A Equação de Onda em Uma Dimensão (continuação)

Tamanho: px
Começar a partir da página:

Download "A Equação de Onda em Uma Dimensão (continuação)"

Transcrição

1 A Equação de Onda em Uma Dimensão (continuação) Energia em uma onda mecânica Consideremos novamente o problema da onda transversal propagando-se em uma corda vibrante em uma dimensão (lembrese, a corda vibrante é um modelo protótipo para todos os tipos de onda mecânica em uma dimensão). Suponhamos que a onda seja produzida na corda por uma pessoa ou máquina (que vamos chamar de agente motriz) que a segure por sua extremidade da esquerda e a faça vibrar transversalmente executando um MHS. A onda gerada por esse movimento se propaga ao longo da corda e o efeito disso é que os diferentes pedaços da corda sobem e descem, isto é, são postos em movimento. Se houver um objeto preso à outra extremidade da corda (um peso como o da figura da página da aula 4), ele também será posto em movimento. Esses movimentos dos diversos pontos da corda e do peso preso à sua extremidade ocorrem porque trabalho mecânico é realizado sobre eles. Esse trabalho é devido à energia que é transportada pela onda ao longo da corda.

2 Obviamente, quando a corda estava em repouso antes que o agente motriz pusesse sua extremidade da esquerda em movimento os seus pontos não se movimentavam para cima e para baixo. Isto significa que a corda sozinha não tem condições (ou energia) para produzir a onda que se propaga através dela. É necessário que energia seja fornecida de fora para que a corda seja posta em movimento e a onda ocorra. Essa energia vem do agente motriz que faz com que a extremidade da esquerda da corda oscile. Devemos notar que quando uma onda se propaga por uma corda, não somente os seus pontos se movem como também a corda sofre deformações (por causa da sua elasticidade). Isto implica que a energia transmitida à corda deve estar presente em duas formas: na forma de energia cinética, associada ao movimento da corda, e na forma de energia potencial elástica, associada à deformação da corda. Vamos, a seguir, calcular a energia total por comprimento de onda de uma onda harmônica propagando-se em uma corda esticada. A energia será calculada por comprimento de onda e não para a corda inteira porque a corda pode ter tamanhos diferentes, mas um comprimento de onda será sempre um comprimento de onda.

3 Vamos novamente considerar todas as aproximações feitas na aula passada para a dedução da equação das cordas vibrantes (consulte a aula passada para relembrá-las). Consideremos uma configuração qualquer da onda na corda em um instante t > 0. Seja um segmento de corda que, no repouso, está entre x e x + dx. Vamos supor que o segmento é tão curto que quando a corda está vibrando ele possa ser aproximado por uma linha reta. Vamos chamar o comprimento do segmento na situação em que a corda vibra de ds (veja a figura abaixo). A massa do segmento é dm µ dx e a sua velocidade transversal é v. () t Logo, a energia cinética do segmento é dk µdx t. () 3

4 Com base em () podemos definir a energia cinética por unidade de comprimento da corda, ou densidade linear de energia cinética, como dk dx µ t. (3) Para calcular a energia cinética de um pedaço da corda de um dado comprimento qualquer, basta integrar a expressão acima por esse comprimento. A energia potencial elástica do segmento pode ser calculada a partir do trabalho feito pela força atuando sobre o segmento (a tensão constante T) para deformá-lo. Note que como o segmento é tão pequeno que pode ser tomado sempre como reto, a única deformação possível é uma alteração no seu comprimento (um estiramento ou uma compressão). Essa alteração é dada pela diferença ds dx. O trabalho feito pela tensão T para deformar o segmento de corda é então dw T(ds dx), de maneira que a energia potencial elástica do segmento é du ( ds dx) T. (4) Olhando para a figura da página 3 podemos escrever, 4

5 ds [( dx) + ( d) ] / dx + x Certifique-se de que você entende o porquê de se escrever a expressão acima em termos da derivada parcial x. /. Supondo que os deslocamentos transversais são pequenos, temos que x <<. Isto implica que podemos aproximar o termo que multiplica dx no lado direito da expressão acima por sua expansão binomial truncada no segundo termo, obtendo ds dx + x, ou ds dx Substituindo (5) em (4) obtemos, x dx. (5) du T x dx. (6) ( + x) n + nx. 5

6 Pode-se então definir a energia potencial elástica por unidade de comprimento da corda, ou densidade linear de energia potencial elástica, como du dx T x. (7) A energia potencial elástica de um dado pedaço de corda é dada pela integral da densidade linear acima pelo comprimento do pedaço de corda. As expressões obtidas acima para as densidades lineares de energia cinética (equação 3) e energia potencial elástica (equação 7) são gerais, válidas para qualquer tipo de onda que se propague pela corda. Vamos agora particularizar nosso estudo e considerar que a onda que se propaga pela corda é uma onda harmônica dada por, ( x t) Acos( kx ω t + ϕ),. (8) A velocidade transversal da corda, para um dado ponto x, é então, v x, t) ( x, t) ω Asen t + t ( kx ω ϕ) (. (9) Podemos escrever esta expressão como ( kx ω +ϕ) v( x, t) Vsen t, (0) 6

7 onde V ωa é a máxima velocidade transversal da corda. Num instante de tempo t qualquer, por exemplo t *, as velocidades transversais para os vários pontos da corda são: v ( x, t * * ( kx ω t + ϕ) V sen( + δ ) ) V sen kx onde δ ωt + φ é uma nova constante de fase., () Observe que para quaisquer outros instantes de tempo, t **, t ***, etc, a expressão acima é a mesma, apenas com uma constante de fase diferente. Dito de outra maneira, a distribuição de velocidades transversais ao longo da corda varia no espaço como uma função seno com amplitude V, independentemente do instante de tempo t considerado. Como estamos interessados aqui em calcular a energia de um comprimento de onda e a distribuição de velocidades transversais é sempre senoidal e de mesma amplitude, isto é, o comprimento de onda é o mesmo para toda a onda, a informação sobre a constante de fase δ é desnecessária para o nosso cálculo. Podemos, portanto, sem perda de generalidade para os nossos propósitos, fazer δ 0 na equação () e usar a distribuição espacial de velocidades transversais escrita como 7

8 v ( kx) ( x) Vsen. () Substituindo () em (3), temos que a densidade linear de energia cinética da corda é: dk dx [ v ( x) ] µ V sen ( kx) µ. (3) Podemos reescrever a expressão acima como dk dx π µ V sen x λ. (4) A energia cinética total de um pedaço de fio com comprimento igual a um comprimento de onda é, portanto: K λ x+ λ µ V sen x πx dx λ. (5) A integral do quadrado do seno na expressão acima vale λ/ (mostre isto como exercício para casa), x+ λ x sen πx dx λ λ, de maneira que, K λµω 4 4 λ λµ V A. (6) Esta é a energia cinética de um comprimento de onda da corda quando uma onda harmônica se propaga por ela. 8

9 Vamos agora calcular a energia potencial elástica de um comprimento de onda, também para o caso de uma onda harmônica propagando-se pela corda. Olhando para a equação (7), vemos que precisamos calcular x para isso. Da equação (8), temos: ( x, t) kasen( kx ω t +ϕ) x. (7) Assim como feito no caso do cálculo da energia cinética, num instante de tempo t qualquer, por exemplo t *, esta expressão é: ( x, t x * ) kasen * ( kx ω t + ϕ) kasen( kx + δ ) onde δ ωt + φ é uma nova constante de fase., (8) Como novamente nosso interesse restringe-se apenas a um comprimento de onda, podemos escrever a expressão acima como ( x) kasen x ( kx), (9) de maneira que a densidade linear de energia potencial elástica é: du T ( x) Tk A sen dx x Podemos reescrever a expressão acima como ( kx). (0) 9

10 du dx onde se usou a equação (9) da aula 5, ω π T A sen x v λ ω kv., () Também podemos usar a expressão para a velocidade de uma onda em uma corda deduzida na aula passada, v T µ, para reescrever du/dx em () como du dx π µω A sen x λ. () Integrando esta densidade por um comprimento de onda, obtemos a expressão para a energia potencial elástica de um comprimento de onda da corda: x λ du λ ( x) dx λµω A V x dx 4 4 U + λµ. (3) Note que esta expressão é igual a K λ : a energia cinética e a energia potencial elástica de um comprimento de onda são iguais. A energia total de um comprimento de onda da corda, no caso de uma onda harmônica, é então: E λµ λ Kλ + Uλ V. (4) 0

11 Imagine um pedaço de corda com comprimento igual a um comprimento de onda da onda harmônica, x λ. A massa desse pedaço de corda é m µ x µ λ. A equação acima nos diz então que a energia total de um comprimento de onda da corda é igual à energia cinética que um pedaço de corda de comprimento λ teria se todo ele estivesse se movimentando com a velocidade transversal máxima V da onda. Observe que as expressões obtidas para a energia cinética (equação 6) e potencial elástica (equação 3) de um comprimento de onda da corda indicam que essas energias são proporcionais ao comprimento de onda λ. Da mesma forma, a energia total de um comprimento de onda também é proporcional a λ. Não é conveniente, quando se estuda energia transmitida por uma onda, trabalhar com grandezas que dependam do tamanho do meio por onde a onda se propaga (no caso da corda, este é o comprimento L da corda) ou do comprimento de onda λ. Define-se, portanto, a energia média (cinética, elástica ou total) de uma onda como, E λ E λ. (5)

12 Desta forma, as energias médias cinética, potencial elástica e total da corda são, respectivamente: e K µω 4 A, (6) U µω 4 A (7) E µω A. (8) Compare estas expressões com as equações (5.4.6), (5.4.7) e (5.4.8) do livro do Nussenzveig. Vamos agora calcular a taxa média com que energia é transportada pela onda, ou potência média da onda. Voltando ao nosso exemplo da onda harmônica sendo gerada por um agente motriz fazendo sua extremidade da esquerda oscilar transversalmente como um MHS, notemos que este processo implica em um fornecimento contínuo de energia à corda. Para cada novo comprimento de onda λ gerado pelo agente que movimenta a corda, uma quantidade de energia dada por (4) é fornecida à corda. Vamos calcular o trabalho feito pelo agente motriz para garantir esse fornecimento constante de energia.

13 Consideremos a extremidade esquerda da corda (x 0) e a força (tensão T) atuando sobre ela nesse ponto, gerando a onda harmônica que se propaga pela corda (figura abaixo). O movimento da ponta da corda é, por hipótese, puramente transversal. A componente da força T na direção do movimento é, F Tsenθ. Vamos novamente supor que o ângulo θ é muito pequeno, θ <<, de maneira que podemos aproximar sen θ tan θ. Desta forma, F Ttanθ T x onde (x, t) é a expressão para a onda harmônica, x 0 ( x t) Acos( kx ω t + ϕ),., (9) A derivada desta expressão em relação a x, calculada em x 0, é x x 0 que substituída em (9) nos dá kasen ( ω t + ϕ), (30) 3

14 ( ω +ϕ) F katsen t. (3) Esta força é a responsável pelos deslocamentos transversais da ponta da corda, que executam um MHS descrito por, ( 0, t) Acos( ω +ϕ) ( t) t 0. (3) O trabalho feito pela força F para deslocar a ponta da corda por uma distância d 0 é, dw F d F sen [ ω A ( ωt + ϕ) dt] 0, e substituindo F dada por (3) nesta expressão, dw ω A T v ( ωt + ϕ)dt onde usamos novamente a expressão ω kv. sen, (33) Usando também que v T/µ, temos: dw µ vω A ( ωt + ϕ)dt sen. (34) O trabalho feito durante um ciclo completo da oscilação harmônica da extremidade esquerda da corda é dado pela integração da expressão acima por um período da oscilação. Note que tanto o período como a tensão sobre a corda são expressos aqui pela letra T. Portanto, fique atento, o símbolo que será usado na integral a seguir quer dizer período e não tensão. 4

15 O trabalho feito pela força F por um período é dado por, W ciclo µ vω A t + T t sen ( ωt + ϕ) dt. (35) A integral do quadrado do seno por um período é dada por, t + T t sen ( ωt + ϕ) dt T. Mostre isto como exercício para casa. Temos então, W ciclo µ vω A T. (36) Note (desculpe pela insistência) que a letra T que aparece na expressão acima é o período T e não a tensão T. Se dividirmos o trabalho feito por ciclo pela duração de um ciclo (o período T), teremos a potência média fornecida à corda, P : P W T ciclo µ vω A. (37) A potência média nos dá a quantidade de energia que passa, em média, por um dado ponto da corda por unidade de tempo. Para um caso unidimensional como o da corda vibrante, ela também pode ser chamada de intensidade I da onda (como faz o Nussenzveig), 5

16 I P. (38) Em mais de uma dimensão, porém, a intensidade de uma onda é definida como a quantidade de energia transportada pela onda por unidade de tempo por unidade de área (ela é medida em unidades de W/m ) Observe pela equação (37) que a intensidade é proporcional ao quadrado da amplitude, ao quadrado da frequência e à velocidade da onda. Comparando esta expressão com a equação (8) para a energia total por comprimento de onda da corda, temos que: I P ve. (39) Podemos interpretar esta equação como significando que, a cada ciclo, o agente motriz adiciona um novo comprimento de onda à corda, com energia média E. Essa energia não fica retida na extremidade esquerda da corda, mas se propaga por ela com velocidade v. A taxa com que essa energia passa por cada ponto da corda por unidade de tempo é dada pela potência média P acima. 6

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 16 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de usar modelos simples como protótipos de certos comportamentos básicos

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 14 Ondas 5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Introdução: elementos básicos sobre ondas De maneira geral, uma onda é qualquer sinal que se transmite de um ponto a outro

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Tópicos de Física Moderna Engenharia Informática

Tópicos de Física Moderna Engenharia Informática EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.

Leia mais

Problemas de Mecânica e Ondas 8

Problemas de Mecânica e Ondas 8 Problemas de Mecânica e Ondas 8 P 8.1. ( Introdução à Física, J. Dias de Deus et. al. ) a) A figura representa uma onda aproximadamente sinusoidal no mar e uma boia para prender um barco, que efectua 10

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de

Leia mais

PRINCIPAIS CARACTERÍSTICAS DO MOVIMENTO ONDULATÓRIO. META Introduzir aos alunos conceitos básicos do movimento ondulatório

PRINCIPAIS CARACTERÍSTICAS DO MOVIMENTO ONDULATÓRIO. META Introduzir aos alunos conceitos básicos do movimento ondulatório PRINCIPAIS CARACTERÍSTICAS DO MOVIMENTO ONDULATÓRIO Aula META Introduzir aos alunos conceitos básicos do movimento ondulatório OBJETIVOS Ao final desta aula, o aluno deverá: Explicar o que é uma onda mecânica.

Leia mais

Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda

Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda Pulso e ondas Classificação das ondas Espectro magnéticos Espectro ondas sonoras Transporte de energia por ondas Intensidade de uma onda Pulso e ondas O que é uma onda? Numa corda esticada horizontalmente,

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;

v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ; 1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira

Leia mais

FIGURAS DE LISSAJOUS

FIGURAS DE LISSAJOUS FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados

Leia mais

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS

FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS FÍSICA (Eletromagnetismo) CAMPOS ELÉTRICOS 1 O CONCEITO DE CAMPO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q1, e a seguir coloquemos em suas proximidades uma segunda

Leia mais

ESTUDO DE UM CIRCUITO RC COMO FILTRO

ESTUDO DE UM CIRCUITO RC COMO FILTRO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T6 Física Experimental I - 2007/08 ESTUDO DE UM CIRCUITO RC COMO FILTRO 1. Objectivo Estudo do funcionamento, em regime estacionário,

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Experiência 05 TRABALHO E ENERGIA NUMA MOLA ) OBJETIVOS a. Calcular o trabalho realizado por

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS

COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS LOGO FQA COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS Propagação de um sinal Energia e velocidade de propagação (modelo ondulatório) Transmissão de sinais Sinal - é qualquer espécie de perturbação que

Leia mais

Campo Magnético Girante de Máquinas CA

Campo Magnético Girante de Máquinas CA Apostila 3 Disciplina de Conversão de Energia B 1. Introdução Campo Magnético Girante de Máquinas CA Nesta apostila são descritas de forma sucinta as equações e os princípios relativos ao campo magnético

Leia mais

Ondas. Lucy V. C. Assali. Física II IO

Ondas. Lucy V. C. Assali. Física II IO Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva

Leia mais

ESTUDO DE UM MOVIMENTO 519EE TEORIA

ESTUDO DE UM MOVIMENTO 519EE TEORIA 1 TEORIA 1. INTRODUÇÃO Observe a seguinte sequência de fotos: Figura 1: Exemplos de vários tipos de movimento. O que tem a ver as situações do dia a dia ilustradas na figura 1 acima com os conceitos da

Leia mais

CIRCUITOS DE CORRENTE ALTERNADA

CIRCUITOS DE CORRENTE ALTERNADA CRCUTOS DE CORRENTE ALTERNADA NTRODUÇÃO As correntes e tensões na maioria dos circuitos não são estacionárias, possuindo uma variação com o tempo. A forma mais simples da variação temporal de tensão (corrente)

Leia mais

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C

RESPOSTA: C. a) só a I. b) só a II. c) só a III. d) mais de uma. e) N.d.a. RESPOSTA: C 1. (ITA - 1969) Usando L para comprimento, T para tempo e M para massa, as dimensões de energia e quantidade de movimento linear correspondem a: Energia Quantidade de Movimento a) M L T -1... M 2 L T -2

Leia mais

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t

Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1

Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1 Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Ondas Eletromagnéticas. Cap. 33

Ondas Eletromagnéticas. Cap. 33 Ondas Eletromagnéticas. Cap. 33 33.1 Introdução As ondas eletromagnéticas estão presentes no nosso dia a dia. Por meio destas ondas, informações do mundo são recebidas (tv, Internet, telefonia, rádio,

Leia mais

Física I 2010/2011. Aula12 Centro de Massa e Momento Linear II

Física I 2010/2011. Aula12 Centro de Massa e Momento Linear II Física I 2010/2011 Aula12 Centro de Massa e Momento Linear II Sumário Colisões Momento linear e energia cinética em colisões Colisões inelásticas a uma dimensão Colisões elásticas a uma dimensão Colisões

Leia mais

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI

Torção - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA SALETE SOUZA DE OLIVEIRA BUFFONI RESISTÊNCIA DOS MATERIAIS Torção Definições: Torção se refere ao giro de

Leia mais

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2

INF01 118 Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 2 INF01 118 Técnicas Digitais para Computação Conceitos Básicos de Circuitos Elétricos Aula 2 1. Grandezas Elétricas 1.1 Carga A grandeza fundamental em circuitos elétricos é a carga elétrica Q. As cargas

Leia mais

1 Exercícios de Aplicações da Integral

1 Exercícios de Aplicações da Integral Cálculo I (5/) IM UFRJ Lista 6: Aplicações de Integral Prof. Milton Lopes e Prof. Marco Cabral Versão 9.5.5 Eercícios de Aplicações da Integral. Eercícios de Fiação Fi.: Esboce o gráco e calcule a área

Leia mais

Geometria Diferencial de Curvas Espaciais

Geometria Diferencial de Curvas Espaciais Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para

Leia mais

MOVIMENTO ONDULATÓRIO. 10.1 Introdução

MOVIMENTO ONDULATÓRIO. 10.1 Introdução Movimento ondulatório 1 MOVIMENTO ONDULATÓRIO 195 1.1 Introdução O movimento ondulatório é bastante importante devido ao fato de que a maior parte do intercâmbio de informações ou energia entre sistemas

Leia mais

1 Propagação em sistemas rádio móveis

1 Propagação em sistemas rádio móveis 1 Propagação em sistemas rádio móveis Para se chegar a expressões de atenuação de propagação que melhor descrevam as situações reais encontradas, vai-se acrescentando complexidade ao problema inicial (espaço

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos

Leia mais

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015

06-11-2015. Sumário. Da Terra à Lua. Movimentos no espaço 02/11/2015 Sumário UNIDADE TEMÁTICA 1 Movimentos na Terra e no Espaço. Correção do 1º Teste de Avaliação. Movimentos no espaço. Os satélites geoestacionários. - O Movimentos de satélites. - Características e aplicações

Leia mais

Triângulos e suas medidas Trigonometria

Triângulos e suas medidas Trigonometria Resumos Matematik Triângulos e suas medidas Trigonometria Não é um manual escolar. Não dispensa a consulta de um manual escolar. Recomendamos a presença nas aulas e o aconselhamento com um professor. Setembro

Leia mais

Capítulo VI. Teoremas de Circuitos Elétricos

Capítulo VI. Teoremas de Circuitos Elétricos apítulo VI Teoremas de ircuitos Elétricos 6.1 Introdução No presente texto serão abordados alguns teoremas de circuitos elétricos empregados freqüentemente em análises de circuitos. Esses teoremas têm

Leia mais

Amplificador a transistor

Amplificador a transistor Amplificador a transistor Amplificador significa ampliar um sinal ou um som através da amplitude. Tipos de amplificadores Os amplificadores podem ser divididos em várias categorias: Quanto à amplitude

Leia mais

Capítulo TRABALHO E ENERGIA

Capítulo TRABALHO E ENERGIA Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes

Leia mais

Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE

Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE Curso: REDES DE COMPUTADORES Disciplina: ELETRICIDADE Carga-Horária: 60 h (80h/a) Professor: Jean Carlos da Silva Galdino Sala: 04 Aluno: Turma Lista de exercícios VII Parte I Ondas eletromagnéticas Para

Leia mais

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia 1ª Aula do Cap. 8 Energia Potencial e Conservação de Energia Conteúdo: Energia Potencial U gravitacional e Energia Potencial elástica. Força gravitacional e Força elástica. Conservação da Energia Mecânica.

Leia mais

Turbina eólica: conceitos

Turbina eólica: conceitos Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica

Leia mais

MICROFONE E ALTIFALANTE

MICROFONE E ALTIFALANTE MICROFONE E ALTIFALANTE Um microfone é um transdutor que transforma energia mecânica (onda sonora) em energia elétrica (sinal elétrico de corrente alternada). O altifalante é um transdutor que transforma

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA FÍSICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Relações matemáticas entre grandezas físicas Ciências da Natureza Física e Matemática

Leia mais

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.):

Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Da Eq. 13: UNIVERSIDADE DE SÃO PAULO Equações Constitutivas para Fluidos Newtonianos - Eqs. de Navier- Stokes (cont.): Para fluido Newtoniano, a tensão viscosa é proporcional à taxa de deformação angular);

Leia mais

1ª Ficha de Avaliação Física e Química do 8ºAno Avaliação:

1ª Ficha de Avaliação Física e Química do 8ºAno Avaliação: 1ª Ficha de Avaliação Física e Química do 8ºAno Avaliação: Ano Letivo:2013/2014 Data: 7/11/2013 Prof: Paula Silva Nome: Nº. Turma: 8ºH Professor: E. Educação: 1. Observa a banda desenhada ao lado e comenta-a

Leia mais

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1

PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência

Leia mais

Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo

Apostila 1 Física. Capítulo 3. A Natureza das Ondas. Página 302. Gnomo Apostila 1 Física Capítulo 3 Página 302 A Natureza das Ondas Classificação quanto a natureza Ondas Mecânicas São ondas relacionadas à oscilação das partículas do meio. Portanto, exige a presença de meio

Leia mais

Calculando o comprimento de peças dobradas ou curvadas

Calculando o comprimento de peças dobradas ou curvadas Calculando o comprimento de peças dobradas ou curvadas A UU L AL A Vamos supor que você seja dono de uma pequena empresa mecânica e alguém lhe encomende 10.000 peças de fixação, que deverão ser fabricadas

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO

6.2. Volumes. Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. APLICAÇÕES DE INTEGRAÇÃO APLICAÇÕES DE INTEGRAÇÃO 6.2 Volumes Nesta seção aprenderemos a usar a integração para encontrar o volume de um sólido. SÓLIDOS IRREGULARES Começamos interceptando S com um plano e obtemos uma região plana

Leia mais

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n

aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n Eletricidade O Campo eléctrico Consideremos a equação aplicada à força sentida por uma carga q 0, devida à N cargas q 1 q 2 q n onde é a distância desde a carga até o ponto do espaço onde se encontra a

Leia mais

1 Determinação da velocidade do som no ar

1 Determinação da velocidade do som no ar FEUP - Departamento de Engenharia Física Aulas de Laboratório: Introdução teórica e breve descrição das experiências. Trabalho prático: Ondas sonoras no ar. Microondas estacionárias. Ondas estacionárias

Leia mais

16 N. Verifica-se que a menor distância entre duas cristas da onda é igual a 4,0 m. Calcule a freqüência desta onda, em Hz.

16 N. Verifica-se que a menor distância entre duas cristas da onda é igual a 4,0 m. Calcule a freqüência desta onda, em Hz. 1. Considere o gráfico adiante, que representa a grandeza A em função do tempo t (em unidades de 10 s). a) Se a grandeza A representar a amplitude de uma onda sonora, determine sua freqüência. b) Se a

Leia mais

Corrente Elétrica. Eletricidade e magnetismo - corrente elétrica 1

Corrente Elétrica. Eletricidade e magnetismo - corrente elétrica 1 Corrente Elétrica Eletricidade e magnetismo - corrente elétrica 1 Corrente elétrica A corrente elétrica é definida como um fluxo de elétrons por unidade de tempo: = Q t [C/ segundo]ou[ A] Ampere Material

Leia mais

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição

A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição A Equação de Onda em Uma Dimensão (continuação) Consequências do Princípio de Superposição O princípio de superposição nos diz que quando houver mais de uma onda se propagando em uma corda, a onda resultante

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke. Modelo...

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke. Modelo... INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PIAUÍ DISCIPLINA: Laboratório de Física Professor: Experimento 1: Lei de Hooke Modelo... Parnaíba/2009 Introdução Estando uma mola no seu estado relaxado

Leia mais

SOM PRODUÇÃO E PROPAGAÇÃO DE UM SINAL SONORO

SOM PRODUÇÃO E PROPAGAÇÃO DE UM SINAL SONORO SOM Os sons são ondas mecânicas, vulgarmente utilizadas na comunicação. Podem ser produzidas de diversas maneiras, como, por exemplo, a fala, que resulta da vibração das cordas vocais, ou a música produzida

Leia mais

Equilíbrio de uma Partícula

Equilíbrio de uma Partícula Apostila de Resistência dos Materiais I Parte 2 Profª Eliane Alves Pereira Turma: Engenharia Civil Equilíbrio de uma Partícula Condição de Equilíbrio do Ponto Material Um ponto material encontra-se em

Leia mais

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria Mecânica Geral Apostila 1: Momento Linear Professor Renan Faria Impulso Como já vimos, para que um corpo entre em movimento, é necessário que haja um interação entre dois corpos. Se considerarmos o tempo

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

OS ELEMENTOS BÁSICOS E OS FASORES

OS ELEMENTOS BÁSICOS E OS FASORES CAPITULO 14 OS ELEMENTOS BÁSICOS E OS FASORES Como foi definido anteriormente a derivada dx/dt como sendo a taxa de variação de x em relação ao tempo. Se não houver variação de x em um instante particular,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7

Leia mais

Universidade Federal do Pampa UNIPAMPA. Ondas Sonoras. Prof. Luis Gomez

Universidade Federal do Pampa UNIPAMPA. Ondas Sonoras. Prof. Luis Gomez Universidade Federal do Pampa UNIPAMPA Ondas Sonoras Prof. Luis Gomez SUMÁRIO Introdução Ondas sonoras. Características de som Velocidade do som Ondas sonoras em propagação Interferência Potencia, intensidade

Leia mais

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos

Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos Resolução de circuitos usando Teorema de Thévenin Exercícios Resolvidos 1º) Para o circuito abaixo, calcular a tensão sobre R3. a) O Teorema de Thévenin estabelece que qualquer circuito linear visto de

Leia mais

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA Física: 1º ano Jair Júnior Nota de aula (7/11/014) 1. ENERGIA Um dos princípios básicos da Física diz que a energia pode ser transformada ou transferida, mas nunca criada ou destruída. Então, o que é energia?

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

IND 1115 Inferência Estatística Aula 8

IND 1115 Inferência Estatística Aula 8 Conteúdo IND 5 Inferência Estatística Aula 8 Setembro 4 Mônica Barros O - aproximação da Binomial pela Este teorema é apenas um caso particular do teorema central do limite, pois uma variável aleatória

Leia mais

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico

Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Densidades de cargas polarizadas Fundamentos da Eletrostática Aula 17 O Campo Elétrico no interior de um Dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Na aula passada, mostramos que o potencial

Leia mais

Segunda Etapa SEGUNDO DIA 2ª ETAPA FÍSICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS

Segunda Etapa SEGUNDO DIA 2ª ETAPA FÍSICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS Segunda tapa SGUNDO DIA ª TAPA FÍSICA COMISSÃO D PROCSSOS SLTIVOS TRINAMNTOS FÍSICA Dados: Aceleração da gravidade: 1 m/s Velocidade da luz no vácuo: 3 x 1 8 m/s. Constante de Planck: 6,63 x 1-34 J.s k

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Mudança de Coordenadas Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região ser mais bem adaptada

Leia mais

Simulado Ondulatória

Simulado Ondulatória Simulado Ondulatória 1-) (ITA/87) Considere os seguintes fenômenos ondulatórios: I-) Luz II-) Som III-) Perturbação propagando-se numa mola helicoidal esticada. Podemos afirmar que: a-) I, II e III necessitam

Leia mais

RAIOS E FRENTES DE ONDA

RAIOS E FRENTES DE ONDA RAIOS E FRENTES DE ONDA 17. 1, ONDAS SONORAS ONDAS SONORAS SÃO ONDAS DE PRESSÃO 1 ONDAS SONORAS s Onda sonora harmônica progressiva Deslocamento das partículas do ar: s (x,t) s( x, t) = s cos( kx ωt) m

Leia mais

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço.

Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. 16 ONDAS 1 16.3 Uma onda se caracteriza como sendo qualquer perturbação que se propaga no espaço. Onda transversal: a deformação é transversal à direção de propagação. Deformação Propagação 2 Onda longitudinal:

Leia mais

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω

UMC CURSO BÁSICO DE ENGENHARIA EXERCÍCIOS DE ELETRICIDADE BÁSICA. a 25º C e o coeficiente de temperatura α = 0,004Ω rof. José oberto Marques UMC CUSO BÁSCO DE ENGENHAA EXECÍCOS DE ELETCDADE BÁSCA 1) Um condutor de eletricidade de cobre tem formato circular 6mm de diâmetro e 50m de comprimento. Se esse condutor conduz

Leia mais

Exercícios sobre ondulatória

Exercícios sobre ondulatória Exercícios sobre ondulatória 1. Vulcões submarinos são fontes de ondas acústicas que se propagam no mar com frequências baixas, da ordem de 7,0 Hz, e comprimentos de onda da ordem de 220 m. Utilizando

Leia mais

Precisão do fuso de esferas

Precisão do fuso de esferas Precisão do ângulo de avanço A precisão do fuso de esferas no ângulo de avanço é controlado de acordo com os padrões JIS (JIS B 1192-1997). As classes de precisão C0 a C5 são defi nidas na linearidade

Leia mais

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos. Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 Vestibular Comentado - UVA/011.1 FÍSICA Comentários: Profs.... 11. Um atirador ouve o ruído de uma bala atingindo seu alvo 3s após o disparo da arma. A velocidade de disparo da bala é 680 m/s e a do som

Leia mais

Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração. Prof a Nair Stem Instituto de Física da USP

Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração. Prof a Nair Stem Instituto de Física da USP Aula 19: Interferência de Ondas, Reflexão e Modos Normais de Vibração Prof a Nair Stem Instituto de Física da USP Interferência de Ondas - Mesmo Sentido Considere a superposição de duas ondas progressivas

Leia mais

O cilindro deitado. Eduardo Colli

O cilindro deitado. Eduardo Colli O cilindro deitado Eduardo Colli São poucas as chamadas funções elementares : potências e raízes, exponenciais, logaritmos, funções trigonométricas e suas inversas, funções trigonométricas hiperbólicas

Leia mais

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!

Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

Exercícios de Física Análise Dimensional

Exercícios de Física Análise Dimensional Exercícios de Física Análise Dimensional 1. A unidade de uma grandeza física pode ser escrita 2 kg m como. Considerando que essa unidade foi escrita 3 s A em termos das unidades fundamentais do SI, assinale

Leia mais

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 03 Trabalho, energia cinética e potencial, conservação da energia 1. Um saco de farinha de 5,

Leia mais

f (x) = a n x n + a n - 1 x n - 1 +... + a 0 = 0 (a n > 0)

f (x) = a n x n + a n - 1 x n - 1 +... + a 0 = 0 (a n > 0) Lista de Exercícios Resolução de Equações Não Lineares 1) Para a delimitação das raízes reais de uma equação polinomial, além do teorema de Lagrange, existem vários outros como, por exemplo, o apresentado

Leia mais

CORRENTE E RESITÊNCIA

CORRENTE E RESITÊNCIA CORRENTE E RESITÊNCIA Até o momento estudamos cargas em repouso - a eletrostática. A partir de agora concentramos nossa atenção nas cargas em movmento, isto é, na corrente elétrica. Corrente elétrica :

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

LISTA COMPLEMENTAR DE DAC E ADC DO LIVRO DO TOCCI

LISTA COMPLEMENTAR DE DAC E ADC DO LIVRO DO TOCCI LISTA COMPLEMENTAR DE DAC E ADC DO LIVRO DO TOCCI 10.2 Um DAC = 08bits Para o número = (100) 10 = 2V. Pede-se : (+179) 10 Para Saída Analógica = Entrada digital x passo = 179. 20mV = 3,58V F.S. = 5V e

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 6 Ondas Física II Ferreira 1 ÍNDICE 1. O que é onda; 2. Classificação das ondas; 3. Comprimento de onda e frequência;

Leia mais

Circuito Elétrico - I

Circuito Elétrico - I 1 1. Um resistor de 32 ohms é ligado em paralelo a outro resistor de 20 ohms e o conjunto é ligado a uma fonte de tensão de 12VDC. a) Qual é a resistência da ligação em paralelo? b) Qual é a corrente total

Leia mais