PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano"

Transcrição

1 PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano

2 Aula 8 11/2014 Distribuição Normal

3 Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas. Para ilustrar a correspondência entre área e probabilidade, vamos aprender as Em seguida, as., que ocorrem frequentemente em aplicações reais e têm papel importante nos métodos de inferência estatística. Probabilidade e Estatística 3/41

4 Distribuição Normal Se uma variável aleatória contínua tem uma distribuição com um gráfico simétrico e em forma de sino, e que pode ser descrito pela equação a seguir, dizemos que ela tem Depende apenas de µ e σ y = e 1" x µ % $ ' 2# σ & σ 2π 2 Probabilidade e Estatística 4/41

5 Distribuição Normal Padrão A tem as seguintes propriedades: 1. Seu gráfico tem forma de sino; 2. Sua média é igual a 0 (µ = 0); 3. Seu desvio-padrão é igual a 1 (σ = 1). Probabilidade e Estatística 5/41

6 Distribuições Uniformes O foco será o estudo da Distribuição de Probabilidade Normal, porém iremos começar com a, que nos dará informações para compreender estas duas propriedades importantes: 1. A área sob o gráfico de uma distribuição de probabilidades é igual a 1; 2. Há uma correspondência entre área e probabilidade (ou frequência relativa), de modo que algumas propriedades podem ser encontradas pela identificação das áreas correspondentes. Probabilidade e Estatística 6/41

7 Distribuição Uniforme Uma variável aleatória contínua tem uma se seus valores se espalham uniformemente sobre a faixa de valores possíveis. O gráfico de uma Distribuição Uniforme resulta em uma forma retangular. Probabilidade e Estatística 7/41

8 EXEMPLO A companhia de Energia fornece eletricidade com níveis de voltagem que são uniformemente distribuídos entre 123 e 125 volts. Isto é, qualquer quantidade de voltagem entre 123 e 125 volts é possível, e todos os possíveis valores são equiprováveis. Se selecionamos aleatoriamente um dos níveis de voltagem e representarmos seu valor pela variável aleatória x, então x tem uma distribuição que tem um gráfico como: Probabilidade e Estatística 8/41

9 EXEMPLO Um gráfico de uma distribuição de probabilidade contínua, como este, é chamado de. Probabilidade e Estatística 9/41

10 EXEMPLO Dada a distribuição uniforme do nível de voltagem, ache a probabilidade de que um nível de voltagem selecionado aleatoriamente seja maior do que 124,5 volts. Probabilidade e Estatística 10/41

11 Curva de Densidade Uma curva de densidade deve satisfazer os seguintes requisitos: 1. A área sob a curva tem que ser igual a Cada ponto na curva tem que ter uma altura vertical maior ou igual a 0, ou seja, a curva não pode estar abaixo do eixo x. Probabilidade e Estatística 11/41

12 Área Probabilidade Como a área total sob a curva de densidade é igual a 1, existe uma correspondência entre e. No caso da Distribuição Uniforme, a área abaixo da curva, que é facilmente calculada por: Área = Base Altura, corresponderá à probabilidade referente a esta área. Probabilidade e Estatística 12/41

13 Área Probabilidade Como a curva de densidade de uma Distribuição Normal tem a forma de sino, é mais difícil acharmos a área, porém o princípio básico é o mesmo: Há uma correspondência entre e Probabilidade e Estatística 13/41

14 Distribuição Normal Padrão A distribuição normal padrão é uma distribuição de probabilidade normal com média µ = 0 e desvio-padrão σ = 1, e a área total sob a curva de densidade é Escore z Probabilidade e Estatística 14/41

15 Distribuição Normal Padrão Não é fácil a determinação de áreas para a curva de densidade da distribuição normal padrão, então necessitamos de valores já calculados previamente e que constam na seguinte tabela: Probabilidade e Estatística 15/41

16 Distribuição Normal Padrão Ao usar a Tabela da distribuição normal padrão, temos que: 1. A tabela refere-se apenas à, que tem média 0 e desvio padrão 1; 2. A tabela é apresentada em duas páginas, uma para e a outra para ; 3. Cada valor no corpo da tabela é a até uma reta vertical sobre um valor específico do escore z; Probabilidade e Estatística 16/41

17 Distribuição Normal Padrão 4. Ao trabalhar com um gráfico, entre escores z e áreas. Escore z Distância na escala horizontal da distribuição normal padrão; refere-se à coluna à esquerda e à linha do topo da tabela. Área Região sob a curva; refere-se aos valores no corpo da tabela. Probabilidade e Estatística 17/41

