PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano"

Transcrição

1 PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano

2 Aula 8 11/2014 Distribuição Normal

3 Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas. Para ilustrar a correspondência entre área e probabilidade, vamos aprender as Em seguida, as., que ocorrem frequentemente em aplicações reais e têm papel importante nos métodos de inferência estatística. Probabilidade e Estatística 3/41

4 Distribuição Normal Se uma variável aleatória contínua tem uma distribuição com um gráfico simétrico e em forma de sino, e que pode ser descrito pela equação a seguir, dizemos que ela tem Depende apenas de µ e σ y = e 1" x µ % $ ' 2# σ & σ 2π 2 Probabilidade e Estatística 4/41

5 Distribuição Normal Padrão A tem as seguintes propriedades: 1. Seu gráfico tem forma de sino; 2. Sua média é igual a 0 (µ = 0); 3. Seu desvio-padrão é igual a 1 (σ = 1). Probabilidade e Estatística 5/41

6 Distribuições Uniformes O foco será o estudo da Distribuição de Probabilidade Normal, porém iremos começar com a, que nos dará informações para compreender estas duas propriedades importantes: 1. A área sob o gráfico de uma distribuição de probabilidades é igual a 1; 2. Há uma correspondência entre área e probabilidade (ou frequência relativa), de modo que algumas propriedades podem ser encontradas pela identificação das áreas correspondentes. Probabilidade e Estatística 6/41

7 Distribuição Uniforme Uma variável aleatória contínua tem uma se seus valores se espalham uniformemente sobre a faixa de valores possíveis. O gráfico de uma Distribuição Uniforme resulta em uma forma retangular. Probabilidade e Estatística 7/41

8 EXEMPLO A companhia de Energia fornece eletricidade com níveis de voltagem que são uniformemente distribuídos entre 123 e 125 volts. Isto é, qualquer quantidade de voltagem entre 123 e 125 volts é possível, e todos os possíveis valores são equiprováveis. Se selecionamos aleatoriamente um dos níveis de voltagem e representarmos seu valor pela variável aleatória x, então x tem uma distribuição que tem um gráfico como: Probabilidade e Estatística 8/41

9 EXEMPLO Um gráfico de uma distribuição de probabilidade contínua, como este, é chamado de. Probabilidade e Estatística 9/41

10 EXEMPLO Dada a distribuição uniforme do nível de voltagem, ache a probabilidade de que um nível de voltagem selecionado aleatoriamente seja maior do que 124,5 volts. Probabilidade e Estatística 10/41

11 Curva de Densidade Uma curva de densidade deve satisfazer os seguintes requisitos: 1. A área sob a curva tem que ser igual a Cada ponto na curva tem que ter uma altura vertical maior ou igual a 0, ou seja, a curva não pode estar abaixo do eixo x. Probabilidade e Estatística 11/41

12 Área Probabilidade Como a área total sob a curva de densidade é igual a 1, existe uma correspondência entre e. No caso da Distribuição Uniforme, a área abaixo da curva, que é facilmente calculada por: Área = Base Altura, corresponderá à probabilidade referente a esta área. Probabilidade e Estatística 12/41

13 Área Probabilidade Como a curva de densidade de uma Distribuição Normal tem a forma de sino, é mais difícil acharmos a área, porém o princípio básico é o mesmo: Há uma correspondência entre e Probabilidade e Estatística 13/41

14 Distribuição Normal Padrão A distribuição normal padrão é uma distribuição de probabilidade normal com média µ = 0 e desvio-padrão σ = 1, e a área total sob a curva de densidade é Escore z Probabilidade e Estatística 14/41

15 Distribuição Normal Padrão Não é fácil a determinação de áreas para a curva de densidade da distribuição normal padrão, então necessitamos de valores já calculados previamente e que constam na seguinte tabela: Probabilidade e Estatística 15/41

