Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer."

Transcrição

1 MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar números desconhecidos ou para generalizar propriedades e fórmulas, por exemplo. As expressões algébricas e as letras são as variáveis. Todo número natural multiplicado por 1 é igual a ele mesmo Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. Veja o Exemplo: Uma pessoa ganha R$ 20,00 por dia de trabalho. Para calcular quanto essa pessoa ganhará, após alguns dias de trabalho, podemos escrever a expressão algébrica: 20. X Onde x representa o número de dias trabalhados. Se a pessoa trabalhar dois dias, receberá R$ 20,00 x 2 = R$ 40,00 Se a pessoa trabalhar dez dias, receberá R$ 20,00 x 10 = R$ 200,00 Portanto, a expressão algébrica nos permite calcular o ganho dessa pessoa, por meio da multiplicação da variável x pelo número de dias trabalhados. Observações: 1 - Nas expressões algébricas não é usual se escrever o sinal de multiplicação, veja: 2. X se escreve 2x a. B se escreve ab 2 - Podemso ter expressões algébricas com mais de uma variável ou ainda sem variável: 2xy Expressão com duas variáveis: x e y 5abc Expressão com três variáveis: a,b e c 25 Expressão sem variável Valor Númérico Quando substituímos as variáveis de uma expressão por números e efetuamos as operaçãos indicadas, o resultado encontrado é o valor numérico da expressão. O valor numérico da expressão 5x + 4 para x = 2, por exemplo é: = = 14 Sabendo que a expressão ab representa a área de um retângulo, responda qual a área da figura para as dimensões a = 2,5 cm e b = 4 cm. a O valor numérico de ab é: 2,5 x 4 = 10 Logo, a área do retângulo é 10 cm b As expressões algébricas que não apresentam adições e subtrações entre os números e as variáveis, são chamadas de monômios. Por exemplo: 6x, 3x 2 y 2, ab, 10 etc. Página 1

2 A parte numérica de um monômio é o coeficiente e a outra parte formada por letras é a parte literal. De acoedo com os exemplos anteriores, vamos destacar o coeficiente e parte literal de cada monômio: 6x coeficiente: 6 parte literal: x 3x 2 y 2 coeficiente: 3 parte literal: x 2 y 2 ab coeficiente: 1 parte literal: ab 10 coeficiente: 10 parte literal: não tem Dois ou mais monômios que possuem a mesma parte literal e coeficientes diferentes são chamados de monômios semelhantes. Para somar ou subtrair monômios eles devem ser semelhantes. Caso contrário, a adição e a subtração serão apenas indicadas e não efetuadas. A expressão seguinte é um exemplo de operações com monômios: 4xy + 7xy - 5xy = ( )xy = 6xy Veja outro exemplo: No retângulo abaixo, assinalamos as medidas dos seus lados em cm. De acordo com a figura, vamos determinar a expressão algébrica mais simples (com menos termos) que representa o perímetro desse retângulo. 2x + 1 O perímetro de um retângulo é calculado somando-se as medidas de seus lados: 2(2x + 1) + 2(x - 3) = Propriedade distributiva da multiplicação 4x x - 6 Propriedade comutativa da adição 4x + 2x Efetuando-se as operações dos monômios semelhantes Portanto, a expressão mais simples que representa o perímetro do retângulo é 6x - 4 x - 3 Polinômios Uma expressão formada por adições e subtrações de monômios é chamada de polinômio (poli = muitos) Uma expressão como 4a 2-7ab + b 2-2a 2 - ab - b 2 é um polínômio formado por seis monômios ou termos. Como existem termos semelhantes nesse polinômio, podemos reduzi-los efetuando as operações indicadas na sequência: 4a 2-7ab + b 2-2a 2 - ab - b 2 4a 2-2a 2-7ab - ab + b 2 - b 2 2a 2-8ab + 0 2a 2-8ab Página 2