18 Distribuição Normal Padrão z,00,01-3,4 0,0003 0,0003-3,3 0,0005 0,0005-3,2 0,0007 0,0007-3,1 0,0010 0,0009 Área Probabilidade e Estatística 18/41

19 EXEMPLO 1 Uma companhia de instrumentos científicos de precisão fabrica termômetros que devem informar temperaturas de 0 o C no ponto de congelamento da água. Testes em uma grande amostra desses instrumentos revelam que, no ponto de congelamento da água, alguns termômetros indicam temperaturas abaixo de 0 o C e alguns dão temperaturas acima de 0 o C. Suponha que a leitura média seja 0 o C e que o desvio-padrão das leituras seja 1,00 o C. Suponha, também, que as leituras sejam normalmente distribuídas. Se um termômetro é selecionado aleatoriamente, ache a probabilidade de que, no ponto de congelamento da água, a leitura seja menor que 1,27 o C. Probabilidade e Estatística 19/41

20 EXEMPLO 1 Gostaríamos de saber agora, qual a probabilidade de selecionarmos aleatoriamente um termômetro que apresente leitura (no ponto de congelamento da água) superior a -1,23 o C. Agora, determine a probabilidade de selecionarmos aleatoriamente um termômetro que apresente letirua (no ponto de congelamento da água) entre -2,00 o C e 1,50 o C. Probabilidade e Estatística 20/41

21 O último resultado do exemplo 1, pode ser generalizado como a seguinte regra: A área correspondente à região entre dois escores z específicos pode ser encontrada achando-se. Probabilidade e Estatística 21/41

22 Com uma distribuição de probabilidade contínua, tal como a distribuição normal, a probabilidade de se obter qualquer valor único exato é 0 (P(z=a) = 0). De modo que: P (a z b) = P (a < z < b) Então, a probabilidade de se obter um escore z no é igual à probabilidade de se obter um escore z. Probabilidade e Estatística 22/41

23 Escores z Áreas conhecidas Em muitos casos, temos que: Dada uma área (ou probabilidade), achar o escore z correspondente. Probabilidade e Estatística 23/41

24 Escores z Áreas conhecidas Procedimento para a determinação de um Escore z a partir de uma área conhecida. 1. Desenhe uma curva em forma de sino e identifique a região sob a curva que corresponde à probabilidade dada. Se a região não é uma região acumulada à esquerda, trabalhe com regiões conhecidas que sejam regiões acumuladas à esquerda. 2. Usando a área acumulada à esquerda, localize a probabilidade mais próxima no corpo da tabela da distribuição normal padrão e identifique o escore z correspondente. Probabilidade e Estatística 24/41

25 Escores z Áreas conhecidas Se um valor desejado de área o valor ; Se um valor está a tabela, selecione o ; na tabela, selecione entre dois valores da Para escores z, podemos usar como uma aproximação para a área acumulada à esquerda; Para escores z, podemos usar como uma aproximação para a área acumulada à esquerda. Probabilidade e Estatística 25/41

26 EXEMPLO 2 Use os mesmos termômetros do exemplo anterior, com leituras de temperatura no ponto de congelamento da água normalmente distribuídas, com média de 0 o C e desviopadrão de 1 o C. Ache a temperatura correspondente a P 95, o 95 o percentil. Isto é, ache a temperatura que separa os 95% inferiores dos 5% superiores. Ache, agora, as temperaturas separando os 2,5% inferiores e os 2,5% superiores. Probabilidade e Estatística 26/41

27 Valores Críticos Para uma distribuição normal, um valor crítico é um escore z na fronteira que separa os escores z que têm ocorrência provável daqueles que têm ocorrência improvável. Valores críticos comuns são z = -1,96 e z = 1,96. Os valores abaixo de 1,96 são improváveis de acontecer, pois ocorrem em apenas 2,5% dos dados, e os valores acima de z = 1,96 também são improváveis de acontecer, pois também ocorrem em apenas 2,5% das leituras. Probabilidade e Estatística 27/41

28 Valores Críticos Na expressão z α, faça α = 0,025 e ache o valor de z 0,025. A notação de z 0,025 é usada para representar o escore z com uma área de 0,025 à sua direita. Recorrendo à tabela da distribuição normal, podemos observar que z 0,025 = 1,96. Probabilidade e Estatística 28/41

29 Valores Críticos Para encontrar o valor de z α, usando a tabela de distribuição normal padrão, use o valor 1 α. Probabilidade e Estatística 29/41

