao quadrado da razão de semelhança, vem que ( ) área do triângulo [CDE] CD área do triângulo [ABC] = = 0,5 = 0,5 BC Resposta: Opção B 1.. Como o triângulo [ABC] é retângulo em A (porque um dos lados coincide com o diâmetro da circunferência e o vértice oposto a esse lado está sobre a circunferência), usando o Teorema de Pitágoras e substituindo as medidas conhecidas, temos que: BC = AB + AC BC = BC = BC = 16 BC = 16 BC>0 Logo, como [BC] é um diâmetro do círculo, a medida do raio, r, é: 16 r = 5,8 E assim, calculando a área do círculo de diâmetro [BC], em cm, e arredondando o resultado às unidades, vem A = πr π 5,8 107 cm Prova Final o Ciclo - 01, 1 a chamada 14. Como sabemos que JG = cm, que GK = cm e que F E = 10 cm, podemos calcular o volume do prisma [JGKLIH]: V [JGKLIH] = JG GK F E = 10 = 10 = 0 cm Como é conhecido o volume do sólido (V S = 90 cm ), podemos determinar o volume do paralelepípedo [ABCDEF GH]: V [ABCDEF GH] = V S V [JGKLIH] = 90 0 = 60 cm Como sabemos que F A = cm e que F E = 10 cm, e ainda o volume do paralelepípedo [ABCDEF GH], podemos calcular o comprimento do segmento [F G]: V [ABCDEF GH] = F A F E F G 60 = 10 F G 60 = 0 F G 60 0 = F G F G = 18 cm Como conhecemos o comprimento dos segmentos [F G] e [JG], podemos determinar o comprimento do segmento [F J] F J = F G JG = 18 = 16 cm Teste Intermédio 9 o ano Página 5 de 14

6 15. Temos que [BC] é uma aresta do cubo [BCDEKLMN], pelo que o respetivo volume é V [BCDEKLMN] = BC = a Por outro lado, como AB = BC = a, como [BE] também é uma aresta do cubo BE = a e ainda como [BL] também é uma aresta do cubo BI = 1 BL = 1 a = a, vem que o volume do paralelepípedo [ABEF GHIJ] é V [ABEF GHIJ] = AB BE BI = a a a = a Logo, como o volume total do sólido, V T, é a soma dos volumes do cubo e do paralelepípedo temos que V T = a + a = a + a 1 () = a + a = 5a Igualando a expressão do volume total ao seu valor numérico (5), e resolvendo a equação, podemos determinar o valor exato de a: 5a = 5 5a = 5 a = 75 5 a = 15 a = 15 Prova Final o Ciclo 01, 1 a chamada 16. Como o volume de uma pirâmide é um terço do volume do prisma com a mesma base e a mesma altura, temos que o volume da pirâmide a ser retirada é V [ABCDI] = V [ABCDEF GH] = 7 = 9 cm Assim, o volume do sólido que resulta da retirada da pirâmide do prisma, V F, pode ser calculado como a diferença dos volumes do prisma e da pirâmide: V F = V [ABCDEF GH] V [ABCDI] = 7 9 = 18 cm Teste Intermédio 9 o ano O volume do sólido [ABCDIJGH] pode ser obtido pela soma dos volumes do prisma de bases quadradas [ABCDEF GH] e do prisma triangular [EF GHIJ]: V [ABCDIJGH] = V [ABCDEF GH] + V [EF GHIJ] Como [ABCD] é um quadrado, então BC = AB = 8 cm, e AF = 4 cm, pelo que o volume do prisma é V [ABCDEF GH] = BC AB AF = = 56 cm Calculando a área da base do prisma triângular, por exemplo, a área do triângulo [F GJ], como F G = AB = 8 cm e F J = 7 cm, a área da base é A [F GJ] = F G F J = 8 7 = 56 = 8 cm E assim, como F E = BC = AB = 8 cm, o volume do prisma triângular é V [EF GHI] = A [F GJ] F E = 8 8 = 4 cm E, somando os volumes dos dois prismas, temos o volume do sólido: V [ABCDIJGH] = V [ABCDEF GH] + V [EF GHIJ] = = 480 cm Prova Final o Ciclo 011, Época especial Página 6 de 14