3 A expressão encontrada é chamada de forma reduzida do polinômio, pois os termos restantes não podem mais ser efetuados. Assim, para somar ou subtrair polinômios, basta reduzir seus termos semelhantes. Somando o polinômio 3x 2-4xy + y 2 com - x 2-2xy + 4y 2, temos: (3x 2-4xy + y 2 ) + (-x 2-2xy + 4y 2 ) = Retirar os parênteses 3x 2-4xy + y 2 - x 2-2xy + 4y 2 = 3x 2 - x 2-4xy - 2xy + y 2 + 4y 2 = 2x 2-6xy + 5y 2 = Aplicar a propriedade comutativa Reduzir os termos semelhantes Somar os dois polinômios No caso da subtração de dois polinômios, temos o exemplo: (-14ab + 7a) - (-12ab + 6a) = Retirando os parênteses e trocam os sinais do 2 polinô -14ab + 7a + 12ab - 6a = -14ab + 12ab + 7a - 6a = -2ab + a Diferença dos dois polinômios EQUAÇÕES É preciso que você saiba o significado de: equação incógnita de uma equação membros de uma equação termos de uma equação A importância do estudo das equações está no fato de que elas facilitam a resolução de certos problemas. Vejamos: Exemplo 1 Dois pacotes juntos pesam 22kg. Quanto pesa cada um deles, se o maior tem 6 kg a amis que o menor? Já vimos que podemos representar quantidades desconhecidas usando a álgebra. Neste caso, temos: Pacote menor = x Onde x representa o peso do pacote menor. pacote maior = x + 6 Então, teremos a seguinte equação: x + (x + 6) = 22 Efetuando as devidas equações: x + (x + 6) = 22 x + x + 6 = 22 2x + 6 = 22 2x = x = 22-6 Eliminar os parênteses Somar os termos semelhantes Subtrair 6 nos dois membros 2x = 16 2x = 16 Efetuar a divisão por 2, nos dois membros 2 2 x = 16 Desse modo, o peso do pacote menor é de 8kg e do pacote maior é de = 14kg. x = 8 Página 3

4 A equação e a operação inversa Na prática, não costumamos resolver uma equação pensando numa balança, nem fazendo todas as operações. Observe que quando subtraímos 6 nos dois membros, na equação acima, zeramos o 6 que estava no primeiro membro: 2x = x = 22-6 Por isso, dizemos simplesmente que o 6 passa para o outro lado e muda de sinal. Da mesma forma, costumamos dizer que o 2 que está multiplicando um termo no primeiro membro, passa para o segundo membro dividindo. 2x = 16 x = 16 x = 8 2 É importante observar que nessa regra de "passar para o outro lado", está embutido um conceito matemático chamado operação inversa. A operação inversa da adição é a subtração: + 6 virou - 6 A operação inversa da multiplicação é a divisão: x 2 virou : 2 Vejamos outro exemplo, que faz uso do conceito de operação inversa, para resolver a equação: Exemplo 2 Sabendo que o quádruplo de um número somado com 9 é igual ao número somado com 6, descubra qual é esse número. Um número: x Quádruplo do número: 4x Equação correspondente: 4x + 9 = x + 6 Resolução: 4x + 9 = x + 6 4x - x = 6-9 3x = -3 x= -3 3 x= - 1 Portanto o número procurado é -1. passar + 9 para o segundo membro (fica -9) e + x para o primeiro membro (fica - x). como a operação inversa de : 3 é x 3, temos: A VERIFICAÇÃO DA SOLUÇÃO A verificação da solução é tão importante quanto a própria resolução da equação. Pois ela nos dá a possibilidade de descobrir se cometemos algum erro de cálculo, por exemplo, e corrigi-lo. Para fazer a verificação, basta experimentar o valor encontrado na incógnita. Veja: Página 4

5 4x + 9 = x + 6 substituindo x por -1 4(-1) + 9 = = = 5 Logo, x = -1 é um valor que torna a equação 4x + 9 = x + 6 verdadeira. Experimente substituir x por outro valor, e veja o que acontece. A raiz de uma equação A solução de uma equação, isto é, o valor encontrado para a incógnita, é chamado, pela matemática, de raiz da equação. x = -1 é raiz da equação 4x + 9 = x + 6 EXEMPLO 3 Uma estante custa três vezes o preço de uma cadeira. Qual o preço da estante, se as duas mercadorias juntas custam R$ 64,00? Equacionando o problema: Preço da cadeira: x Preço da estante: 3x Equação correspondente: x + 3x = 64 Resolução: x + 3x = 64 4x = 64 x= 64 4 x = 16 VERIFICAÇÃO DA RAIZ = = = 64 A estante custa R$ 48,00 Fontes: Telecurso Matemática Ensino Médio Volume I e II Rio de Janeiro - Fundação Roberto Marinho, 2008 Página 5

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012

ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/2012 OSASCO, DE DE 01 NOME: PROF. 8º ANO ATIVIDADE DE MATEMÁTICA (PARA CASA) Data de entrega 18/04/01 1. Deseja-se fixar o comprimento e a largura de uma sala de modo que a sua área seja 36 m. a) Se a largura

Leia mais

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas:

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas: 6ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA POLINÔMIOS E OPERAÇÕES COM POLINÔMIOS ORIENTAÇÕES: Ensino Fundamental 8 Ano Realize os exercícios em folhas de fichário com a identificação completa,

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Sistemas Lineares Objetivos: Entender a notação matricial; Identificar matrizes: identidade, diagonal, simétrica, triangular e tridiagonal; Como multiplicar matrizes e verificar quando esta multiplicação

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja:

Em cada uma dessas frases, há uma quantidade indicada em forma de fração. Veja: MATEMÁTICA BÁSICA 4 Frações Leitura Três quartos da população do estado X recebe até um salário mínimo A herança será dividida, cabendo um sétimo do total a cada um dos herdeiros A parede será azulejada

Leia mais

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02

= 0, 4343 = 0, 43 = 1, 0222 = 1, 02 1 Conjuntos Numéricos Neste capítulo, serão apresentados conjuntos cujos elementos são números e, por isso, são denominados conjuntos numéricos. 1.1 Números Naturais (N) O conjunto dos números naturais

Leia mais

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84 COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

1. Pablo tinha uma nota, mas não sabemos de quanto era essa nota, então a chamaremos de x. 2x + 8 = 0 5x 4 = 6x + 8 3a b c = 0

1. Pablo tinha uma nota, mas não sabemos de quanto era essa nota, então a chamaremos de x. 2x + 8 = 0 5x 4 = 6x + 8 3a b c = 0 Aula Período Zero Turma 1 Data: 13/03/2013 Tópicos Equação de 1º Grau Noção de Equação Incógnitas Operações com incógnitas (Adição, subtração, multiplicação, divisão, potência) Exemplos para montar equação

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Resolução de sistemas de equações lineares: Método de eliminação de Gauss

Resolução de sistemas de equações lineares: Método de eliminação de Gauss Resolução de sistemas de equações lineares: Método de eliminação de Gauss Marina Andretta ICMC-USP 21 de março de 2012 Baseado no livro Análise Numérica, de R L Burden e J D Faires Marina Andretta (ICMC-USP)

Leia mais

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA

CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 MATEMÁTICA CONTEÚDOS PARA A PROVA DE RECUPERAÇÃO SEMESTRAL AGOSTO / 2016 ANO: 6º A e B Prof: Zezinho e Admir MATEMÁTICA PROGRAMA II DATA DA PROVA: 09 / 08 / 2016 HORÁRIO: 14h GRUPO 2 - ORIGEM E EVOLUÇÃO CAPÍTULO

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

Material de Apoio de Matemática Básica

Material de Apoio de Matemática Básica Sindicato dos Servidores Públicos Municipais de São Vicente Material de Apoio de Matemática Básica Caio Ricardo Faiad da Silva Setembro/11-Novembro/11 Apresentação Este material foi preparado com a intenção

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 =

1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072. c) 347,28= d) 0,481 = 1-) Transforme os seguintes números decimais em frações decimais: a) 0,5 = b) 0,072 c) 347,28= d) 0,481 = 2-) Transforme as seguintes frações decimais em números decimais: 46 a) 100000 c) 13745 100 b)

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Qual é a menor das raízes da equação Questão 2 (OBMEP RJ adaptada) Mariana entrou na sala e viu

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Unidade III Números Racionais.

Unidade III Números Racionais. Unidade III Números Racionais. Aula 25.1 Conteúdo: Adição de frações. Habilidade: Resolver problema de Adição e subtração de números racionais. a. 13 5 MATEMÁTICA Transforme em números mistos as frações

Leia mais

Nesta aula vamos rever operações com frações,

Nesta aula vamos rever operações com frações, A UA UL LA Operações com frações Introdução Nesta aula vamos rever operações com frações, verificando a validade das propriedades operatórias dos números racionais. Veremos também o cálculo de expressões

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

O PENSAMENTO ALGÉBRICO

O PENSAMENTO ALGÉBRICO NOME: ANO: 8º ENSINO: FUNDAMENTAL TURMA: DATA: / / PROF(ª): GREGORIO TOMAS GONZAGA LÓGICA E MATEMÁTICA - APOSTILA (2º BIMESTRE) IMPORTANTE 1 Organize-se, guardando cada lista de exercícios que receber

Leia mais

Polinômios. Para mais informações sobre a história de monômios e polinômios, leia o artigo Monômios.

Polinômios. Para mais informações sobre a história de monômios e polinômios, leia o artigo Monômios. Um pouco de história Polinômios A grande maioria das pessoas que estão em processo de aprendizagem em matemática sempre buscam aplicações imediatas para os conteúdos. Não que esse deva ser um caminho único

Leia mais

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ----

Valores eternos. a + c² - 3x, para a = 3, c = 0 e x = 4 MATÉRIA PROFESSOR(A) ---- ---- Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Matemática I PROFESSOR(A) Steve ANO SEMESTRE DATA 8º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Considere que x é a fração geratriz da

Leia mais

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco?

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco? MATEMÁTICA BÁSICA - 01 Recordando operações: Adição, Subtração, Multiplicação, Divisão Vamos lembrar como essas operações são feitas e principalmente, quando devemos utilizá-las na solução de um problema

Leia mais

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador.

Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. O símbolo Frações significa a:b, sendo a e b números naturais e b diferente de zero. Chamamos: de fração; a de numerador; b de denominador. Se a é múltiplo de b, então é um número natural. Veja um exemplo:

Leia mais

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO

PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO Provas 2º Bimestre 2012 MATEMÁTICA DESCRITORES DESCRITORES DO 2º BIMESTRE DE 2012

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

Material Teórico - Módulo de Expressões Algébricas e Polinômios. Parte 1. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Expressões Algébricas e Polinômios. Parte 1. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Expressões Algébricas e Polinômios Parte 1 Oitavo Ano Prof. Ulisses Lima Parente 1 Expressões algébricas Em muitas situações, é conveniente denotar um número real arbitrário

Leia mais

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens.

3- O resto da divisão do polinômio 8x² +6x+5 pelo polinômio 2x+1 é: 4- Calcule o quadrado da soma e o quadrado da diferença nos seguintes itens. Atividade de fixação(2º semestre) 1-O retângulo abaixo tem a medida de um dos lados e a área representada por polinômio. Determine o polinômio que representa a medida do outro lado. A=4x +12x +4x² x 4x

Leia mais

Plano 7 - Jogo do Alvo Junho/2015

Plano 7 - Jogo do Alvo Junho/2015 ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI Plano 7 - Jogo do Alvo Junho/2015 Bolsistas: Mévelin Maus e Natacha Subtil Supervisora: Marlete Basso Romam Disciplina: Matemática Série: 8º ano Ensino Fundamental

Leia mais

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos.

4. Álgebra Booleana e Simplificação Lógica. 4. Álgebra Booleana e Simplificação Lógica 1. Operações e Expressões Booleanas. Objetivos. Objetivos 4. Álgebra Booleana e Simplificação Lógica Aplicar as leis e regras básicas da álgebra Booleana Aplicar os teoremas de DeMorgan em expressões Booleanas Descrever circuitos de portas lógicas com

Leia mais

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações

Eixo Temático ITema 1: Conjuntos Numéricos. Números e Operações Eixo Temático ITema 1: Conjuntos Numéricos Números e Operações 1. Conjunto dos números naturais 2. Conjunto dos números inteiros 1.0. Conceitos 3 1.1. Operar com os números naturais: adicionar, multiplicar,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8.º ANO PLANIFICAÇÃO GLOBAL 1. Representação, comparação e ordenação. Representar números racionais

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 6B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Aritmética Sistema de Numeração Decimal Nosso sistema de numeração utiliza dez símbolos para representar todos

Leia mais

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU

AULA 1 EQUAÇÕES E SISTEMAS DO 1º GRAU AULA EQUAÇÕES E SISTEMAS DO º GRAU EQUAÇÕES DO º GRAU Uma equação é classificada como sendo do º grau quando puder ser escrita na forma ax + b 0 onde a e b são reais com a 0. Uma equação do º grau admite

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO DE MATEMÁTICA 5.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números racionais

Leia mais

Álge g bra b B ooleana n Bernardo Gonçalves

Álge g bra b B ooleana n Bernardo Gonçalves Álgebra Booleana Bernardo Gonçalves Sumário Histórico Álgebra de Boole Axiomas da Álgebra de Boole Álgebra de Boole de dois valores literais Teoremas da Álgebra de Boole Simplificação de expressões booleanas

Leia mais

Matemática. Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03. 8 Ano 3 Bimestre. Disciplina Curso Bimestre Ano

Matemática. Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03. 8 Ano 3 Bimestre. Disciplina Curso Bimestre Ano Matemática Aluno Caderno de Atividades Pedagógicas de Aprendizagem Autorregulada 03 8 Ano 3 Bimestre Disciplina Curso Bimestre Ano Matemática Ensino Fundamental 3 8 Habilidades Associadas 1. Identificar

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB

DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB DESCRIÇÃO DOS NÍVEIS DA ESCALA DE DESEMPENHO DE MATEMÁTICA SAEB 5º e 9º. Ano do Ensino Fundamental (continua) e exemplos de competência Nível 0 - abaixo de 125 A Prova Brasil não utilizou itens que avaliam

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

RELAÇÕES TRIGONOMÉTRICAS

RELAÇÕES TRIGONOMÉTRICAS REAÇÕES TRIGONOMÉTRICAS As relações trigonométricas, são estudadas no triângulo retângulo que você já viu é um triângulo que tem um ângulo reto e seus lados indicados por hipotenusa e dois catetos. No

Leia mais

Objetivo. tica 3º ano EM. Oficina de Matemática

Objetivo. tica 3º ano EM. Oficina de Matemática Oficina de Matemática tica 3º ano EM Objetivo Análise, interpretação e utilização dos resultados do SAEPE para promoção da equidade e melhoria da qualidade da educação dos estudantes pernambucanos. Prof

Leia mais

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número

1. Números. MatemáticaI Gestão ESTG/IPB Departamento de Matemática. Números inteiros. Nota: No Brasil costuma usar-se: bilhão para o número MatemáticaI Gestão ESTG/IPB Departamento de Matemática 1. Números Números inteiros 0 10 1 1 10 10 2 10 100 3 10 1000 6 10 1000000 10 10 12 18 Uma unidade (um) Uma dezena (dez) Uma centena (cem) Um milhar

Leia mais

Conteúdos: Introdução aos monômios, termos semelhantes e polinômios.

Conteúdos: Introdução aos monômios, termos semelhantes e polinômios. ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI Plano 11 - Jogo do Alvo Agosto/2015 Bolsistas: Mévelin Maus e Natacha Subtil Supervisora: Marlete Basso Romam Disciplina: Matemática Série: 7º ano Ensino

Leia mais

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações

1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações 1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120

Que algarismos devem ser colocados nos pontinhos da conta abaixo? ... 34 x 41... O. IS x 12 = 180 300-180 = 120 Que algarismos devem ser colocados nos pontinhos da conta abaixo?... 34 x 41... O Invente um problema que tenha como solução os cálculos abaixo: IS x 12 = 180 300-180 = 120 Em diversas situações do nosso

Leia mais

OPERAÇÕES FUNDAMENTAIS

OPERAÇÕES FUNDAMENTAIS OPERAÇÕES FUNDAMENTAIS CÁLCULO DA ADIÇÃO E SUBTRAÇÃO: Operação aritmética, que consiste em adicionar ou retirar um número. a) 2254 + 1258 = 3512 1 1 2 2 5 4 3 5 1 2 Para o cálculo da adição, ordenamos

Leia mais

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo MÓDUL XVI 1. Definição de ângulo MEDIDS DE ÂNGULS Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. Ângulo é a união de duas semi-retas e de mesma origem e não colineares.

Leia mais

SOFTWARE PARA O ENSINO DE POLINÔMIO

SOFTWARE PARA O ENSINO DE POLINÔMIO SOFTWARE PARA O ENSINO DE POLINÔMIO Fábio José da Costa Alves fjcalves@yahoo.com.br Lainy Bezerra Moraes moraeslb@hotmail.com Tássia Cristina da Silva Pinheiro tassia.pinheiro@hotmail.com Resumo: Neste

Leia mais

Resumos para a Prova de Aferição. Matemática

Resumos para a Prova de Aferição. Matemática Resumos para a Prova de Aferição de Matemática Números e operações 1.Leitura e escrita de números inteiros 1.1. Conjunto de números naturais Os números 1,, 3, 4, são números naturais. O conjunto dos números

Leia mais

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Teorema de Pitágoras- Unidade 2 1.ºP Tema Calendarização Domínio N.º de aulas de 45 minutos Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Planificação Curricular a Longo Prazo Matemática

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: Prof. Dr. Daniel Cordeiro de Morais Filho BOLSISTA: Tiago Alves

Leia mais

NIVELAMENTO 2009/2 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2009/2 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 009/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração.... Multiplicação.... Divisão.... Potenciação.... Radiciação....

Leia mais

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 8º ano do Ensino Fundamental MATEMÁTICA

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Caderno do Professor. 8º ano do Ensino Fundamental MATEMÁTICA AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Caderno do Professor 8º ano do Ensino Fundamental MATEMÁTICA São Paulo Agosto de 2015 9ª edição Gabarito 7ª Série / 8º Ano QUESTÃO A B C D 01 02 03 04 05 06 07 08

Leia mais

Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo:

Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo: FRAÇÕES Fração é uma forma de representar uma divisão, onde o numerador é o dividendo e o denominador é o divisor. Exemplo: Adição e subtração de frações Para adicionar ou subtrair frações, é preciso que

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

MATEMÁTICA PROVA 3º BIMESTRE

MATEMÁTICA PROVA 3º BIMESTRE PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

1º BIMESTRE Encaminhamentos Metodológicos (como?)

1º BIMESTRE Encaminhamentos Metodológicos (como?) NRE - TOLEDO PLANO DE TRABALHO DOCENTE MATEMÁTICA COLÉGIO SENADOR ATILIO FONTANA Ensino Fundamental e Médio SÉRIE: 8º ano B ANO LETIVO: 2014 PROF: TEREZA HENRIQUETTA BENETTI Conjuntos numéricos Números

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros.

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros. Unidade 2. Os números inteiros. Enquadramento curricular em Espanha: Objetos de aprendizagem: Introdução aos números inteiros. Expressar situações da vida quotidiana nas que se utilizem os números inteiros.

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 7º ano - Nº 24 Escola Secundária com º CEB de Lousada Ficha de Trabalho de Matemática do 7º ano - Nº Assunto: Objectivos para o teste de de Março/ Ficha de preparação para o teste Lições nº e Data / 0/ 00 Conteúdos para

Leia mais

Centro Educacional Juscelino Kubitschek

Centro Educacional Juscelino Kubitschek Prezado (a) aluno(a): Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( x ) Fundamental ( ) Médio SÉRIE: 8ª TURMA: TURNO: DISCIPLINA: MATEMEMÁTICA PROFESSOR: EQUIPE DE MATEMÁTICA

Leia mais

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA Objetivos Conteúdos Habilidades Reconhecer números inteiros, e as diferentes formas de representá-los e relacioná-los, apropriando-se deles. Números inteiros:

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144.

QUESTÃO 3 ALTERNATIVA E 24 é o maior número que aparece na figura. Indicamos abaixo a sequência de operações e seu resultado. 24 2 12 6 144. OBMEP 009 Nível 1 1 QUESTÃO 1 Na imagem que aparece no espelho do Benjamim, o ponteiro dos minutos aponta para o algarismo, enquanto que o ponteiro das horas está entre o algarismo 6 e o traço correspondente

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega

MATEMÁTICA II. Aula 12. 3º Bimestre. Determinantes Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 12 Determinantes Professor Luciano Nóbrega º Bimestre 2 DETERMINANTES DEFINIÇÃO A toda matriz quadrada está associado um número real ao qual damos o nome de determinante. O determinante

Leia mais

Resolução de Sistemas de duas Equações do 1º grau a duas incógnitas. Método de Adição Ordenada/ Gauss

Resolução de Sistemas de duas Equações do 1º grau a duas incógnitas. Método de Adição Ordenada/ Gauss Resolução de Sistemas de duas quações do º grau a duas incógnitas Método de Adição Ordenada/ Gauss Tema: Sistemas de quações / 9º ano Actividade de enriquecimento No programa do 9º ano encontramos os seguintes

Leia mais

2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3).

2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3). ROTEIRO DE ESTUDOS 3 NOME Nº 8 ANO MATEMÁTICA - 3º BIMESTRE Profs. Yuri, Marcello e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma revisão dos

Leia mais

Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br

Matemática. Divisão Proporcional. Professor: Dudan. www.acasadoconcurseiro.com.br Matemática Divisão Proporcional Professor: Dudan www.acasadoconcurseiro.com.br Matemática DIVISÃO PROPORCIONAL Existem problemas que solicitam a divisão de um número em partes diretamente proporcionais

Leia mais

Sistemas Numéricos. Tiago Alves de Oliveira

Sistemas Numéricos. Tiago Alves de Oliveira Sistemas Numéricos Tiago Alves de Oliveira Sumário Sistemas Numéricos Binário Octal Hexadecimal Operações aritméticas binária e hexadecimal Operações lógicas binárias e decimais Representação Interna de

Leia mais

COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO

COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO COLÉGIO ESTADUAL ANASTÁCIA KRUK - ENS. FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE PTD E PLANEJAMENTO 2011 DISCIPLINA: MATEMÁTICA PROFESSOR EVANDRO ORTIZ DA SILVA PLANO DE TRABALHO DOCENTE PTD 2011 PROFESSOR:

Leia mais

Assim, 1 unidade = 10 décimos 1 décimo = 10 centésimos 1 centésimo = 10 milésimos

Assim, 1 unidade = 10 décimos 1 décimo = 10 centésimos 1 centésimo = 10 milésimos ALUNO(A): PROFESSOR(A): WELLINGTON DATA: / / ANO: 6 o E.F. II TURMA: N o MATEMÁTICA LISTA DE REINVESTIMENTO - 3º TRIMESTRE Representação e leitura de números decimais: Assim como os números naturais, os

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Disciplina Aulas: Segunda-feira e terça-feira: 8:00 até 9:50 Avaliações: listas de exercícios e três provas; Sala: 222; Livros. Conteúdos Plano de Ensino

Leia mais

ENCAMINHAMENTOS METODOLÓGICOS

ENCAMINHAMENTOS METODOLÓGICOS COLÉGIO ESTADUAL SANTO ANTONIO ENSINO FUNDAMENTAL E MÉDIO PLANO DE TRABALHO DOCENTE MATEMÁTICA 1º SEMESTRE /2012 SÉRIE:9 ANO A PROFESSORA: MARIA ANGELA DE LIMA CONTEÚDOS Conteúdos Estruturantes: Números

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Comandos de Desvio 1

Comandos de Desvio 1 Programação de Computadores I UFOP DECOM 2014 1 Aula prática 3 Comandos de Desvio 1 Sumário Resumo Nesta aula você irá resolver problemas que requerem uma decisão com base em um teste, ou condição. Para

Leia mais

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I

1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf

Razões e proporções. Profa. Dra. Denise Ortigosa Stolf Razões e proporções Profa. Dra. Denise Ortigosa Stolf Sumário Página Razão... 1 Razões inversas... Algumas razões especiais... 5 As razões escritas na forma percentual... 6 Calculando a porcentagem...

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E

1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior

Leia mais