30 Aplicações da distribuição normal É pouco comum encontrarmos situações que seguem uma distribuição normal padrão. As distribuições normais típicas envolvem médias diferentes de 0 e desvios-padrão diferentes de 1. Nestes casos, devemos ser capazes de encontrar probabilidades correspondentes a valores da variável x e, dado algum valor de probabilidade, devemos ser capazes de encontrar o valor correspondente da variável x. Probabilidade e Estatística 30/41

31 Aplicações da distribuição normal Para trabalhar com distribuições normais não padronizadas, simplesmente iremos padronizar os valores para usar os mesmo procedimentos aprendidos até aqui. Se convertermos valores para escores z padronizados usando a fórmula a seguir, os procedimentos usados serão os mesmos usados para a distribuição normal padrão. z = x µ σ Arredonde os escores z para 2 casas decimais Probabilidade e Estatística 31/41

32 Aplicações da distribuição normal Procedimento para achar áreas com uma distribuição normal não padronizada: 1. Esboce a curva normal, marque a média e os valores específicos de x e, então, sombreie a região que representa a probabilidade desejada; 2. Para cada valor relevante de x que representa um limite da região sombreada, converta o valor em seu escore z equivalente; 3. Consulte a tabela para achar a área da região sombreada. Probabilidade e Estatística 32/41

33 EXEMPLO 3 Uma porta típica de uma casa tem uma altura de 2 metros. Dado que as alturas de homens são normalmente distribuídas, com média de 1,725 m e desvio-padrão de 7 cm,. Ache a porcentagem de homens que passarão por uma portapadrão sem se curvar e sem bater a cabeça. Essa porcentagem é alta o bastante para que se continue a usar 2 metros como padrão de altura? Probabilidade e Estatística 33/41

34 EXEMPLO 3 O valor do escore z é 3,93, dando uma área de 0,9999. Conclui-se que a proporção de homens que podem passar pelas portas com altura-padrão de 2 m é 0,9999 ou 99,99%. Muitos poucos homens não poderão passar sem abaixarem ou baterem a cabeça. Essa porcentagem é alta o suficiente para justificar o suo de 2 m como altura-padrão para portas. Probabilidade e Estatística 34/41

35 EXEMPLO 4 Os pesos ao nascer nos Estados Unidos são distribuídos normalmente, com média de 3420 g e desvio-padrão de 495 g. O Hospital Geral de Newport exige tratamento especial para bebês que nasçam com menos de 2450 g (não usualmente leves) ou mais de 4390 g (não usualmente pesados). Qual é a porcentagem de bebês que não requerem tratamento especial por terem pesos ao nascer entre 2450 g e 4390g? Sob essas condições, muitos bebês precisam de cuidados especiais? Probabilidade e Estatística 35/41

36 EXEMPLO 4 Expressando o resultado em porcentagem, podemos concluir que 95% dos bebês não exigem cuidados especiais por terem pesos entre 2450 g e 4390 g. Segue que 5% dos bebês requerem tratamento especial por serem não usualmente leves ou pesados. A taxa de 5%, provavelmente, não é muito alta para hospitais típicos. Probabilidade e Estatística 36/41

37 Áreas conhecidas Não confunda escores z e áreas; Escolha o lado correto (direito/esquerdo) do gráfico; Um escore z tem que ser negativo sempre que se localizar na metade esquerda da distribuição normal; Áreas (ou probabilidades) são valores positivos ou nulos, mas NUNCA negativos. Probabilidade e Estatística 37/41

38 Áreas conhecidas Procedimento para achar valores a partir de áreas conhecidas 1. Esboce o gráfico da distribuição normal, introduza a probabilidade ou porcentagem dada na região apropriada do gráfico e identifique o(s) valor(es) x de interesse; 2. Use a Tabela para achar o escore z correspondente à área mais próxima e, em seguida, identifique o escore z correspondente; Probabilidade e Estatística 38/41

39 Áreas conhecidas 3. Usando a fórmula de conversão de valores para escore z, encontre o valor de x; z = x µ σ 4. Consulte o esboço da curva para verificar se a solução faz sentido no contexto do gráfico e no contexto do problema. Probabilidade e Estatística 39/41

40 EXEMPLO 5 No planejamento de um ambiente, um critério comum é que se ajuste a 95% da população. Qual a altura de uma porta se 95% dos homens devem passar por ela sem se abaixar e sem bater a cabeça? Isto é, ache o 95 º percentil das alturas dos homens, que são normalmente distribuídas, com média de 1,75m e desviopadrão de 0,07 m. Probabilidade e Estatística 40/41

