(V m. E n ), (1) = g n

Tamanho: px
Começar a partir da página:

Download "(V m. E n ), (1) = g n"

Transcrição

1 Modelo Macroscópico para o Transporte Iônico Passivo pela Membrana Celular Como visto na aula 11, quando apenas uma espécie iônica pode fluir pela membrana celular existe um valor de equilíbrio para o potencial de membrana (o potencial de Nernst, E n ) tal que quando o potencial de membrana V m tem esse valor o fluxo dessa espécie iônica através da membrana se anula. Um modelo simples para capturar este fenômeno, sem recorrer à teoria de eletrodifusão e à equação de Nernst-Planck, consiste em assumir que a relação entre a densidade de corrente J n e o potencial de membrana V m é linear, do tipo lei de Ohm 1 : J n = g n (V m E n ), (1) onde g n é a condutância da membrana à espécie iônica n por unidade de área (pois J n é uma medida por unidade de área). Se quisermos calcular a corrente total passando pela membrana, teremos que multiplicar os dois lados da equação acima pela área da superfície da membrana A. Este modelo captura o fenômeno da existência de um potencial de equilíbrio dado pelo potencial de Nernst. Para verificar isto, basta fazer V m = E n na equação acima. O resultado é J n = 0 como desejado. 1 Para uma revisão sobre lei de Ohm, veja o apêndice desta aula. 1

2 Por outro lado, quando V m E n, a equação (1) implica que J n varia linearmente com a diferença entre V m e E n. Além de sua simplicidade, este modelo permite representar a relação entre o potencial de membrana V m e a densidade de corrente J n por um circuito elétrico equivalente (veja a figura abaixo). Observe a figura acima. No lado esquerdo temos um esquema para a membrana celular mostrando a densidade de corrente que passa através dela, do lado de dentro da célula para o lado de fora. No lado direito temos o modelo de circuito equivalente que representa a membrana e a densidade de corrente do ponto de vista elétrico. A membrana oferece uma resistência à passagem de corrente através dela, que é representada aqui pela condutância por unidade de área g n. 2

3 Existe uma diferença de potencial elétrico V m entre o lado de dentro e o lado de fora da membrana e a densidade de corrente J n é proporcional à diferença entre V m e o potencial de Nernst E n, de maneira que E n pode ser representado por uma bateria em série com a resistência g n. Para entender melhor: Da figura acima, vemos que a variação de potencial entre o lado de dentro e o lado de fora da membrana, V m, é numericamente igual à soma da variação de potencial pela resistência com a variação de potencial pela bateria E n. Chamando a resistência de R e omitindo o índice n para simplificar: Rearranjando: V m = RI + E. RI = V m E I = 1 ( R V E m ) = G( V m E). Dividindo pela área da superfície da membrana: I A = G A V m E ( ) J = g V m E ( ). A condutância de um canal iônico é uma quantidade positiva. Portanto, pela equação (1): se V m E n > 0, então J n > 0; se V m E n < 0, então J n < 0. Um transporte iônico que satisfaz essas condições é dito passivo, pois se origina apenas da diferença de potencial entre os dois lados da membrana sem gastos energéticos por parte da membrana. 3

4 As membranas celulares têm mecanismos para fazer com que íons passem através dela no sentido contrário ao definido pela relação entre V m e E n acima. Esses mecanismos requerem o gasto de energia por parte da membrana e o tipo de transporte proporcionado por eles é chamado de ativo. A convenção a ser adotada aqui para o sentido positivo de corrente através da membrana celular (convenção dos eletrofisiologistas) é a de que corrente que sai da célula é positiva e corrente que entra na célula é negativa. Como corrente elétrica é definida como movimento de cargas positivas, corrente positiva através da membrana corresponde a cargas positivas saindo da célula e corrente negativa através da membrana corresponde a cargas positivas entrando na célula. Por exemplo, suponha que os íons que fluem pela membrana são íons de potássio (K + ). A equação (1) fica então: J K = g K (V m E K ). (2) Se V m E K > 0, então J K > 0. Isto corresponde a: Corrente para fora da célula; Cargas positivas saindo da célula; Íons de potássio saindo da célula; Potencial dentro fica mais negativo em relação ao exterior (por causa da saída das cargas positivas); V m diminui (lembre-se que V m = V dentro V fora ); V m vai em direção a E K. 4

5 Tomando um exemplo concreto: Vamos supor que o potencial de Nernst do potássio é E K = 75 mv e que o potencial de membrana é V m = 70 mv. Note que V m E K = 70 mv ( 75 mv) = 5 mv > 0. Se cargas positivas saem da célula, o potencial dentro tende a ficar mais negativo, por exemplo indo a V m = 72 mv, que é mais próximo de E K. Quando V m = E K, a corrente para. Se V m E K < 0, então J K < 0. Isto corresponde a: Corrente para dentro da célula; Cargas positivas entrando da célula; Íons de potássio entrando na célula; Potencial dentro fica mais positivo em relação ao exterior (por causa da entrada das cargas positivas); V m aumenta; V m vai em direção a E K. Exemplo: E K = 75 mv e V m = 80 mv, portanto V m E K = 80 mv ( 75 mv) = 5 mv < 0. Se cargas positivas entram na célula, o potencial dentro tende a ficar mais positivo, por exemplo indo a V m = 78 mv, que é mais próximo de E K. Quando V m = E K, a corrente para. Podemos dizer que a corrente de potássio através da membrana é provocada pela diferença V m E K (em inglês diz-se que V m E K é a driving force para a corrente). O sentido da corrente é sempre tal que o potencial de membrana tende para o valor do potencial de equilíbrio (Nernst) do íon. 5

6 Faça como exercício para casa o mesmo estudo acima considerando o íon de sódio (Na + ) e depois o íon de cloreto (Cl - ). Use como valores de E Na e E Cl os valores da tabela da página 6 da aula 11. O resultado será o mesmo. O sentido da corrente sempre será o de forçar o potencial de membrana V m em direção ao potencial de equilíbrio do íon. Eletrodifusão Estacionária pela Membrana Celular O modelo de circuito elétrico para um canal iônico apresentado acima pode ser interpretado da seguinte maneira. Suponhamos que a membrana seja constituída por uma matriz impermeável na qual existam canais (poros) cheios de água, pelos quais os íons possam passar por eletrodifusão (figura abaixo). O fluxo iônico por esse poro pode ser modelado pelas equações de eletrodifusão vistas nas aulas passadas. 6

7 Para simplificar, vamos supor que a eletrodifusão é estacionária. Neste caso, como visto na aula 12, a densidade J n é constante e o problema de eletrodifusão é descrito pelas equações (6) e (7) daquela aula, reproduzidas abaixo: e, " J n = u n z n F$ RT dc n(x) # + z n Fc n (x) dv(x) % ' &, (3) 2 d V ( x) 2 ρ ( x) ε =. (4) Como vamos considerar aqui a corrente (ou a densidade de corrente) por um único canal da membrana, vamos usar um super-índice c (de canal) para indicar isto. Então, a equação de Nernst-Planck para um único canal fica: " J c n = u n z n F$ RT dc n(x) # + z n Fc n (x) dv(x) % '. & (5) Multiplicando a equação (5) por A (a área da seção reta do canal), obtemos uma expressão para a corrente passando pelo canal, I n c = AJ n c : " I c n = AJ c n = u n Az n F RT dc (x) n $ # + z n Fc n (x) dv(x) % ' &. (6) Esta equação pode ser manipulada da seguinte maneira. Primeiramente, vamos reescrevê-la como, " I c n = u n Az 2 n F 2 c n (x) $ RT # z n F 1 dc n (x) c n (x) + dv(x) % '. (7) & 7

8 Usando o fato de que Biofísica II FFCLRP USP Prof. Antônio Roque Aula 13 1 c dc d = lnc, podemos escrever a equação (7) na forma (note que estamos apenas usando um artifício matemático para transformar a equação em outra que possa ser mais facilmente interpretada): I c n = u n Az 2 n F 2 c n (x) d " RT z n F lnc (x)+v(x) % $ n ' # & I n c u n Az n 2 F 2 c n (x) # RT = d z n F lnc (x)+v(x) & % n (. (8) $ ' Integrando ambos os lados de x = 0 a x = d: I n c u n Az n 2 F 2 d x=d # = d RT c n (x) z n F lnc (x)+v(x) & % n ( $ ' 0 x=0 I c n u n Az 2 n F 2 d 0 c n (x) $ = RT z n F lnc ' & n(x)+v(x) ) % ( x=d x=0 I c n u n Az 2 n F 2 d 0 c n (x) = RT ( z n F lnc (d) lnc (0) n n ) + ( V(0) V(d) ) I c n u n Az 2 n F 2 d 0 c n (x) = RT z n F ln $ c (d) ' n & )+V m, % c n (0) (9) ( onde se usou a definição de potencial de membrana: V m = V(0) V(d). 8