7 18. Como [EF GH] é um quadrado, e F G = AB = 4 m, então, temos que GH = F G = 4 m e assim, recorrendo ao Teorema de Pitágoras, podemos calcular o diâmetro d da base do cone: d = F G + GH d = d = d = d>0 d = m E assim temos que o raio, r, da base do cone é r =,8 m Calculando a medida da área da base do cone temos A = π r π,8 5,16 m Como a medida da altura do cone é IJ = m, calculando o volume do cone temos V C = 1 A IJ = 1 5,16 = 5,16 m Como [ABCD] é um quadrado, então BC = AB = 4, temos que o volume do prisma é dado por V P = AB BC BG = 4 4 BG = 16 BG m Como o volume total do sólido é 57 m, vem que V C + V P = 57 5, BG = BG = 57 5,16 BG = 1,84 16 BG = 1,99 m Assim a altura do prisma (BG) em metros, arredondada às unidades é m 19. Temos que o volume do cilindro é V ci = A b h = 1h Da mesma forma, o volume do cone é V co = 1 A b h = 1 1 h = 4h E assim o volume total do sólido é V T = V ci + V co = 1h + 4h = 16h Prova Final o Ciclo 011, a chamada Substituindo o valor do volume total do sólido podemos determinar, em metros, o valor de h, que é a altura do cilindro: V T = 4 16h = 4 h = 4 16 h =,15 m Prova Final o Ciclo 011, 1 a chamada 0. Como o volume da pirâmide [HDP C] é 10 cm, então o volume da pirâmide [ABCDH] é 0 cm, porque as duas pirâmides têm a mesma altura e a base da pirâmide [ABCDH] tem o dobro da área da base da pirâmide [HDP C] (A [ABCD] = A [DP C] ) V [ABCDH] = V [HDP C] = 10 = 0 cm Como o paralelepípedo [ABCDEF GH] e a pirâmide [ABCDH] têm a mesma base e a mesma altura, o volume do paralelepípedo é o triplo do volume da pirâmide: V [ABCDEF GH] = V [ABCDH] = 0 = 60 cm Exame Nacional o Ciclo - 011, 1 a chamada Página 7 de 14

8 1. Como as bases dos três modelos é igual e como o volume do modelo maior é igual à soma dos volumes dos dois modelos menores, então a soma das alturas dos dois modelos menores é igual à altura do modelo maior. Assim, o gasto adicional de 50 cm para forrar os dois modelos menores é justificado pela área adicional de duas bases quadradas (uma base da do sólido menor e outra do sólido intermédio). Assim, podemos calcular a área das bases dos sólidos, A B, dividindo a área em excesso por : A B = 50 = 5 cm E como as bases são quadrados a medida da aresta da base dos modelos, a, em centímetros é a = A B = 5 = 5 cm Teste Intermédio 8 o ano Os triângulos [AED] e [EBC] têm alturas iguais (como EB = DC e [ABCD] é um trapézio retângulo então ED = BC), e a base do triângulo [EBC] é o dobro da base do triângulo [AED], porque se AE = 1 AB então AB = AE = AE + AE = AE + ED, logo ED = AE E assim, temos que a área do triângulo [EBC] é o dobro da área do triângulo [AED]: A [EBC] = A [AED] Como os triângulos [EBC] e [ECD] têm a mesma área, temos que a área do trapézio [ABCD], A [ABCD], pode ser escrita como A [ABCD] = A [AED] + A [EBC] + A [ECD] = A [AED] + A [AED] + A [AED] = 5 A [AED] Como a área do trapézio [ABCD] é 0 cm, vem que A [ABCD] = 0 5 A [AED] = 0 A [AED] = 0 5 A [AED] = 4 cm E assim, a área sombreada A S é A S = A [AED] + A [EBC] = A [AED] + A [EAD] = A [AED] = 4 = 1 cm Resposta: Opção B Teste Intermédio 9 o ano Página 8 de 14