16 Distribuição Normal Padrão Ao usar a Tabela da distribuição normal padrão, temos que: 1. A tabela refere-se apenas à, que tem média 0 e desvio padrão 1; 2. A tabela é apresentada em duas páginas, uma para e a outra para ; 3. Cada valor no corpo da tabela é a até uma reta vertical sobre um valor específico do escore z; Probabilidade e Estatística 16/41

17 Distribuição Normal Padrão 4. Ao trabalhar com um gráfico, entre escores z e áreas. Escore z Distância na escala horizontal da distribuição normal padrão; refere-se à coluna à esquerda e à linha do topo da tabela. Área Região sob a curva; refere-se aos valores no corpo da tabela. Probabilidade e Estatística 17/41

18 Distribuição Normal Padrão z,00,01-3,4 0,0003 0,0003-3,3 0,0005 0,0005-3,2 0,0007 0,0007-3,1 0,0010 0,0009 Área Probabilidade e Estatística 18/41

19 EXEMPLO 1 Uma companhia de instrumentos científicos de precisão fabrica termômetros que devem informar temperaturas de 0 o C no ponto de congelamento da água. Testes em uma grande amostra desses instrumentos revelam que, no ponto de congelamento da água, alguns termômetros indicam temperaturas abaixo de 0 o C e alguns dão temperaturas acima de 0 o C. Suponha que a leitura média seja 0 o C e que o desvio-padrão das leituras seja 1,00 o C. Suponha, também, que as leituras sejam normalmente distribuídas. Se um termômetro é selecionado aleatoriamente, ache a probabilidade de que, no ponto de congelamento da água, a leitura seja menor que 1,27 o C. Probabilidade e Estatística 19/41

20 EXEMPLO 1 Gostaríamos de saber agora, qual a probabilidade de selecionarmos aleatoriamente um termômetro que apresente leitura (no ponto de congelamento da água) superior a -1,23 o C. Agora, determine a probabilidade de selecionarmos aleatoriamente um termômetro que apresente letirua (no ponto de congelamento da água) entre -2,00 o C e 1,50 o C. Probabilidade e Estatística 20/41

21 O último resultado do exemplo 1, pode ser generalizado como a seguinte regra: A área correspondente à região entre dois escores z específicos pode ser encontrada achando-se. Probabilidade e Estatística 21/41

22 Com uma distribuição de probabilidade contínua, tal como a distribuição normal, a probabilidade de se obter qualquer valor único exato é 0 (P(z=a) = 0). De modo que: P (a z b) = P (a < z < b) Então, a probabilidade de se obter um escore z no é igual à probabilidade de se obter um escore z. Probabilidade e Estatística 22/41

23 Escores z Áreas conhecidas Em muitos casos, temos que: Dada uma área (ou probabilidade), achar o escore z correspondente. Probabilidade e Estatística 23/41

24 Escores z Áreas conhecidas Procedimento para a determinação de um Escore z a partir de uma área conhecida. 1. Desenhe uma curva em forma de sino e identifique a região sob a curva que corresponde à probabilidade dada. Se a região não é uma região acumulada à esquerda, trabalhe com regiões conhecidas que sejam regiões acumuladas à esquerda. 2. Usando a área acumulada à esquerda, localize a probabilidade mais próxima no corpo da tabela da distribuição normal padrão e identifique o escore z correspondente. Probabilidade e Estatística 24/41

25 Escores z Áreas conhecidas Se um valor desejado de área o valor ; Se um valor está a tabela, selecione o ; na tabela, selecione entre dois valores da Para escores z, podemos usar como uma aproximação para a área acumulada à esquerda; Para escores z, podemos usar como uma aproximação para a área acumulada à esquerda. Probabilidade e Estatística 25/41

26 EXEMPLO 2 Use os mesmos termômetros do exemplo anterior, com leituras de temperatura no ponto de congelamento da água normalmente distribuídas, com média de 0 o C e desviopadrão de 1 o C. Ache a temperatura correspondente a P 95, o 95 o percentil. Isto é, ache a temperatura que separa os 95% inferiores dos 5% superiores. Ache, agora, as temperaturas separando os 2,5% inferiores e os 2,5% superiores. Probabilidade e Estatística 26/41

27 Valores Críticos Para uma distribuição normal, um valor crítico é um escore z na fronteira que separa os escores z que têm ocorrência provável daqueles que têm ocorrência improvável. Valores críticos comuns são z = -1,96 e z = 1,96. Os valores abaixo de 1,96 são improváveis de acontecer, pois ocorrem em apenas 2,5% dos dados, e os valores acima de z = 1,96 também são improváveis de acontecer, pois também ocorrem em apenas 2,5% das leituras. Probabilidade e Estatística 27/41

28 Valores Críticos Na expressão z α, faça α = 0,025 e ache o valor de z 0,025. A notação de z 0,025 é usada para representar o escore z com uma área de 0,025 à sua direita. Recorrendo à tabela da distribuição normal, podemos observar que z 0,025 = 1,96. Probabilidade e Estatística 28/41

29 Valores Críticos Para encontrar o valor de z α, usando a tabela de distribuição normal padrão, use o valor 1 α. Probabilidade e Estatística 29/41

30 Aplicações da distribuição normal É pouco comum encontrarmos situações que seguem uma distribuição normal padrão. As distribuições normais típicas envolvem médias diferentes de 0 e desvios-padrão diferentes de 1. Nestes casos, devemos ser capazes de encontrar probabilidades correspondentes a valores da variável x e, dado algum valor de probabilidade, devemos ser capazes de encontrar o valor correspondente da variável x. Probabilidade e Estatística 30/41

31 Aplicações da distribuição normal Para trabalhar com distribuições normais não padronizadas, simplesmente iremos padronizar os valores para usar os mesmo procedimentos aprendidos até aqui. Se convertermos valores para escores z padronizados usando a fórmula a seguir, os procedimentos usados serão os mesmos usados para a distribuição normal padrão. z = x µ σ Arredonde os escores z para 2 casas decimais Probabilidade e Estatística 31/41

32 Aplicações da distribuição normal Procedimento para achar áreas com uma distribuição normal não padronizada: 1. Esboce a curva normal, marque a média e os valores específicos de x e, então, sombreie a região que representa a probabilidade desejada; 2. Para cada valor relevante de x que representa um limite da região sombreada, converta o valor em seu escore z equivalente; 3. Consulte a tabela para achar a área da região sombreada. Probabilidade e Estatística 32/41

33 EXEMPLO 3 Uma porta típica de uma casa tem uma altura de 2 metros. Dado que as alturas de homens são normalmente distribuídas, com média de 1,725 m e desvio-padrão de 7 cm,. Ache a porcentagem de homens que passarão por uma portapadrão sem se curvar e sem bater a cabeça. Essa porcentagem é alta o bastante para que se continue a usar 2 metros como padrão de altura? Probabilidade e Estatística 33/41

34 EXEMPLO 3 O valor do escore z é 3,93, dando uma área de 0,9999. Conclui-se que a proporção de homens que podem passar pelas portas com altura-padrão de 2 m é 0,9999 ou 99,99%. Muitos poucos homens não poderão passar sem abaixarem ou baterem a cabeça. Essa porcentagem é alta o suficiente para justificar o suo de 2 m como altura-padrão para portas. Probabilidade e Estatística 34/41

35 EXEMPLO 4 Os pesos ao nascer nos Estados Unidos são distribuídos normalmente, com média de 3420 g e desvio-padrão de 495 g. O Hospital Geral de Newport exige tratamento especial para bebês que nasçam com menos de 2450 g (não usualmente leves) ou mais de 4390 g (não usualmente pesados). Qual é a porcentagem de bebês que não requerem tratamento especial por terem pesos ao nascer entre 2450 g e 4390g? Sob essas condições, muitos bebês precisam de cuidados especiais? Probabilidade e Estatística 35/41

36 EXEMPLO 4 Expressando o resultado em porcentagem, podemos concluir que 95% dos bebês não exigem cuidados especiais por terem pesos entre 2450 g e 4390 g. Segue que 5% dos bebês requerem tratamento especial por serem não usualmente leves ou pesados. A taxa de 5%, provavelmente, não é muito alta para hospitais típicos. Probabilidade e Estatística 36/41

37 Áreas conhecidas Não confunda escores z e áreas; Escolha o lado correto (direito/esquerdo) do gráfico; Um escore z tem que ser negativo sempre que se localizar na metade esquerda da distribuição normal; Áreas (ou probabilidades) são valores positivos ou nulos, mas NUNCA negativos. Probabilidade e Estatística 37/41

38 Áreas conhecidas Procedimento para achar valores a partir de áreas conhecidas 1. Esboce o gráfico da distribuição normal, introduza a probabilidade ou porcentagem dada na região apropriada do gráfico e identifique o(s) valor(es) x de interesse; 2. Use a Tabela para achar o escore z correspondente à área mais próxima e, em seguida, identifique o escore z correspondente; Probabilidade e Estatística 38/41

39 Áreas conhecidas 3. Usando a fórmula de conversão de valores para escore z, encontre o valor de x; z = x µ σ 4. Consulte o esboço da curva para verificar se a solução faz sentido no contexto do gráfico e no contexto do problema. Probabilidade e Estatística 39/41

40 EXEMPLO 5 No planejamento de um ambiente, um critério comum é que se ajuste a 95% da população. Qual a altura de uma porta se 95% dos homens devem passar por ela sem se abaixar e sem bater a cabeça? Isto é, ache o 95 º percentil das alturas dos homens, que são normalmente distribuídas, com média de 1,75m e desviopadrão de 0,07 m. Probabilidade e Estatística 40/41

41 EXEMPLO 5 O resultado é: x = 1,87 m. Isto significa que uma altura de porta de 1,87 permitiria que 95% dos homens passassem sem se curvar ou bater a cabeça. Assim, 5% dos homens não passariam por uma porta com altura de 1,87 m. Como muitos homens passam por portas com muita frequência, esta taxa de 5%, provavelmente, não seria prática. Probabilidade e Estatística 41/41

42 EXEMPLO 6 O Hospital Geral de Newport deseja redefinir os pesos ao nascer mínimo e máximo que exigem tratamento especial por serem não usualmente baixos ou altos. Depois de considerar fatores relevantes, um comitê recomenda um tratamento especial para os 3% inferiores e os 1% superiores dos pesos ao nascer. Ajude o comitê a identificar os pesos ao nascer que separam os 3% inferiores e os 1% superiores. Os pesos ao nascer, nos Estados Unidos, são normalmente distribuídos, com média de 3420 g e desvio-padrão de 495g. Probabilidade e Estatística 42/41

43 EXEMPLO 6 O Resultado nos indica que: O peso ao nascer de 2489 g (arredondado) separa os 3% inferiores dos pesos ao nascer, e 4573 (arredondado) separa o 1% superior dos pesos ao nascer. Agora, o hospital tem critérios bem definidos para determinar se um bebê recém-nascido deve receber tratamento especial relativo a um peso ao nascer não usualmente baixo ou alto. Probabilidade e Estatística 43/41

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

AULA 02 Distribuição de probabilidade normal

AULA 02 Distribuição de probabilidade normal 1 AULA 02 Distribuição de probabilidade normal Ernesto F. L. Amaral 02 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH)

Leia mais

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue

Estatística e Probabilidade Aula 06 Distribuições de Probabilidades. Prof. Gabriel Bádue Estatística e Probabilidade Aula 06 Distribuições de Probabilidades Prof. Gabriel Bádue Teoria A distribuição de Poisson é uma distribuição discreta de probabilidade, aplicável a ocorrências de um evento

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Princípios de Bioestatística Aula 7: Distribuição Normal (Gaussiana) Distribuição de frequência dos valores

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Notas de Aula. Capítulo 6 Distribuição de Probabilidade Normal. Seção 6-1 Visão Geral. Estatística Elementar 10ª Edição. by Mario F.

Notas de Aula. Capítulo 6 Distribuição de Probabilidade Normal. Seção 6-1 Visão Geral. Estatística Elementar 10ª Edição. by Mario F. Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Copyright 2007 2007 Pearson Education, Inc Inc Publishing as as Pearson Addison-Wesley. Slide 1 Capítulo 6 Distribuição

Leia mais

Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos

Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Copyright 2007 2007 Pearson Education, Inc Inc Publishing as as Pearson Addison-Wesley. Slide 1 Capítulo 6 Distribuição

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Estatística Descritiva Medidas de Variação Probabilidade e Estatística 3/42 Medidas de Variação Vamos

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais

AULA 03 Estimativas e tamanhos amostrais

AULA 03 Estimativas e tamanhos amostrais 1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade

Leia mais

Aula 2 A distribuição normal

Aula 2 A distribuição normal Aula 2 A distribuição normal Objetivos: Nesta aula você estudará a distribuição normal, que é uma das mais importantes distribuições contínuas. Você verá a definição geral desta distribuição, mas, nesse

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Uma variável aleatória contínua é uma função definida sobre o espaço amostral, que associa valores em um intervalo de números reais. Exemplos: Espessura de um item

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Resumos e gráficos de dados Prof. Josuel Kruppa Rogenski 2 o /2017 1 VISÃO GERAL métodos de organização, resumo e obtenção de gráficos; objetivo: compreender o conjunto de dados

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 7: Intervalos de Confiança com uma amostra Leitura obrigatória: Devore, cap 7 ou Montgomery e Runger, cap 8 Chap 8-1 Objetivos Como inferir sobre um parâmetro da população,

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados. Capítulo 5 Distribuições de probabilidade normal slide 1 Descrição do capítulo 5.1 Introdução à distribuição normal e distribuição normal padrão 5.2 Distribuições normais: encontrando probabilidades 5.3

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 04 Medidas de posição relativa Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Determinando

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Prof. Eduardo Bezerra CEFET/RJ 20 de Abril de 2018 (CEFET/RJ) Intervalos de Confiança - Amostras Pequenas 1 / 26 Roteiro 1 Distribuição t de Student 2 Funções

Leia mais

AULA 04 Teste de hipótese

AULA 04 Teste de hipótese 1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal

Leia mais

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas

14. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas 4. Distribuição de Probabilidade para Variáveis Aleatórias Contínuas Os valores assumidos por uma variável aleatória contínua podem ser associados com medidas em uma escala contínua como, por exemplo,

Leia mais

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios-

FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- FMU- Cursos de Tecnologia Disciplina: Métodos Quantitativos em Gestão e Negócios- Memória - Teoria e Exercícios sobre Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade As distribuições

Leia mais

PROBABILIDADE E ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 3 09/2014 Estatística Descritiva Medidas de Centro Probabilidade e Estatística 3/19 Medidas de Centro Uma medida

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro.

LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. LISTA 3 Introdução à Probabilidade (Profa. Cira.) OBS. Apenas os exercícios indicados como adicional não constam no livro. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - V. A. C O N T Í N

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Distribuição Normal. Apontamentos para a disciplina de Estatística I. Tomás da Silva, 2003/2006

Distribuição Normal. Apontamentos para a disciplina de Estatística I. Tomás da Silva, 2003/2006 Distribuição Normal Apontamentos para a disciplina de Estatística I Tomás da Silva, 2003/2006 Introdução: Curvas normais e distribuições normais A regra 689599,7 A distribuição normal padronizada (ou:

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ

Distribuição Normal. Estatística Aplicada I DISTRIBUIÇÃO NORMAL. Algumas característica importantes. 2πσ Estatística Aplicada I DISTRIBUIÇÃO NORMAL Prof a Lilian M. Lima Cunha AULA 5 09/05/017 Maio de 017 Distribuição Normal Algumas característica importantes Definida pela média e desvio padrão Media=mediana=moda

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc. Contabilometria Prof.: Patricia Maria Bortolon, D. Sc. Intervalos de Confiança Fonte: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Teoria e Aplicações, 5a. Edição, Editora

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 7 Distribuição da Média Amostral Leitura obrigatória: Devore: Seções 5.3, 5.4 e 5.5 Chap 8-1 Inferência Estatística Na próxima aula vamos começar a parte de inferência

Leia mais

Distribuições de Probabilidade Contínuas 1/19

Distribuições de Probabilidade Contínuas 1/19 all Distribuições de Probabilidade Contínuas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Estatística 1. Resumo Teórico

Estatística 1. Resumo Teórico Estatística 1 Resumo Teórico Conceitos do Curso 1. Tipos de Variáveis e Representações Gráficas a. Tipos de Variáveis b. Distribuição de Frequências c. Histograma 2. Estatística Descritiva Medidas Estatísticas

Leia mais

GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P2 Profa. Ana Maria Farias

GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P2 Profa. Ana Maria Farias GET00116 Fundamentos de Estatística Aplicada Lista de Exercícios de Revisão para a P Profa. Ana Maria Farias 1. Em 00, Kaspersky Lab relatou que aproximadamente 0% de todos os e-mails são lixo ou spam.

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Seção 2.1. Distribuições de freqüência e seus gráficos

Seção 2.1. Distribuições de freqüência e seus gráficos Seção 2.1 Distribuições de freqüência e seus gráficos Distribuições de freqüência Minutos gastos ao telefone 102 124 108 86 103 82 71 104 112 118 87 95 103 116 85 122 87 100 105 97 107 67 78 125 109 99

Leia mais

Cap. 8 - Intervalos Estatísticos para uma Única Amostra

Cap. 8 - Intervalos Estatísticos para uma Única Amostra Intervalos Estatísticos para ESQUEMA DO CAPÍTULO 8.1 INTRODUÇÃO 8.2 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO NORMAL, VARIÂNCIA CONHECIDA 8.3 INTERVALO DE CONFIANÇA PARA A MÉDIA DE UMA DISTRIBUIÇÃO

Leia mais

Amostragem Aleatória e Descrição de Dados - parte II

Amostragem Aleatória e Descrição de Dados - parte II Amostragem Aleatória e Descrição de Dados - parte II 2012/02 1 Diagrama de Ramo e Folhas 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Construir e interpretar disposições gráficas dos

Leia mais

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley.

Notas de Aula. Copyright 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de

Leia mais

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina.

Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. Caros Alunos, segue a resolução das questões de Estatística aplicadas na prova para o cargo de Auditor Fiscal da Receita Municipal de Teresina. De forma geral, a prova manteve o padrão das questões da

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas

Capítulo 5 Distribuições de Probabilidades. Seção 5-1 Visão Geral. Visão Geral. distribuições de probabilidades discretas Capítulo 5 Distribuições de Probabilidades 5-1 Visão Geral 5-2 Variáveis Aleatórias 5-3 Distribuição de Probabilidade Binomial 5-4 Média, Variância e Desvio Padrão da Distribuição Binomial 5-5 A Distribuição

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br http://www.lce.esalq.usp.br/arquivos/aulas/2014/lce0216/ 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo dos números

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Modelo Normal. Cristian Villegas Modelo Normal Cristian Villegas clobos@usp.br Outubro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução O modelo normal ocupa uma posição de grande destaque tanto a nível teórico como prático,

Leia mais

b) Variáveis Aleatórias Contínuas

b) Variáveis Aleatórias Contínuas Disciplina: 1171 b) Variáveis Aleatórias Contínuas Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar 1 Uma variável aleatória é contínua (v.a.c.) se seu conjunto de valores é qualquer intervalo

Leia mais

P2 - parte 2 - Bioestatística Valor: 15 pontos 27/11/2018. A prova pode ser enviada para o em PDF. p k (1 p) n k (1) k

P2 - parte 2 - Bioestatística Valor: 15 pontos 27/11/2018. A prova pode ser enviada para o  em PDF. p k (1 p) n k (1) k Instrucões Leia os resumos da teoria. Estude a teoria. Data de entrega: 07/12/2018 (sexta-feira). A prova pode ser enviada para o e-mail anapaula@ana.mat.br em PDF. Distribuição Binomial O número X de

Leia mais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Universidade Federal Fluminense Instituto de Matemática e Estatística GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski

Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA. Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Escola Politécnica da USP Engenharia de Petróleo e Gás DISTRIBUIÇÃO DE PROBABILIDADE CONTÍNUA Aulas 10, 11,12 e 13 - Prof. Regina Meyer Branski Objetivos Distribuição Normal e Distribuição Normal Padrão

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Lucas Santana da Cunha de junho de 2018 Londrina

Lucas Santana da Cunha de junho de 2018 Londrina Variável aleatória contínua: Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 13 de junho de 2018 Londrina 1 / 26 Esperança e variância de Y Função de distribuição acumulada

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS

ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS ALGARISMOS SIGNIFICATIVOS E TRATAMENTO DE DADOS 1.0 Objetivos Utilizar algarismos significativos. Distinguir o significado de precisão e exatidão. 2.0 Introdução Muitas observações na química são de natureza

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013

Universidade Federal da Paraíba Departamento de Estatística Lista 1 - Outubro de 2013 1. Seja X a duração de vida de uma válvula eletrônica e admita que X possa ser representada por uma variável aleatória contínua, com f.d.p. be bx, x 0. Seja p j = P (j X < j + 1). Verifique que p j é da

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Medidas de Posição ou Tendência Central

Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Medidas de Posição ou Tendência Central Fornece medidas que podem caracterizar o comportamento dos elementos de uma série; Possibilitando determinar se um valor

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Aula 6 - Variáveis aleatórias contínuas

Aula 6 - Variáveis aleatórias contínuas Aula 6 - Variáveis aleatórias contínuas PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 18 Variáveis aleatórias

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Distribuição Normal Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES NORMAL Distribuição Normal É uma distribuição teórica de frequências onde

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Prof. Tarciana Liberal Departamento de Estatística INTRODUÇÃO A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através

Leia mais

Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos

Notas de Aula. Estatística Elementar. by Mario F. Triola. Tradução: Denis Santos Notas de Aula Estatística Elementar 10ª Edição by Mario F. Triola Tradução: Denis Santos Slide 1 Capítulo 3 Estatísticas para Descrição, Exploração e Comparação de Dados 3-1 Visão Geral 3-2 Medidas de

Leia mais

AULAS 10 E 11 Estimativas e tamanhos amostrais

AULAS 10 E 11 Estimativas e tamanhos amostrais 1 AULAS 10 E 11 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 17 e 19 de setembro de 2013 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio

Leia mais

AULA 10 Estimativas e Tamanhos Amostrais

AULA 10 Estimativas e Tamanhos Amostrais 1 AULA 10 Estimativas e Tamanhos Amostrais Ernesto F. L. Amaral 18 de setembro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 2/2016 1 / 35 variáveis discretas vs variáveis contínuas

Leia mais

6- Probabilidade e amostras: A distribuição das médias amostrais

6- Probabilidade e amostras: A distribuição das médias amostrais 6- Probabilidade e amostras: A distribuição das médias amostrais Anteriormente estudamos como atribuir probabilidades a uma observação de alguma variável de interesse (ex: Probabilidade de um escore de

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade

Leia mais

EAC-042: Ajustamento de Observações

EAC-042: Ajustamento de Observações Aula 3: Distribuição Normal EAC-042: Ajustamento de Observações Prof. Paulo Augusto Ferreira Borges 1 https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1/30 Dizemos que uma v.a. contínua X apresenta

Leia mais

Inferência para CS Modelos univariados contínuos

Inferência para CS Modelos univariados contínuos Inferência para CS Modelos univariados contínuos Renato Martins Assunção DCC - UFMG 2014 Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados contínuos 2014 1 / 42 V.A. Contínua

Leia mais