41 EXEMPLO 5 O resultado é: x = 1,87 m. Isto significa que uma altura de porta de 1,87 permitiria que 95% dos homens passassem sem se curvar ou bater a cabeça. Assim, 5% dos homens não passariam por uma porta com altura de 1,87 m. Como muitos homens passam por portas com muita frequência, esta taxa de 5%, provavelmente, não seria prática. Probabilidade e Estatística 41/41

42 EXEMPLO 6 O Hospital Geral de Newport deseja redefinir os pesos ao nascer mínimo e máximo que exigem tratamento especial por serem não usualmente baixos ou altos. Depois de considerar fatores relevantes, um comitê recomenda um tratamento especial para os 3% inferiores e os 1% superiores dos pesos ao nascer. Ajude o comitê a identificar os pesos ao nascer que separam os 3% inferiores e os 1% superiores. Os pesos ao nascer, nos Estados Unidos, são normalmente distribuídos, com média de 3420 g e desvio-padrão de 495g. Probabilidade e Estatística 42/41

43 EXEMPLO 6 O Resultado nos indica que: O peso ao nascer de 2489 g (arredondado) separa os 3% inferiores dos pesos ao nascer, e 4573 (arredondado) separa o 1% superior dos pesos ao nascer. Agora, o hospital tem critérios bem definidos para determinar se um bebê recém-nascido deve receber tratamento especial relativo a um peso ao nascer não usualmente baixo ou alto. Probabilidade e Estatística 43/41

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

PROBABILIDADE E ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 3 09/2014 Estatística Descritiva Medidas de Centro Probabilidade e Estatística 3/19 Medidas de Centro Uma medida

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Amostragem Aleatória e Descrição de Dados - parte II

Amostragem Aleatória e Descrição de Dados - parte II Amostragem Aleatória e Descrição de Dados - parte II 2012/02 1 Diagrama de Ramo e Folhas 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Construir e interpretar disposições gráficas dos

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade Júlio Osório Distribuições Teóricas de Probabilidades Diz-se que uma variável aleatória contínua X tem uma distribuição normal de parâmetros µ (média) e σ (desviopadrão)

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Teste de hipóteses Objetivo: Testar uma alegação sobre um parâmetro: Média, proporção, variação e desvio padrão Exemplos: - Um hospital alega que o tempo de resposta de sua ambulância é inferior a dez

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

MEDIDAS E INCERTEZAS

MEDIDAS E INCERTEZAS MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 2/2016 1 / 35 variáveis discretas vs variáveis contínuas

Leia mais

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial

1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2006/2007 Ficha nº 1 1. Registou-se o número de assoalhadas de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1; 2; 0; 0; 1;

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Distribuição de Probabilidade Conjunta

Distribuição de Probabilidade Conjunta . DISTRIBUIÇÃO DE ROBABILIDADE CONJUNTA O nosso estudo de variável aleatória e de suas funções de probabilidade até agora se restringiram a espaços amostrais unidimensionais nos quais os valores observados

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

CONTROLE ESTATÍSTICO DE PROCESSOS

CONTROLE ESTATÍSTICO DE PROCESSOS Ferramentas da Qualidade CONTROLE ESTATÍSTICO DE PROCESSOS CONTROLE ESTATÍSTICO DE PROCESSOS (2/4) HISTOGRAMA: O QUE É E PARA QUE SERVE CONSTRUÇÃO DE HISTOGRAMAS EXERCÍCIOS Utilização de histogramas 2

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

Estatística descritiva básica: Medidas de tendência central

Estatística descritiva básica: Medidas de tendência central Estatística descritiva básica: Medidas de tendência central ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto *Parte do conteúdo

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Distribuição Gaussiana. Verificação da Suposição de Normalidade dos Dados

Distribuição Gaussiana. Verificação da Suposição de Normalidade dos Dados Distribuição Gaussiana Verificação da Suposição de Normalidade dos Dados Verificação da Suposição de Normalidade dos Dados Já é conhecido que o modelo gaussiano não é adequado para muitas variáveis aleatórias

Leia mais

Teste de hipóteses. Estatística Aplicada Larson Farber

Teste de hipóteses. Estatística Aplicada Larson Farber 7 Teste de hipóteses Estatística Aplicada Larson Farber Seção 7.1 Introdução ao teste de hipóteses Uma hipótese estatística é uma alegação sobre uma população. A hipótese nula H 0 contém uma alternativa