9 Lembrando que o potencial de Nernst do íon n é E n = RT z n F ln! c (d) $ n # &, " c n (0) % podemos reescrever a equação (9) como: Biofísica II FFCLRP USP Prof. Antônio Roque Aula 13 I n c u n Az n 2 F 2 d = V m E n. c n (x) (10) 0 Podemos isolar I n c no lado esquerdo da equação acima, obtendo: I n c = γ n ( V m E n ), (11) onde definiu-se γ n = u naz 2 n F 2 d. (12) 0 c n (x) A grandeza γ n definida por (12) é a condutância do canal aberto. Portanto, no estado estacionário a equação de Nernst-Planck para um canal iônico pode ser colocada numa forma similar à do modelo da equação (1). Para verificar isto, basta dividir a equação (11) pela área da seção reta do canal iônico: J n c = I n c A = γ n A V m E n ( ) = g n c V m E n ( ). (13) 9

10 Nesta equação, J n c é a densidade de corrente pelo canal iônico e g n c é a condutância do canal aberto dividida pela área de sua seção reta. Como será visto mais para a frente neste curso, o transporte iônico passivo através de membranas é feito por canais iônicos microscópicos. Porém, eles não estão sempre abertos. Um canal pode estar aberto ou fechado para a passagem de íons em função de fatores como o valor do potencial de membrana ou a ligação de alguma molécula à membrana. Em um dado instante de tempo um canal iônico pode estar aberto ou fechado (ele não pode estar meio aberto ou meio fechado). Portanto, a corrente total através da membrana num dado instante de tempo pode ser calculada multiplicando a corrente por um canal, dada por (13), pelo número de canais abertos nesse instante de tempo. Como estamos estudando uma condição de estado estacionário, vamos supor que o número de canais abertos não varia no tempo, ou seja, embora os canais estejam se fechando e abrindo constantemente, a fração de canais abertos em relação ao número total de canais da membrana permanece constante ao longo do tempo. Esta fração pode ser entendida como a probabilidade p de que um canal esteja aberto. Se N for o número de canais da espécie iônica n presentes na membrana, pn dá o número de canais abertos (uma constante ao longo do tempo no regime estacionário). 10

11 Então, a corrente iônica total da espécie n através da membrana é I n = pni n c = pnγ n ( V m E n ). (14) Em geral, é muito difícil determinar o número total de canais em uma membrana, mas pode-se estimar a densidade ρ de canais por unidade de área da membrana. Se A for a área total da superfície da membrana (não confundir com A, que é a área da seção reta de um canal), o número total de canais da espécie iônica n pode ser escrito como N = ρa. (15) Substituindo (15) na equação (14) obtemos: I n = pρaγ n ( V m E n ) = G n (V m E n ). (16) Nesta equação, G n = pρaγ n é a condutância da membrana à espécie iônica n no estado estacionário. Em palavras: Condutância G n = condutância de um canal número total de canais fração do número total de canais que estão abertos A equação (16) nos dá a corrente total pela membrana. Para obter a densidade de corrente total pela membrana temos que dividir a corrente total pela área A da membrana. Fazendo isso, obtemos: J n = I n A = pργ n ( V E m n) = g n (V m E n ), (17) 11

12 onde definiu-se a densidade de condutância da membrana à espécie iônica n como: g n = G n A. (18) Preste atenção na notação: estamos usando letras minúsculas para indicar grandezas por unidade de área da membrana (ditas específicas) e letras maiúsculas para indicar grandezas para toda a membrana. Note que a equação (17) é idêntica à equação (1). Portanto, o modelo desenvolvido nesta segunda parte da aula, baseado na equação de Nernst-Planck e na hipótese de corrente estacionária pelos canais iônicos da membrana, reproduz a equação macroscópica para a relação entre densidade de corrente e potencial de membrana do modelo (ôhmico) de circuito elétrico equivalente usada na primeira parte da aula. Apêndice: Lei de Ohm e Condutividade Molar para Soluções Eletrolíticas Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico em seu interior. 12

13 A corrente elétrica I é a quantidade de carga passando por um dado ponto do condutor por unidade de tempo: A unidade de I é o ampère = coulomb/segundo. dq I =. (A1) dt Para haver corrente ao longo do condutor deve haver um campo elétrico em seu interior (sem campo elétrico as cargas se moveriam de forma aleatória em todas as direções e o movimento médio seria nulo). Portanto, deve haver uma diferença de potencial entre dois pontos do condutor. Seja V = V(A) V(B) a diferença de potencial entre as extremidades do condutor (veja a figura abaixo). A corrente I é uma função da voltagem: I = I(V). Na maioria dos casos, I é simplesmente proporcional a V: 13