9 . Calculando a altura da pirâmide [EF GHI], h, representada a tracejado, como a diferença da altura da pirâmide [ABCDI] e da altura do tronco de pirâmide, temos h = 80 0 = 50 cm E assim o volume da pirâmide [EF GHI] é D A 48 B 40 C V [EF GHI] = 1 A [EF GH] h = = cm E o volume da pirâmide [ABCDI] é H E 0 F G 5 V [ABCDI] = 1 A [ABCD] alt = = cm Assim, o volume do tronco de pirâmide, V T, pode ser calculado como a diferença dos volumes das duas pirâmides V T = V [ABCDI] V [EF GHI] = = cm I 4. Como a base do prisma [ABCDEF GH] é um quadrado, o volume do prisma é V [ABCDEF GH] = AB BF = 1 19 = 11 cm Prova Final o Ciclo 010, a chamada Como a base da pirâmide [EF GHI] tem a área igual à base do prisma, o volume da pirâmide é V [EF GHI] = 1 AB IJ = = 8 cm E o volume do sólido pode ser calculado como a soma dos volumes do prisma e da pirâmide, pelo que o Volume do sólido é 5. Como o volume do paralelepípedo é dado por V S = V [ABCDEF GH] + V [EF GHI] = = 549 cm V [ABCDEF GH] = AB BC AE substituindo os valores conhecidos, podemos calcular a medida de AE em mestro: 0,4 = 1, 0,5 AE 0,4 = 0,6 AE 0,4 0,6 Prova Final o Ciclo 010, 1 a chamada = AE AE = 0,4 m Teste Intermédio 8 o ano Como AB = BC = 10 e E e F são pontos médios de [AB] e [BC], respetivamente, então vem que EB = BF = AB = 10 = 5 E assim, calculando a área do triângulo [BEF ], vem A [BEF ] = EB BF = 5 5 Observando que os triângulos [BEF ] e [DGH] são congruentes, podemos calcular a área da região sombreada como a diferença entre as áreas do quadrado [ABCD] e dos triângulos [BEF ] e [DGH]: Resposta: Opção B = 5 A [AEF CGH] = A [ABCD] A [EBF ] = = = 75 Teste Intermédio 9 o ano Página 9 de 14

10 7. O volume, em centímetros cúbicos, da parte de cimento (V ) da floreira pode ser obtido como a diferença dos volumes do cubo e do o prisma quadrangular: V = V cubo V prisma = AB EF GO = = = cm 8. Como DA = DC = m, então temos que a área da base da pirâmide [ACDH], é A [ACD] = = m Prova Final o Ciclo 009, a chamada Como a altura DH = 5m, então calculando o volume da pirâmide [ACDH], e arredindando o resultado às décimas, vem V [ACDH] = 1 A [ACD] DH = 1 5 = 10, m 9. Como o hexágono [ABCDEF ] é a base de um prisma regular, é um héxagono regular, pelo que pode ser dividido em 6 triângulos congruentes, e assim, a sua área pode ser calculada como 6 vezes a área do triângulo [BCO], do qual são conhecidas as medidas da base e da altura A [ABCDEF ] = 6 A [BCO] = 6 BC OM = 6 Exame Nacional o Ciclo - 009, 1 a chamada = 6 m E assim, podemos determinar a capacidade da piscina, em metros cúbicos, calculando o volume do prisma. Arredondando o resultado às décimas, vem V [ABCDEF GHIJKL] = A [ABCDEF ] BH = 6 1,5 15,6 m A F B O M E C D Teste Intermédio 9 o ano Como todos os prismas têm a base quadrangular cuja área é, considerando o prisma referente ao primeiro lugar em conjunto com o prisma referente ao segundo lugar, a altura dos dois prisma, relativamente à altura do prisma referente ao primeiro lugar, será + 1 = = 1 1 Ou seja, o volume dos dois prismas menores (considerados em conjunto) é igual ao volume do prisma maior. Como o volume total do pódio é 15, então o volume do prisma maior (V 1 ) é V 1 = 15 E o volume do prisma referente ao. o lugar (V ) é do volume do prisma maior, porque a área das bases é igual, ou seja V = V 1 = 15 = 15 = 5 Página 10 de 14