Leia mais

Métodos Não Paramétricos

Métodos Não Paramétricos Métodos Não Paramétricos Para todos os testes estatísticos que estudamos até este ponto, assumimos que as populações tinham distribuição normal ou aproximadamente normal. Essa propriedade era necessária

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo

PROGRAMA e Metas Curriculares Matemática A. Estatística. António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo PROGRAMA e Metas Curriculares Matemática A Estatística António Bivar, Carlos Grosso, Filipe Oliveira, Luísa Loura e Maria Clementina Timóteo O tema da Estatística nos Cursos Científico-Humanísticos de

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

ESTATÍSTICA BÁSICA. Freqüência Absoluta: Número de vezes que um elemento ocorre em uma amostra.

ESTATÍSTICA BÁSICA. Freqüência Absoluta: Número de vezes que um elemento ocorre em uma amostra. ESTATÍSTICA BÁSICA. Apresentação Estatística é a parte da Matemática que organiza e analisa dados coletados em uma amostra de um conjunto. Com base nos resultados, faz projeções para todo o conjunto com

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Aula 3 Distribuição de Frequências.

Aula 3 Distribuição de Frequências. 1 Estatística e Probabilidade Aula 3 Distribuição de Frequências. Professor Luciano Nóbrega Distribuição de frequência 2 Definições Básicas Dados Brutos são os dados originais que ainda não foram numericamente

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Aula 3 Cap 02 Estatística Descritiva Nesta aula... estudaremos medidas de tendência central, medidas de variação e medidas de posição. Medidas de tendência central Uma medida de tendência central é um

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde

Leia mais

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança?

c) Encontre um intervalo de confiança 95% para a razão das variâncias variâncias das duas amostras podem ser iguais com este grau de confiança? MQI 003 Estatística para Metrologia semestre 008.0 Lista 4 Profa. Mônica Barros PROBLEMA Toma-se duas amostras de engenheiros formados há 5 anos por duas Universidades e faz-se uma pesquisa salarial, cujos

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

Análise Descritiva de Dados

Análise Descritiva de Dados Análise Descritiva de Dados Posicionando indíviduos em relação ao grupo Medidas de Posição - Então, qual foi sua posição final na corrida? - Ah, eu fiquei em 3 o lugar! - Puxa... Foi mesmo? E quantos estavam

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Número: Dois. Lista de Exercícios Estatística/Introdução a Estatística

Número: Dois. Lista de Exercícios Estatística/Introdução a Estatística /Introdução a Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação. Engenharia

Leia mais

Inferência Estatística. Estimação

Inferência Estatística. Estimação Inferência Estatística Estimação Inferência Estatística fazer inferências tirar conclusões fazer inferência estatística tirar conclusões sobre uma população com base em somente uma parte dela, a amostra,

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Número: Dois. Lista de Exercícios Estatística

Número: Dois. Lista de Exercícios Estatística Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias Discretas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 03: Variáveis Aleatórias Discretas Qual a similaridade na natureza dessas grandezas? Tempo de espera de um ônibus

Leia mais

Aula 10 Estimação e Intervalo de Confiança

Aula 10 Estimação e Intervalo de Confiança Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO.

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO. Prezados concursandos!!! Muita paz e saúde para todos!!! Passemos aos comentários da prova de Raciocínio Lógico Quantitativo propostas pela CESGRANRIO no último concurso para o IBGE, no dia 10/01/010.

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

ESTATÍSTICA. na Contabilidade Parte 5. Medidas Estatísticas

ESTATÍSTICA. na Contabilidade Parte 5. Medidas Estatísticas ESTATÍSTICA na Contabilidade Parte 5 Luiz A. Bertolo Medidas Estatísticas A distribuição de frequências permite-nos descrever, de modo geral, os grupos de valores (classes) assumidos por uma variável.

Leia mais

Distribuições Importantes. Distribuições Contínuas

Distribuições Importantes. Distribuições Contínuas Distribuições Importantes Distribuições Contínuas Distribuição Normal ou de Gauss Definição Diz-se que uma v.a. X contínua tem distribuição normal ou de Gauss, X Nor(µ,σ), se a sua função densidade de

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

CONTEÚDO FISICANDO AULA 01 CHARLES THIBES

CONTEÚDO FISICANDO AULA 01 CHARLES THIBES CONTEÚDO Áreas das figuras planas: Notação científica Sistema Internacional de Unidades Termologia Escalas de temperatura Relação entre energia elétrica, potência e tempo Calorimetria Calor sensível e

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais