Aula 6 Propagação de erros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 6 Propagação de erros"

Transcrição

1 Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se C =A+B?

2 Propagação de ERROS O resultado de uma medida está sempre sujeito a erro aleatórios Medidas realizadas em condições idênticas Valores diferentes!

3 Já vimos que: N medidas de uma grandeza física: x1, x2, x3,... xn Definimos: Média Desvio padrão y n i 1 n y i n 1 n 1 i 1 y y 2 i Desvio padrão da média m n

4 Como expressar o resultado de um conjunto de medidas? Média para um conjunto de n medidas x i x i n

5 Mas como saber a incerteza de uma medida indireta? Imagine que medimos uma quantidade x e calculamos outra quantidade f. f depende de x segundo uma função matemática. f = f(x) Como podemos calcular o erro de f?

6 Volume de um cilindro 2 2 V R H D H 4 Como o volume do cilindro varia com o raio e altura Calcule o volume do cilindro, fixando o raio, para H + H e H H. Calcule a diferença desses dois extremos em relação ao valor médio, calculado com a medida H Calcule o volume do cilindro, fixando a altura, para D + D, D D. Calcule a diferença desses dois extremos em relação ao valor médio, calculado com a medida D

7 Volume de um cilindro 2 2 V R H D H 4 Como o volume do cilindro varia com o raio e altura Qual é a incerteza no volume? Como combinar as duas variações (diâmetro e altura)?

8 Volume de um cilindro 2 V R H Como uma variação na medida de raio afeta o volume? Essa variação é a mesma, independente da medida do raio? A mesma incerteza no raio acarreta em incertezas diferentes no volume

9 Teoria de erros Teoria na qual estuda-se o comportamento dos erros de medidas, como eles influenciam outras medidas, bem como propagá-los no caso de uma medida indireta. Propagação de erros Método para calcular a incerteza de uma medida indireta

10 Seja uma grandeza G, dependente de duas variáveis, A e B. O valor da incerteza em G, G, pode ser expressa em termos das incertezas em A e B ( A e B, respectivamente) através da fórmula: Propagação de erros: fórmula geral 2 2 G G G A B A B Derivada parcial de G em relação à A Não conte aos matemáticos puristas mas a derivada parcial nada mais é do que a derivada comum onde todo o resto da equação pode ser considerado constante

11 Vamos fazer um exemplo simples Volume de um cilindro V 4 2 D H O Volume depende tanto do raio R, cuja incerteza é R, e da altura H, com incerteza H. Assim, a incerteza do volume é dada por: 2 2 V V V D H D H

12 Como calcular as derivadas Suponha que todo o resto da expressão é uma constante... V ( D ) D D 4 4 D D H H H(2 D) DH V ( H) D H D D (1) D H H 4 4 H

13 Desse modo... Incerteza do volume do cilindro 2 2 V V V D H D H DH D D H D H D H D H V D H 2 V D H

14 Professor, eu preciso fazer esse montão de derivadas e contas toda vez? A rigor deve-se sempre calcular as derivadas Na prática, com o tempo, desenvolve-se técnicas que simplificam a nossa vida Dois casos muito comuns: Soma e subtração Multiplicação e divisão

15 Dois casos comuns Soma e subtração A incerteza da soma (ou subtração) é a raiz da soma dos quadrados das incertezas individuais Multiplicação e divisão A incerteza percentual do produto (ou divisão) é a raiz da soma quadrática das incertezas percentuais individuais C A B, ou C A B 2 2 C A B A C AB, ou C B 2 2 C A B C A B

16 EXEMPLO Suponha que você deseja medir o volume de água que pode conter em uma pia. Para isso foram realizadas 10 medidas do comprimento (C), da largura (L) e da profundidade (P) como se mostra no Quadro 1.

17 QUADRO 1 Medidas do comprimento (C), Largura (L) e Profundidade (P) de uma pia MEDIDAS C L P cm cm cm 1 54,2 30,7 16,3 2 54,4 30,5 16,5 3 54,3 30,8 16,4 4 54,2 30,8 16,2 5 54,1 30,6 16,5 6 54,4 30,7 16,4 7 54,3 30,6 16,3 8 54,1 30,8 16,2 9 54,2 30,5 16, ,3 30,6 16,4

18 É possível calcular a área da base da pia e seu volume, para cada medida e, com uso de um software de planilha eletrônica calcular os desvios nos resultados Será que os resultados são compatíveis com as expressões que propusemos?

19 OBSERVE QUE AO CALCULAR A ÁREA USANDO O VALOR MÉDIO TEMOS: ÁREA= 54,3 * 30,7 = 1663,3 Será que este valor realmente é igual aos 1663,3 encontrados quando usamos a planilha? VOLUME = 54,3*30,7*16,4 = 27195,0 Compare-se com 27194,8 encontrados com o uso da planilha (???????) Veja-se, porém que, como o uso da planilha temos ÁREA= 1663,3 ± 6,36 portanto 1667,01 está nesta faixa e VOLUME= ± 178 novamente está na faixa O que aconteceria se usássemos os valores médios de C, L e P com os respectivos desvios?

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 CASOS ESPECIAIS

45

46

47

48 Exemplo de um experimento Consideraremos, aqui, os resultados de um experimento feito com o objetivo de determinar o valor da gravidade local de São José dos Campos. O método de medição de g se baseia no modelo do pêndulo simples, que tem período aproximado por: em que L é o comprimento do pêndulo. Neste experimento, foram feitas cinco medições do comprimento L do pêndulo e cinco medições do período do mesmo. Através dessas observações, obteremos o valor da gravidade. Consideremos que os resultados das medições do comprimento L estejam indicadas na Tabela seguinte.

49 Assim, o valor médio obtido foi de L = ( 3,04 + 3,05 + 3,04+ 3,04 + 3,03) 15 = 3,04m. O desvio padrão do valor médio vale:

50

51

52

53

54 Note que os desvios foram escritos com dois significativos, que é a regra a ser usada em nossos trabalhos. Coerentemente, o v.m.p. deve ser escrito com dois algarismos duvidosos. O número de significat ivos para expressar o v.m.p. é definido pelo desvio padrão. Neste caso, D deve ser escrito como 6,4555 mm e seus dois últimos algarismos (55) são duvidosos. Caso o desvio padrão fosse ±0,048 mm, D deveria ser escrito como 6,456 mm e os duvidosos seriam 56.

55

56

57 exercícios

58

59

60

61

62

63

64

65

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

Medição de comprimentos, massas e tempos

Medição de comprimentos, massas e tempos José Mariano Departamento de Física, FCT Universidade do Algarve jmariano@ualg.pt 1 Objectivo Pretende-se com este trabalho prático realizar medidas de diferentes grandezas físicas, nomeadamente diâmetros,

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

MEDIDAS FÍSICAS FEX 1001

MEDIDAS FÍSICAS FEX 1001 1 MEDIDAS FÍSICAS FEX 1001 Objetivos Realizar medidas diretas (diâmetro, comprimento, largura, espessura, massa e força) expressando-as com a quantidade correta de algarismos signicativos. Realizar medidas

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

TEORIA DE ERROS INTRODUÇÃO

TEORIA DE ERROS INTRODUÇÃO TEORIA DE ERROS ITRODUÇÃO O ato de medir é, em essência, um ato de comparar, e essa comparação envolve erros de diversas origens (dos instrumentos, do operador, do processo de medida etc.). Pretende-se

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Revisão de conceitos. Grandezas Algarismos significativos Unidades de medida

Revisão de conceitos. Grandezas Algarismos significativos Unidades de medida Revisão de conceitos Grandezas Algarismos significativos Unidades de medida Grandezas Físicas Define-se grandeza como tudo aquilo que pode ser comparado com um padrão por meio de uma medição. Exemplo:

Leia mais

UFF - Universidade Federal Fluminense. Pólo Universitário de Volta Redonda

UFF - Universidade Federal Fluminense. Pólo Universitário de Volta Redonda UFF - Universidade Federal Fluminense Pólo Universitário de Volta Redonda Física Experimental Instruções para elaboração de relatórios e introdução à teoria de erros 1 Elaboração de Relatórios Um relatório

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016

Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016 Roteiro da aula MA09 Matemática básica Aula 8 Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 22 Francisco A. M. Gomes

Leia mais

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012 OSASCO, DE DE 01 NOME: PROF. 8º ANO ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/01 1. Deseja-se fixar o comprimento e a largura de uma sala de modo que a sua área seja 36 m. a) Se a largura

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Sessão Saber profundo Combinação de incertezas (http://www.midomenech.com.br/artigos.asp)

Sessão Saber profundo Combinação de incertezas (http://www.midomenech.com.br/artigos.asp) Sessão Saber profundo Combinação de incertezas (http://www.midomenech.com.br/artigos.asp) Manoel Telhada Consultor da M. I. Domenech Em 50 palavras ou menos O estudo de Repe & Repro é utilizado para avaliar

Leia mais

Experiência 1 Medidas: Leitura de instrumentos:

Experiência 1 Medidas: Leitura de instrumentos: 1 Experiência 1 Medidas: Leitura de instrumentos: Quando realizamos uma medida precisamos estabelecer a confiança que o valor encontrado para a medida representa. Para representar corretamente a medida

Leia mais

Conceitos de Produtividade Industrial. 6. Estudo de Tempos e Métodos. 6. Estudo de Tempos e Métodos 09/05/2012. Profº Spim

Conceitos de Produtividade Industrial. 6. Estudo de Tempos e Métodos. 6. Estudo de Tempos e Métodos 09/05/2012. Profº Spim Conceitos de Produtividade Industrial Profº Spim 6.1 Decisões sobre o projeto do trabalho; 6.2 Considerações físicas no projeto do trabalho; 6.3 Métodos de trabalho; 6.4 Padrões e medida do trabalho. Adm.

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

Incerteza de Medição

Incerteza de Medição Incerteza de Medição Professora Márcia Russman Gallas, IF-UFRGS http://www.if.ufrgs.br/~marcia Texto baseado no Guia Para a Expressão da Incerteza de Medição, 2 a edição, ABNT, INMETRO, 1998, e no Manual

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

2ª Lista de Exercícios

2ª Lista de Exercícios Esta lista de exercícios contempla o comando de atribuição além dos comandos de leitura e de escrita. Quando definimos o tipo de variável, tomamos como base o conteúdo que deveria ser armazenado. Os exercícios

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

Objetivos da disciplina:

Objetivos da disciplina: Aplicar e utilizar princípios de metrologia em calibração de instrumentos e malhas de controle. Objetivos da disciplina: Aplicar e utilizar princípios de metrologia calibração de instrumentos e malhas

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

Aula 01: Grandezas Físicas; Sistemas de Unidades; Vetores

Aula 01: Grandezas Físicas; Sistemas de Unidades; Vetores Aula 01: Grandezas Físicas; Sistemas de Unidades; Vetores Tópico 01: Grandezas Físicas - Introdução Caro aluno, quantas vezes você já ouviu alguém falar que Física e Matemática é tudo a mesma coisa? Que

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Material de Apoio de Matemática Básica

Material de Apoio de Matemática Básica Sindicato dos Servidores Públicos Municipais de São Vicente Material de Apoio de Matemática Básica Caio Ricardo Faiad da Silva Setembro/11-Novembro/11 Apresentação Este material foi preparado com a intenção

Leia mais

Programa de Ciências Experimentais 2012-2013

Programa de Ciências Experimentais 2012-2013 Programa de Ciências Experimentais 2012-2013 I Teoria 1 Introdução 2 Conceitos úteis 2.1 Ordem de grandeza 2.1.1 Introdução 2.1.2 Definição 2.1.3 Representação científica de um número 2.1.4 Ordem de grandeza

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

Cálculo em Farmácia. 18/03/2013 00:07 Cálculo em Farmácia. Professor: Wildson Cruz (Adaptado) 1

Cálculo em Farmácia. 18/03/2013 00:07 Cálculo em Farmácia. Professor: Wildson Cruz (Adaptado) 1 Cálulo em Farmáia 18/03/2013 00:07 Cálulo em Farmáia. Professor: Wildson Cruz (Adaptado) 1 ALGARISMO SIGNIFICATIVOS 18/03/2013 00:07 Cálulo em Farmáia. Professor: Wildson Cruz (Adaptado) 2 O que é medir?

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24 Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº Assunto: Objectivos para o teste de de Março/ Ficha de preparação para o teste Lições nº e Data / 0/ 00 Conteúdos para

Leia mais

RESOLUÇÃO CARGOS DE NÍVEL MÉDIO

RESOLUÇÃO CARGOS DE NÍVEL MÉDIO RESOLUÇÃO CARGOS DE NÍVEL MÉDIO Caro aluno, Disponibilizo abaixo a resolução resumida das 5 questões de Matemática da prova de nível médio da Petrobrás, bem como das questões de conhecimentos específicos

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a variância de

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 1. Erros e Tolerâncias

UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 1. Erros e Tolerâncias UNICAP Universidade Católica de Pernambuco Laboratório de Topografia de UNICAP - LABTOP Topografia 1 Erros e Tolerâncias Recife, 2014 Técnicas de Levantamento Planimétrico A Poligonação é um dos métodos

Leia mais

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,

Leia mais

VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA

VESTIBULAR UFPR 2009 (2ª FASE) PROVA DE MATEMÁTICA GERAL DOS PROFESSORES DO CURSO POSITIVO VESTIBULAR UFPR 009 (ª FASE) PROVA DE MATEMÁTICA Estamos diante de um exemplo de prova! A afirmação acima, feita pelo prof. Adilson, sintetiza a nossa impressão

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Sistemas Lineares Objetivos: Entender a notação matricial; Identificar matrizes: identidade, diagonal, simétrica, triangular e tridiagonal; Como multiplicar matrizes e verificar quando esta multiplicação

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Valor máximo que é possível medir

Valor máximo que é possível medir MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA 10.ºAno 2009/2010 Marília Peres I NSTRUMENTOS DE MEDIDA Alcance Valor máximo que é possível medir Sensibilidade ou Natureza do aparelho Valor da menor

Leia mais

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior

ANOVA. (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior ANOVA (Analysis of Variance) Prof. Dr. Guanis de Barros Vilela Junior Para que serve a ANOVA? Para comparar três ou mais variáveis ou amostras. Por exemplo, queremos testar os efeitos cardiorrespiratórios

Leia mais

VOCABULÁRIO DE METROLOGIA

VOCABULÁRIO DE METROLOGIA DEPARTAMENTO ACADÊMICO DE MECÂNICA APOSTILA DE METROLOGIA VOCABULÁRIO DE METROLOGIA Cid Vicentini Silveira 2005 1 OBJETIVO DESTE CAPÍTULO Descrever os fundamentos, os termos, e os princípios da metrologia.

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana

Medidas de Tendência Central. Introdução Média Aritmética Moda Mediana Medidas de Tendência Central Introdução Média Aritmética Moda Mediana Introdução A maioria dos dados apresenta uma tendência de se concentrar em torno de um ponto central Portanto, é possível selecionar

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke. Modelo...

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke. Modelo... INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke Modelo... Parnaíba/2009 Introdução Estando uma mola no seu estado relaxado

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

FUNÇÃO QUADRÁTICA. Resumo

FUNÇÃO QUADRÁTICA. Resumo 01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b

Leia mais

Aula 1 Variáveis aleatórias contínuas

Aula 1 Variáveis aleatórias contínuas Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição

Leia mais

Professora Bruna FÍSICA A. Aula 13 Aceleração escalar média classificação dos movimentos. Página - 181

Professora Bruna FÍSICA A. Aula 13 Aceleração escalar média classificação dos movimentos. Página - 181 FÍSICA A Aula 13 Aceleração escalar média classificação dos movimentos Página - 181 PARA COMEÇAR Você sabe o que é um porta-aviões? Você sabia que a pista de um porta-aviões tem cerca de 100 metros de

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação

PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação CENTRO EDUCACIONAL LA SALLE Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Trimestre:

Leia mais

Aplicações de integração. Cálculo 2 Prof. Aline Paliga

Aplicações de integração. Cálculo 2 Prof. Aline Paliga Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar

Leia mais

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 = 1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNVERSDADE DO ESTADO DO RO GRANDE DO NORTE UERN FACULDADE DE CÊNCAS EXATAS E NATURAS FANAT DEPARTAMENTO DE

Leia mais

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120 Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de usar modelos simples como protótipos de certos comportamentos básicos

Leia mais

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora

MEDIÇÃO EM QUÍMICA. Escola Secundária José Saramago FQA nível 1-2007/2008. Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora MEDIÇÃO EM QUÍMICA Escola Secundária José Saramago FQA nível 1-2007/2008 Adaptado por Marília Peres Fonte: Corrêa, C., Química, 2007, Porto Editora A L 1.1 Medição em Química SUMÁRIO: Obtenção e tratamento

Leia mais

f (x) = a n x n + a n - 1 x n - 1 +... + a 0 = 0 (a n > 0)

f (x) = a n x n + a n - 1 x n - 1 +... + a 0 = 0 (a n > 0) Lista de Exercícios Resolução de Equações Não Lineares 1) Para a delimitação das raízes reais de uma equação polinomial, além do teorema de Lagrange, existem vários outros como, por exemplo, o apresentado

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Questões Gerais de Geometria Plana

Questões Gerais de Geometria Plana Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade.

Plano da Apresentação. Correlação e Regressão linear simples. Correlação linear. Associação entre hábitos leitura e escolaridade. Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Plano da Apresentação Correlação linear Diagrama de dispersão Covariância Coeficiente de correlação de Pearson Teste de correlação

Leia mais

Correlação e Regressão linear simples

Correlação e Regressão linear simples Metodologia de Diagnóstico e Elaboração de Relatório FASHT Correlação e Regressão linear simples Prof. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Correlação linear Diagrama de dispersão Covariância

Leia mais

TÍTULO DA PRÁTICA: OPERAÇÃO DE MEDIDAS E NOTAÇÃO CIENTÍFICA

TÍTULO DA PRÁTICA: OPERAÇÃO DE MEDIDAS E NOTAÇÃO CIENTÍFICA ROTEIRO DA AULA PRÁTICA DE QUÍMICA GERAL TÍTULO DA PRÁTICA: OPERAÇÃO DE MEDIDAS E NOTAÇÃO CIENTÍFICA 1 - A incerteza na ciência A natureza intrínseca da observação científica traz consigo o fato de que

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

Opções Reais: Exemplo Intuitivo do Gatilho

Opções Reais: Exemplo Intuitivo do Gatilho Opções Reais: Teoria e Prática de Análise de Investimentos sob Incertezas Opções Reais: Exemplo Intuitivo do Gatilho Marco Antonio Guimarães Dias, Professor Adjunto, tempo parcial Rio de Janeiro, Outubro

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Cálculo do Conceito ENADE Instituto acional de Estudos e Pesquisas Educacionais Anísio Teixeira IEP Ministério da Educação ME álculo do onceito EADE Para descrever o cálculo do onceito Enade, primeiramente é importante definir

Leia mais

Medidas de Localização

Medidas de Localização MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS RESUMO Estatística 2 Medidas de Localização e Dispersão 10º ano Cláudia Henriques Medidas de Localização Estatísticas Medidas que se calculam a partir dos dados

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Prezado (a) aluno(a): Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( x ) Fundamental ( ) Médio SÉRIE: 8ª TURMA: TURNO: DISCIPLINA: MATEMEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais

Ruído IPT DEM/DITT/DEC

Ruído IPT DEM/DITT/DEC Ruído O termo ruído se usa geralmente para sinais indesejadas que aparecem durante o processo de medição e podem interferir com o sinal sendo medido, existem dois tipos básicos de ruído: Ruído de Interferência

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir cesse: http://fuvestibular.com.br/ alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma

Leia mais

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Química Analítica IV ERRO E TRATAMENTO DE DADOS ANALÍTICOS Química Analítica IV 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Todas as medidas físicas possuem um certo grau de incerteza. Quando se faz uma medida, procura-se

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO

Leia mais

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas?

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas? Matemática Aplicada 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 12:00 horas e 18:00 horas

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem.

x = xi n x = xifi fi 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. 1. MÉDIA Exercício: Quando a distribuição é simétrica, a média e a mediana coincidem. Determine a média aritmética da distribuição: A mediana não é tão sensível, como a média, às observações que são muito

Leia mais

O PENSAMENTO ALGÉBRICO

O PENSAMENTO ALGÉBRICO NOME: ANO: 8º ENSINO: FUNDAMENTAL TURMA: DATA: / / PROF(ª): GREGORIO TOMAS GONZAGA LÓGICA E MATEMÁTICA - APOSTILA (2º BIMESTRE) IMPORTANTE 1 Organize-se, guardando cada lista de exercícios que receber

Leia mais

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de Escola Secundária c/3º CE José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 2009/2010 Módulo 2: Álgebra e Lógica

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma:

A primeira coisa ao ensinar o teorema de Pitágoras é estudar o triângulo retângulo e suas partes. Desta forma: As atividades propostas nas aulas a seguir visam proporcionar ao aluno condições de compreender de forma prática o teorema de Pitágoras em sua estrutura geométrica, através do uso de quadrados proporcionais

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

INTEGRAIS INTEGRAL INDEFINIDA

INTEGRAIS INTEGRAL INDEFINIDA INTEGRAIS INTEGRAL INDEFINIDA A integração indefinida ou anti-derivação é a operação inversa da derivação, da mesma forma que a subtração é a operação inversa da adição ou a divisão é a operação inversa

Leia mais