11 0.. Como o volume (V ) de um prisma pode ser calculado como o produto da área da base (A b ) pela altura (h), temos V = A b h Como, todos os prismas têm área da base igual a, ou seja A b =, temos que V = A b h V = h V h = Resposta: Opção A Teste Intermédio 8 o ano A área da região sombreada pode ser calculada como a diferença das áreas do quadrado [ACDF ] e do triângulo [ABE] Como a medida do lado do quadrado [ACDF ] é 4, a área do quadrado é A [ACDF ] = 4 = 16 Como B é o ponto médio do segmento de reta [AC], e AC = 4, então AB = AC triângulo [ABE] é igual a AF =, pelo que a área do triângulo é = 4 =,e a altura do E assim, a área sombreada (A S ) é A [ABE] = AB AF = 4 = 4 A S = A [ACDF ] A [ABE] = 16 4 = 1. Calculando a área da base do prisma, ou seja do triângulo ABE, temos que: A [ABE] = AB BE = 00 4 = 600 cm Teste Intermédio 8 o ano E assim, considerando a aresta [BC] como a altura do prisma e calculando o volume do prisma, em centímetros cúbicos, vem: V [ABCDEF ] = A [ABE] BC = = cm Exame Nacional o Ciclo - 008, a chamada. Como EF = cm e a pirâmide [EF GHI] tem altura 5 cm, o volume da pirâmide é: D C V [EF GHI] = 1 A [EF GH] h = 1 5 = 15 cm A B Como AB = 1 cm e a pirâmide [ABCDI] tem altura = 0 cm, então o seu volume é: 15 cm V [ABCDI] = 1 A [ABCD] alt = = 960 cm H G Assim, o volume do tronco de pirâmide, V T, pode ser calculado como a diferença dos volumes das duas pirâmides E F 5 cm V T = V [ABCDI] V [EF GHI] = = 945 cm I Exame Nacional o Ciclo - 008, 1 a chamada Página 11 de 14

12 4. Começamos por determinar a altura da pirâmide [EF GHI], verificando que o triângulo [JKI] é retângulo em K, pelo que, recorrendo ao Teorema de Pitágoras, podemos afirmar que: Como KJ = AD = 1, IK + KJ = IJ = 0,6 m, substituindo os valores conhecidos na equação anterior, vem que: IK + 0,6 = 1 IK + 0,6 = 1 IK = 1 0,6 IK = 0,64 IK = 0,64 IK>0 Assim temos que IK = 0,8 Podemos agora determinar o volume da pirâmide: V [EF GHI] = 1 A [EF GH] IK = 1 1, 0,8 = 0,84 m Determinando o volume do prisma, vem que: V [ABCDEF GH] = DA AB DH = 1, 1, 1,7 =,448 m Logo, podemos determinar o volume total do sólido, V T, como a soma dos volumes do pirâmide e do prisma: V T = V [EF GHI] + V [ABCDEF GH] = 0,84 +,448 =,8 m Teste Intermédio 9 o ano Como o cubo e a pirâmide têm a mesma base e a mesma altura, o volume do cubo é o triplo do volume da pirâmide: V [ABCDEF GH] = V [ABCDP ] = 9 = 7 cm E assim, podemos calcular o comprimento, a, da aresta do cubo, em centímetros: a = 7 a = 7 a = cm Exame Nacional o Ciclo - 007, 1 a chamada 6. Podemos determinar o volume da piscina, em metros cúbicos, como a diferença dos volumes do paralelepípedo retângulo [ABCDEF GH] e do prisma triangular [IELJF K] Como AD = BC = 0 m, DC = HG = 10 m e DH = CG = m, temos que, o volume do paralelepípedo retângulo [ABCDEF GH] é: V [ABCDEF GH] = AD DC DH = 0 10 = 400 m Como a altura do prisma triangular é EF = HG = 10 m, EL = EH LH = 0 10 = 10 m e EI = EA IA = 0,6 = 1,4 m, temos que, o volume do prisma triangular [IELJF K] é: V [IELJF K] = A [EIL] EF = EL EI EF = 10 1,4 Desta forma, vem que o volume da piscina, em metros cúbicos, é: 10 = = 7 10 = 70 m V = = 0 m Logo, fazendo a conversão para litros, de acordo com a igualdade indicada, temos que o volume da piscina, em litros, é: V = = litros Exame Nacional o Ciclo - 006, a Chamada Página 1 de 14

13 7. Podemos determinar o volume do sólido representado a sombreado como a diferença dos volumes dos dois cones representados - de alturas respetivamente iguais a 6 metros e a metros. Calculando os volumes temos: Cone com 6 metros de altura: V 6 = 1 A Base 6 = 1 π 1,8 6 0,6 m Cone com metros de altura: V = 1 A Base = 1 π 0,6 0,75 m E assim, o volume do sólido que serviu de base à construção do vulcão de água, em metros cúbicos, arredondado às unidades, é de: V = V 6 V 0,6 0,75 0 m Exame Nacional o Ciclo - 006, 1 a Chamada 8. Podemos determinar o volume do espigueiro como a soma dos volumes de um prisma retangular e de um prisma triangular. Desta forma, temos que o volume do prisma retangular, em metros cúbicos, é: V PR = 5 0,8,7 = 14,8 m Para calcular o volume do prisma triangular, devemos calcular previamente a área da base. Como a base é um triângulo isósceles, podemos calcular a altura (h), decompondo o triângulo isósceles em dois triângulos retângulos, cujo comprimento da hipotenusa é 0,5 m e de um dos catetos é 0,4 m. Assim, recorrendo ao Teorema de Pitágoras, temos que: 5 5 0,5 h 0,4 0,8 0,8,7 h + 0,4 = 0,5 h + 0,16 = 0,5 h = 0,5 0,16 h = 0,09 h>0 h = 0,09 h = 0, Desta forma, temos que o volume do prisma triangular, em metros cúbicos, é: V PT = A Base altura = Pelo que o volume do espigueiro, em metros cúbicos, é: 0,8 0, 5 = 0,6 m V espigueiro = V PR + V PT = 14,8 + 0,6 = 15,4 m 9. Designa por r o raio de cada uma das esferas, temos que: o volume de cada esfera é: V E = 4 πr o volume das três esferas é: V E = 4 πr = 4πr Exame Nacional o Ciclo - 005, a Chamada a medida do raio da base do cilindro é r, e a altura é o triplo do diâmetro, ou seja, h = r = 6r o volume do cilindro é: V C = A Base h = πr 6r = 6πr o volume da caixa que não é ocupado pelas esferas é a diferença do volume do cilindro e das três esferas, ou seja: V = V C V E = 6πr 4πr = πr E, desta forma podemos concluir que: V = πr = 4πr = V E Ou seja, o volume da caixa que não é ocupado pelas esferas é igual a metade do volume das três esferas. Exame Nacional o Ciclo - 005, 1 a chamada Página 1 de 14

14 40. Como a tenda tem a forma de um prisma triangular, calculando o seu volume, em metros cúbicos, e arredondado o resultado às décimas, vem que: V PT = A Base altura = 1,8 1,6,, m Prova de Aferição 00 Página 14 de 14

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 2009-1 a Chamada Proposta de resolução 1. 1.1. Observando os dados da tabela, podemos verificar que o número total de viagens vendidas para Paris, nos meses de janeiro,

Leia mais

Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão

Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão Matemática Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho 9º ano Espaço - Outra Visão 1. Arrumaram-se três esferas iguais dentro de uma caixa cilíndrica (figura 1). Como se pode observar

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2011/2012 Ficha de Trabalho Maio 2012 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço Outra

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o

Leia mais

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes

Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes Ficha de Trabalho: Exames e Testes intermédios do 9º ano: Teorema de Pitágoras, áreas e volumes 1. Considera a figura ao lado, onde: [ABFG] é um quadrado de área 36; [BCDE] é um quadrado de área 64; F

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano Escola Secundária/2, da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria Espaço Outra Visão 9.º Ano Nome: N.º: Turma: 1. Na figura, está representado um triângulo retângulo em que: a,

Leia mais

Escola Básica de Ribeirão (Sede) ANO LETIVO 2012/201 Ficha de Trabalho Fevereiro 201 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço.

Leia mais

Tema: Espaço Outra Visão

Tema: Espaço Outra Visão Escola EB, de Rieirão (Sede) ANO LECTIO 010/011 Ficha de Traalho Maio 011 Nome: N.º: Turma: 9.º Ano Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI) Tema: Espaço Outra isão

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Escola Secundária de Lousada. Apresentação dos Conteúdos e Objetivos para o 1º Teste de Avaliação de Matemática

Escola Secundária de Lousada. Apresentação dos Conteúdos e Objetivos para o 1º Teste de Avaliação de Matemática Escola Secundária de Lousada Matemática do 9º ano FT 7 Data: / / 01 Assunto: Trigonometria I Apresentação dos Conteúdos e Objetivos para o 1º Teste de Avaliação de Matemática Data da Realização : / 11/

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano)

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) MTMÁT - 3o ciclo Áreas e Volumes (9 o ano) xercícios de provas nacionais e testes intermédios 1. O centro geodésico de Portugal continental situa-se na Serra da Melriça, próximo de Vila de Rei. Nesse local,

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano)

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) MTMÁT - 3o ciclo Áreas e Volumes (9 o ano) xercícios de provas nacionais e testes intermédios 1. figura ao lado representa um reservatório constituído por um cilindro de altura e por uma semiesfera assente

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 01-1 a Fase Proposta de resolução Caderno 1 1. Como a função representada graficamente é uma função de proporcionalidade inversa, a sua expressão algébrica é da forma

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I

Escola Secundária com 3º ciclo D. Dinis. 10º Ano de Matemática A. Geometria no Plano e no Espaço I Escola Secundária com 3º ciclo D. Dinis 0º Ano de Matemática A Geometria no Plano e no Espaço I Trabalho de casa nº 6 Estes trabalhos de casa, até ao fim do período, vão continuar a ser constituídos por

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 9 Páginas Braille Duração da Prova: 90 minutos.

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 9 Páginas DAISY Duração da Prova: 90 minutos. Tolerância:

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 25 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação:

Suficiente (50% 69%) Bom (70% 89%) O Encarregado de Educação: Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 19 de fevereiro de 2013 Nome: N.º Turma:

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Tarefas de exames Teorema de Pitágoras Neste caderno de apoio, encontras alguns exemplos de tarefas de exames de países como Portugal, Austrália, Canadá, Espanha, Finlândia, Inglaterra, Estados Unidos

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.

Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora. Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Na figura abaixo, está representado, num referencial o.n. Oxyz, o cubo [OPQRSTUV] de aresta 2. Os pontos, P, R e T pertencem aos semieixos positivos. Numa das opções

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)

Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.

Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta. Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

26 A 30 D 27 C 31 C 28 B 29 B

26 A 30 D 27 C 31 C 28 B 29 B 26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional. 2.1.

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional. 2.1. Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Considera a equação x + 1 = kx Para que -1 seja uma das soluções da equação

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

Teste Intermédio 2012

Teste Intermédio 2012 Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

Turma 3.a série Professor(a)

Turma 3.a série Professor(a) Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Nome: N.º: Turma: Classificação: Professor: Enc. Educação:

Nome: N.º: Turma: Classificação: Professor: Enc. Educação: Escola Básica de Ribeirão (Sede) ANO LETIVO 013/014 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 35 minutos (Caderno 1) +

Leia mais

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010 Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 009/010 Ficha Trabalho Circunferência, Trigonometria, Áreas e Volumes, Equações do º grau Maio 010 Nome: 1ª PARTE N.º: Turma: 9.º Ano 1. Observa a seguinte figura:

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA

MATEMÁTICA 3 GEOMETRIA PLANA MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução aderno 1 1. 1.1. omo o ponto de coordenadas (,) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/Época Especial. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/Época Especial. Duração da Prova: 90 minutos. Tolerância: 30 minutos. EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / Época Especial / 2011 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Documento de Identificação BI n.º Emitido em ou CC n.º

Leia mais

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA

MATEMÁTICA A - 11.º Ano TRIGONOMETRIA MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.

Leia mais