14 V I = = GV. (A2) R Esta é a lei de Ohm. A constante R é denominada resistência elétrica do condutor (sua unidade é o ohm, Ω). A grandeza G = 1/R é denominada condutância elétrica do condutor (sua unidade é o siemens, S). Por convenção, a direção positiva de corrente elétrica é a que cargas positivas livres teriam se fossem colocadas entre os dois polos da bateria, ou seja, do polo positivo para o negativo (veja a figura acima). Se o condutor tiver comprimento L e área de seção reta A, a sua resistência será dada por, L R = ρ, (A3) A onde ρ é a resistividade elétrica do material de que é feito o condutor. A sua unidade é Ωm. A inversa de ρ é a condutividade elétrica do material, denotada por σ, com unidade S/m. A condutividade σ e a resistividade ρ são propriedades materiais de uma dada substância, que não dependem das dimensões do condutor. Combinando as equações vistas, a lei de Ohm para o fio condutor fica: V = RI = ρ LI A. (A4) 14

15 Lembrando que a densidade de corrente pelo condutor é podemos escrever a lei de Ohm como: J = I A, V = ρlj. (A5) (A6) Isto implica que J = 1 V ρ L = σ V L. (A7) Por outro lado, o campo elétrico e o potencial no interior do condutor estão relacionados por: E = dv = V(B) V(A) = V L L. (A8) Logo, podemos reescrever a lei de Ohm como: J = σ E. (A9) Esta forma de escrever a lei de Ohm é muito útil, pois não envolve grandezas que dependem da geometria do condutor. No estudo de materiais que conduzem eletricidade, esses materiais são caracterizados por sua resistividade ou condutividade. No caso de materiais biológicos é mais comum eles serem caracterizados pela condutividade. 15

16 Porém, na teoria de eletrodifusão desenvolvida nas aulas passadas as equações (por exemplo, a equação de Nernst-Planck) estão expressas em termos de grandezas como concentração e mobilidade. O objetivo do resto deste apêndice será relacionar essas grandezas com a condutividade do material, para obtermos equações que possam ser aplicadas ao caso biológico. Vamos considerar uma solução eletrolítica homogênea com concentração uniforme do íon n. Neste caso, o gradiente de c n é nulo e o movimento iônico é devido apenas ao campo elétrico presente. A equação de Nernst-Planck (equação 20 da aula 10) torna-se então: J n = u n z n 2 F 2 c n V x. (A10) Lembrando da relação entre potencial elétrico e campo elétrico, esta equação pode ser escrita como: J n = u n z n 2 F 2 c n E. (A11) Comparando esta equação com a lei de Ohm (equação A9), podemos definir a condutividade elétrica da n-ésima espécie iônica por σ n = u n z n 2 F 2 c n. (A12) Note que a condutividade depende da mobilidade do íon, da sua concentração e da sua valência. 16

17 Define-se a condutividade molar, Λ n, por Biofísica II FFCLRP USP Prof. Antônio Roque Aula 13 Λ σ n 2 2 n = = unzn F = cn D n RT z 2 n F 2, (A13) onde se usou a relação de Einstein (equação 19 da aula 10, D n = u n RT), que relaciona a mobilidade molar ao coeficiente de difusão da n-ésima espécie iônica. Como medidas elétricas de condutividade são relativamente fáceis de serem feitas, esta equação é muitas vezes usada para se determinar o coeficiente de difusão de um íon. 17

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2 INF01 118 Técnicas Digitais para Computação Conceitos Básicos de Circuitos Elétricos Aula 2 1. Grandezas Elétricas 1.1 Carga A grandeza fundamental em circuitos elétricos é a carga elétrica Q. As cargas

Leia mais

Tensão, Corrente e Resistência. Prof. Ernesto F. F. Ramírez

Tensão, Corrente e Resistência. Prof. Ernesto F. F. Ramírez Tensão, Corrente e Resistência Prof. Ernesto F. F. Ramírez Sumário 1. Introdução 2. Tensão elétrica 3. Corrente elétrica 4. Resistência elétrica 5. Exemplo de circuito elétrico 6. Exercícios cios propostos

Leia mais

CORRENTE E RESITÊNCIA

CORRENTE E RESITÊNCIA CORRENTE E RESITÊNCIA Até o momento estudamos cargas em repouso - a eletrostática. A partir de agora concentramos nossa atenção nas cargas em movmento, isto é, na corrente elétrica. Corrente elétrica :

Leia mais

I Curso de Férias em Fisiologia - UECE

I Curso de Férias em Fisiologia - UECE I Curso de Férias em Fisiologia - UECE Realização: Instituto Superior de Ciências Biomédicas Mestrado Acadêmico em Ciências Biológicas Apoio: 1 FISIOLOGIA CELULAR Laboratório de Eletrofisiologia 1. POTENCIAL

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Conceitos Básicos de Teoria dos Circuitos

Conceitos Básicos de Teoria dos Circuitos Teoria dos Circuitos e Fundamentos de Electrónica 1 Conceitos Básicos de Teoria dos Circuitos Teresa Mendes de Almeida TeresaMAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T.M.Almeida IST-DEEC-

Leia mais

Corrente elétrica, potência, resistores e leis de Ohm

Corrente elétrica, potência, resistores e leis de Ohm Capítulo 33 Corrente elétrica, potência, resistores e leis de Ohm Material adaptado pelo Prof. Márcio Marinho ANTES DE TUDO TEMPERATURA EQUILÍBRIO VASOS COMUNICANTES EQUILÍBRIO ELETROSTÁTICO ELETRODINÂMICA

Leia mais

A partir do gráfico, e usando a definição de resistência elétrica, tem-se:

A partir do gráfico, e usando a definição de resistência elétrica, tem-se: Física Unidade V Eletricidade Série 3 - Lei de Ohm 01 A partir do gráfico, e usando a definição de resistência elétrica, tem-se: U 10 = = = 50 Ω i 0, esposta: E 1 Física Unidade V Eletricidade Série 3

Leia mais

As constantes a e b, que aparecem nas duas questões anteriores, estão ligadas à constante ρ, pelas equações: A) a = ρs e b = ρl.

As constantes a e b, que aparecem nas duas questões anteriores, estão ligadas à constante ρ, pelas equações: A) a = ρs e b = ρl. 9.3. Representando a constante de proporcionalidade por ρ, podemos reunir as equações R = a L e R = b S 1 (vistas nas duas questões anteriores) da seguinte maneira: L R = ρ (segunda lei de Ohm). S As constantes

Leia mais

Circuito Elétrico - I

Circuito Elétrico - I 1 1. Um resistor de 32 ohms é ligado em paralelo a outro resistor de 20 ohms e o conjunto é ligado a uma fonte de tensão de 12VDC. a) Qual é a resistência da ligação em paralelo? b) Qual é a corrente total

Leia mais

Capítulo II. Elementos de Circuitos

Capítulo II. Elementos de Circuitos Capítulo II Elementos de Circuitos.1 Introdução O objetivo da engenharia é projetar e produzir dispositivos que atendam às necessidades humanas. Para tanto, é necessário que se conheçam os componentes

Leia mais

Eletricidade Aplicada

Eletricidade Aplicada Eletricidade Aplicada Profa. Grace S. Deaecto Instituto de Ciência e Tecnologia / UNIFESP 12231-280, São J. dos Campos, SP, Brasil. grace.deaecto@unifesp.br Novembro, 2012 Profa. Grace S. Deaecto Eletricidade

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14 Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro

Leia mais

V = R. I R = L / A. CLASSIFICACAO MATERIAL [.m] Metais

V = R. I R = L / A. CLASSIFICACAO MATERIAL [.m] Metais LEI DE OHM A Lei de Ohm diz que a corrente elétrica que passa por um material é diretamente proporcional a tensão V nele aplicado, e esta constante de proporcionalidade chama-se resistência elétrica. De

Leia mais

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1)

Lei de Gauss. 2.1 Fluxo Elétrico. O fluxo Φ E de um campo vetorial E constante perpendicular Φ E = EA (2.1) Capítulo 2 Lei de Gauss 2.1 Fluxo Elétrico O fluxo Φ E de um campo vetorial E constante perpendicular a uma superfície é definido como Φ E = E (2.1) Fluxo mede o quanto o campo atravessa a superfície.

Leia mais

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química

Eletroquímica. Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Eletroquímica Professora: Melissa Soares Caetano Disciplina QUI 702 Eletroquímica estuda as relações

Leia mais

ESTUDO DE UM CIRCUITO RC COMO FILTRO

ESTUDO DE UM CIRCUITO RC COMO FILTRO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T6 Física Experimental I - 2007/08 ESTUDO DE UM CIRCUITO RC COMO FILTRO 1. Objectivo Estudo do funcionamento, em regime estacionário,

Leia mais

A Equação de Onda em Uma Dimensão (continuação)

A Equação de Onda em Uma Dimensão (continuação) A Equação de Onda em Uma Dimensão (continuação) Energia em uma onda mecânica Consideremos novamente o problema da onda transversal propagando-se em uma corda vibrante em uma dimensão (lembrese, a corda

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de usar modelos simples como protótipos de certos comportamentos básicos

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Resistência Elétrica. Introdução Primeira Lei de Ohm Representação Características físicas Segunda Lei de Ohm Potência dissipada por um resistor

Resistência Elétrica. Introdução Primeira Lei de Ohm Representação Características físicas Segunda Lei de Ohm Potência dissipada por um resistor Resistência Elétrica Introdução Primeira Lei de Ohm Representação Características físicas Segunda Lei de Ohm Potência dissipada por um resistor Introdução Nas lâmpadas incandescente, os seus filamentos

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Transportes através da membrana plasmática. Profa Cristina Lacerda Soares Petrarolha Silva FISMA/FCAA - FEA

Transportes através da membrana plasmática. Profa Cristina Lacerda Soares Petrarolha Silva FISMA/FCAA - FEA Transportes através da membrana plasmática Profa Cristina Lacerda Soares Petrarolha Silva FISMA/FCAA - FEA INTRODUÇÃO A capacidade de uma membrana de ser atravessada por algumas substâncias e não por outras

Leia mais

Apostila de Física 26 Resistores

Apostila de Física 26 Resistores Apostila de Física 26 Resistores 1.0 Definições Efeito térmico ou efeito joule: Transformação de energia elétrica em energia térmica. Choque dos elétrons livres contra os átomos dos condutores. Causa elevação

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Corrente Elétrica. Eletricidade e magnetismo - corrente elétrica 1

Corrente Elétrica. Eletricidade e magnetismo - corrente elétrica 1 Corrente Elétrica Eletricidade e magnetismo - corrente elétrica 1 Corrente elétrica A corrente elétrica é definida como um fluxo de elétrons por unidade de tempo: = Q t [C/ segundo]ou[ A] Ampere Material

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Comprovar na prática, através das experiências, a veracidade das duas leis de Ohm.

Comprovar na prática, através das experiências, a veracidade das duas leis de Ohm. Disciplina: Experiência: Eletricidade e Magnetismo Leis de Ohm Objetivo Comprovar na prática, através das experiências, a veracidade das duas leis de Ohm. Introdução Teórica Georg Simon Ohm (1857 1854)

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

3º ANO 27 FÍSICA 1º Trimestral

3º ANO 27 FÍSICA 1º Trimestral Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 3º ANO 27 FÍSICA 1º Trimestral 1. (Unicamp-1997) A figura a seguir mostra como se pode dar um banho de prata em objetos, como por exemplo

Leia mais

LINHAS DE TRANSMISSÃO DE ENERGIA LTE

LINHAS DE TRANSMISSÃO DE ENERGIA LTE LINHAS DE TRANSMISSÃO DE ENERGIA LTE Cálculo de Parâmetros Elétricos: Resistência, Indutância e Capacitância. Aula 3: Cálculo de Parâmetros Elétricos Prof. Fabiano F. Andrade 2010 Tópicos da Aula (Parte

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

Experiência 07: Preparo de Solução a partir de Substâncias sólidas, Liquidas e de Solução Concentrada

Experiência 07: Preparo de Solução a partir de Substâncias sólidas, Liquidas e de Solução Concentrada 1 Experiência 07: Preparo de Solução a partir de Substâncias sólidas, Liquidas e de Solução Concentrada 1. Questões de estudo - Como preparar uma solução aquosa de NaOH 0,1 M? - Como preparar uma solução

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Capítulo 4. Retas e Planos. 4.1 A reta

Capítulo 4. Retas e Planos. 4.1 A reta Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam

Leia mais

Lei de Gauss e Condutores em Equilíbrio Eletrostático

Lei de Gauss e Condutores em Equilíbrio Eletrostático Lei de Gauss e Condutores em Equilíbrio Eletrostático 2008 Fluxo Elétrico: Está relacionado com o número líquido de linhas de força que atravessam uma superfície. φ e = EA 1 ou φ e = EA 2 cosθ = E ˆnA2

Leia mais

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω rof. José oberto Marques UMC CUSO BÁSCO DE ENGENHAA EXECÍCOS DE ELETCDADE BÁSCA 1) Um condutor de eletricidade de cobre tem formato circular 6mm de diâmetro e 50m de comprimento. Se esse condutor conduz

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

ANALOGIA NO ENSINO DA FÍSICA

ANALOGIA NO ENSINO DA FÍSICA ANALOGIA NO ENSINO DA FÍSICA Wilton Jorge Depto. de Ciências Físicas UFU Uberlândia MG Analogia é um processo comparativo de fenômenos diferentes através de suas semelhanças. Assim, pela simples mudança

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Circuitos Elétricos. Questão 01 - (PUC RJ/2015)

Circuitos Elétricos. Questão 01 - (PUC RJ/2015) Questão 01 - (PUC RJ/2015) Um circuito é formado por fios condutores perfeitos; duas baterias de V = 1,20 V; e duas resistências de R = 2,00 k Ω, como na figura. Calcule a potência total dissipada pelas

Leia mais

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n Eletricidade O Campo eléctrico Consideremos a equação aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n onde é a distância desde a carga até o ponto do espaço onde se encontra a

Leia mais

2.4 Resistência em um condutor

2.4 Resistência em um condutor s A unidade da resistividade é m =10 6 2 mm. m 1. Qual a potência dissipada em um resistor de 10 k, percorrido por uma corrente de 5 ma? Material ρ ( m) a 20 C Prata 1,6 10 8 Tabela 2.2 Valores aproximados

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

Capítulo VI. Teoremas de Circuitos Elétricos

Capítulo VI. Teoremas de Circuitos Elétricos apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm

Leia mais

Módulo 08 - Mecanismos de Troca de Calor

Módulo 08 - Mecanismos de Troca de Calor Módulo 08 - Mecanismos de Troca de Calor CONCEITOS FUNDAMENTAIS Vamos iniciar este capítulo conceituando o que significa calor, que tecnicamente tem um significado muito diferente do que usamos no cotidiano.

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

2º) Um fio condutor possui 1,0 mm de diâmetro, um comprimento de 2,0 m e uma resistência de 50 mω. Qual a resistividade do material?

2º) Um fio condutor possui 1,0 mm de diâmetro, um comprimento de 2,0 m e uma resistência de 50 mω. Qual a resistividade do material? Exercícios 2º Lei de Ohm e Potência elétrica 1º) Um trilho de aço de bonde elétrico possuí uma área de seção transversal de 56 cm². Qual a resistência de 10 km de trilho? A resistividade do aço é 3x10-7

Leia mais

Física 2 - Termodinâmica

Física 2 - Termodinâmica Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Termodinâmica Energia Térmica Temperatura, Calor, Entropia... Máquinas Térmicas : Refrigeradores, ar-condicionados,... Física Térmica

Leia mais

+++++++ - - - - - - -

+++++++ - - - - - - - www.pascal.com.br Prof. Edson Osni Ramos 3. (UEPG - 99) ε = 2 - - - - - - - d = 0,2 cm = 0,002 m Entre as placas do capacitor não há corrente elétrico (existe um dielétrico). Nesse caso, o capacitor está

Leia mais

Propriedades Elétricas do Materiais

Propriedades Elétricas do Materiais Propriedades Elétricas do Materiais Por que estudar propriedades elétricas dos materiais? Apreciação das propriedades elétricas de materiais é muitas vezes importante, quando na seleção de materiais e

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª Leis da Termodinâmica A primeira lei da termodinâmica Alguns casos particulares Primeira lei em um ciclo termodinâmico Primeira lei da termodinâmica quantidade líquida

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

Está CORRETO apenas o contido em: a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV.

Está CORRETO apenas o contido em: a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. 3. (Uern 013) Na figura, estão representadas duas associações de resistores. Lista de Exercícios Resolvida Associação de resistores Prof. Paulo Roberto 1. (Espcex (Aman) 01) Um circuito elétrico é constituído

Leia mais

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática. GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Modelos atômicos. Modelo de Bohr

Modelos atômicos. Modelo de Bohr Modelos atômicos Modelo de Bohr O modelo de Bohr apresenta limitações significativas, não servindo para explicar vários dos fenômenos nos quais estão envolvidos elétrons. As deficiências do modelo de Bohr

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8

Aula 01 TEOREMAS DA ANÁLISE DE CIRCUITOS. Aula 1_Teoremas da Análise de Circuitos.doc. Página 1 de 8 ESCOLA TÉCNICA ESTADUAL ZONA SUL CURSO TÉCNICO EM ELETRÔNICA II. CIRCUITOS ELÉTRICOS Aula 0 TEOREMAS DA ANÁLISE DE CIRCUITOS Prof. Marcio Leite Página de 8 0 TEOREMA DA ANÁLISE DE CIRCUITOS.0 Introdução

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

Através de suas realizações experimentais, mantendo constante a temperatura do condutor, Ohm pôde chegar às seguintes afirmações e conclusões:

Através de suas realizações experimentais, mantendo constante a temperatura do condutor, Ohm pôde chegar às seguintes afirmações e conclusões: 5000 - Leis de Ohm: Primeira de Ohm George Simon Ohm foi um físico alemão que viveu entre os anos de 1789 e 1854 e verificou experimentalmente que existem resistores nos quais a variação da corrente elétrica

Leia mais

Francisco Hevilásio F. Pereira Fisiologia Vegetal

Francisco Hevilásio F. Pereira Fisiologia Vegetal FISIOLOGIA VEGETAL Nutrição Mineral de plantas Parte II Pombal PB Transporte de íons na planta Transporte passivo e ativo Transporte passivo É aquele que ocorre a favor do gradiente de potencial químico

Leia mais

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,

Leia mais

MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS. APOSTILA PARA A DISCIPLINA PMT 2507 2ª. Parte

MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS. APOSTILA PARA A DISCIPLINA PMT 2507 2ª. Parte MECANISMOS DE CORROSÃO DE MATERIAIS METÁLICOS APOSTILA PARA A DISCIPLINA PMT 2507 2ª. Parte Neusa Alonso-Falleiros Mar/2008 2 Diagramas de Pourbaix A representação gráfica do potencial reversível em função

Leia mais

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Densidades de cargas polarizadas Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Na aula passada, mostramos que o potencial

Leia mais

Eletrodinâmica: Leis de Faraday e Lenz

Eletrodinâmica: Leis de Faraday e Lenz Secretaria de Educação Profissional e Tecnológica Instituto Federal de Santa Catarina Campus São José Área de Telecomunicações ELM20704 Eletromagnetismo Professor: Bruno Fontana da Silva 2014-1 Eletrodinâmica:

Leia mais

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo.

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. IV INTRODUÇÃO AO EQUILÍBRIO QUÍMICO IV.1 Definição EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. Equilíbrio químico equilíbrio

Leia mais

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR.

MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. MASSA ATÔMICA, MOLECULAR, MOLAR, NÚMERO DE AVOGADRO E VOLUME MOLAR. UNIDADE DE MASSA ATÔMICA Em 1961, na Conferência da União Internacional de Química Pura e Aplicada estabeleceu-se: DEFINIÇÃO DE MASSA

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Cristalografia do Si. Célula unitária. Tipo Diamante

Cristalografia do Si. Célula unitária. Tipo Diamante 3.2 Cristalografia do Si Do ponto de vista atômico, o silício faz um arranjo atômico onde cada átomo faz 4 ligações. Num cristal de Si, esses átomos se ligam mantendo as orientações relativas ao longo

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C 1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.

A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s. Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18).

Equação de Bernoulli. Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.18). Equação de ernoulli Vamos considerar um fluido com densidade ρ constante, em escoamento estacionário em uma tubulação sem derivações (Fig.8). Sejam duas porções de fluido, ambas com volume V e massa ρv,

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação

Leia mais

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.

Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Lista de Exercícios Química Geral Entropia e energia livre

Lista de Exercícios Química Geral Entropia e energia livre Lista de Exercícios Química Geral Entropia e energia livre 1. Se a reação A + B C tiver uma constante de equilíbrio maior do que 1, qual das seguintes indicações está correta? a) A reação não é espontânea.

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Desafio em Física 2015 PUC-Rio 03/10/2015

Desafio em Física 2015 PUC-Rio 03/10/2015 Desafio em Física 2015 PUC-Rio 03/10/2015 Nome: GABARITO Identidade: Número de inscrição no Vestibular: Questão Nota 1 2 3 4 5 6 7 8 9 Nota Final Questão 1 No circuito elétrico mostrado na figura abaixo

Leia mais

Reações de Oxidação e Redução

Reações de Oxidação e Redução Eletroquímica é a área da química que estuda a tendência que os elétrons possuem em se transferirem em uma determinada reação química através de sua concentração e das espécies envolvidas. Reações de Oxidação

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

. (A verificação é imediata.)

. (A verificação é imediata.) 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2010 Instabilidade em Sistemas de Equações Lineares Marisa Ortegoza

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais