Conjuntos Finitos e Infinitos

Tamanho: px
Começar a partir da página:

Download "Conjuntos Finitos e Infinitos"

Transcrição

1 Conjuntos Finitos e Infinitos p. 1/1 Conjuntos Finitos e Infinitos Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP

2 Axiomas de Peano Conjuntos Finitos e Infinitos p. 2/1

3 Conjuntos Finitos e Infinitos p. 2/1 Axiomas de Peano (N1) s : N N é injetiva e o complementar da sua imagem contém apenas um elemento, denotado pelo símbolo 1.

4 Conjuntos Finitos e Infinitos p. 2/1 Axiomas de Peano (N1) s : N N é injetiva e o complementar da sua imagem contém apenas um elemento, denotado pelo símbolo 1. (N2) Seja S N; então S = N se, e somente se: 1. 1 S; 2. n S s(n) S.

5 Conjuntos Finitos e Infinitos p. 3/1 1o. Princípio da Indução TEOREMA Seja P : N {0, 1}. Se (i) P(1) = 1 e (ii) P(n) = 1 P ( s(n) ) = 1, então n N, P(n) = 1.

6 Conjuntos Finitos e Infinitos p. 4/1 Princípio da Definição por Recorrência Seja X um conjunto. Queremos definir uma função f : N X. Suponha que seja dado o valor f(1) e, para todo n N, uma regra para se definir f ( s(n) ) supondo-se definido f(n). Então existe uma única f : N X nestas condições.

7 Conjuntos Finitos e Infinitos p. 5/1 Soma de Números Naturais Define-se indutivamente, n N:

8 Conjuntos Finitos e Infinitos p. 5/1 Soma de Números Naturais Define-se indutivamente, n N: n + 1. = s(n);

9 Conjuntos Finitos e Infinitos p. 5/1 Soma de Números Naturais Define-se indutivamente, n N: n + 1 =. s(n); n + s(m) =. s(m + n).

10 Conjuntos Finitos e Infinitos p. 6/1 Produto de Números Naturais Define-se indutivamente, n N:

11 Conjuntos Finitos e Infinitos p. 6/1 Produto de Números Naturais Define-se indutivamente, n N: n 1. = n;

12 Conjuntos Finitos e Infinitos p. 6/1 Produto de Números Naturais Define-se indutivamente, n N: n 1 =. n; n s(m) =. n m + n.

13 Conjuntos Finitos e Infinitos p. 7/1 Relação de Ordem em N DEFINIÇÃO Sejam n,m N. m < n p N/n = m + p m n m = n ou m < n

14 Conjuntos Finitos e Infinitos p. 8/1 Teorema da Boa Ordenação TEOREMA Seja A N não-vazio. Então A possui um menor elemento.

15 Conjuntos Finitos e Infinitos p. 9/1 2o. Princípio da Indução TEOREMA Seja P : N {0, 1}. Suponha que, para todo n N, (k < n P(k) = 1) P(n) = 1. Então n N, P(n) = 1.

16 Conjuntos Finitos e Infinitos p. 10/1 Princípio da Definição por Recorrência Seja X um conjunto. Queremos definir uma função f : N X. Suponha que seja dado o valor f(1) e uma regra para se definir f(n) supondo-se definidos os valores f(m) para todo m < n. Então existe uma única f : N X nestas condições.

17 Conjuntos Finitos e Infinitos p. 11/1 Conjuntos Finitos DEFINIÇÃO Diz-se que um conjunto X é finito se X = ou se existir n N e uma bijeção f : I n X. Neste caso, diz-se que X tem n elementos.

18 Conjuntos Finitos e Infinitos p. 12/1 Conjuntos Finitos TEOREMA Seja A I n. Suponha que existe f : A I n bijeção. Então A = I n.

19 Conjuntos Finitos e Infinitos p. 12/1 Conjuntos Finitos TEOREMA Seja A I n. Suponha que existe f : A I n bijeção. Então A = I n. COROLÁRIO Seja A um conjunto. Se existem bijeções f : A I n e f : A I m, então m = n.

20 Conjuntos Finitos e Infinitos p. 13/1 Conjuntos Finitos COROLÁRIO Sejam A e B conjuntos finitos, ambos com n elementos. Seja f : A B. São equivalentes: 1. f é injetiva; 2. f é sobre; 3. f é bijetiva.

21 Conjuntos Finitos e Infinitos p. 13/1 Conjuntos Finitos COROLÁRIO Sejam A e B conjuntos finitos, ambos com n elementos. Seja f : A B. São equivalentes: 1. f é injetiva; 2. f é sobre; 3. f é bijetiva. COROLÁRIO Seja A um conjunto. Se A é finito, não existe bijeção entre A e uma parte própria de A.

22 Conjuntos Finitos e Infinitos p. 14/1 Conjuntos Finitos TEOREMA Sejam X um conjunto finito com n elementos e A X. Então A é finito e tem m n elementos.

23 Conjuntos Finitos e Infinitos p. 14/1 Conjuntos Finitos TEOREMA Sejam X um conjunto finito com n elementos e A X. Então A é finito e tem m n elementos. COROLÁRIO Seja f : X Y. Tem-se: 1. Se Y é finito e f é injetiva, então X é finito. 2. Se X é finito e f é sobre, então Y é finito.

24 Conjuntos Finitos e Infinitos p. 14/1 Conjuntos Finitos TEOREMA Sejam X um conjunto finito com n elementos e A X. Então A é finito e tem m n elementos. COROLÁRIO Seja f : X Y. Tem-se: 1. Se Y é finito e f é injetiva, então X é finito. 2. Se X é finito e f é sobre, então Y é finito. COROLÁRIO X N é finito se, e somente se, for limitado, i.e. se existir p N tal que ( n X)n p.

25 Conjuntos Finitos e Infinitos p. 14/1 Conjuntos Finitos TEOREMA Sejam X um conjunto finito com n elementos e A X. Então A é finito e tem m n elementos. COROLÁRIO Seja f : X Y. Tem-se: 1. Se Y é finito e f é injetiva, então X é finito. 2. Se X é finito e f é sobre, então Y é finito. COROLÁRIO X N é finito se, e somente se, for limitado, i.e. se existir p N tal que ( n X)n p. COROLÁRIO N não é finito.

26 Conjuntos Finitos e Infinitos p. 15/1 Conjuntos Enumeráveis e não-enumeráveis DEFINIÇÃO Um conjunto X se diz infinito se não for finito; X se diz enumerável se for finito ou se existir uma bijeção N X.

27 Conjuntos Finitos e Infinitos p. 16/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA Seja X um conjunto. São equivalentes: 1. X é infinito; 2. existe f : N X injetiva; 3. existe uma bijeção entre X e uma parte própria de X.

28 Conjuntos Finitos e Infinitos p. 17/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA Seja X N. Então X é enumerável.

29 Conjuntos Finitos e Infinitos p. 17/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA Seja X N. Então X é enumerável. COROLÁRIO Seja f : X Y. Tem-se: 1. Se Y é enumerável e f injetiva, então X é enumerável. 2. Se X é enumerável e f é sobre, então Y é enumerável.

30 Conjuntos Finitos e Infinitos p. 18/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA N N é enumerável.

31 Conjuntos Finitos e Infinitos p. 18/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA N N é enumerável. COROLÁRIO O produto cartesiano de dois conjuntos enumeráveis é um conjunto enumerável.

32 Conjuntos Finitos e Infinitos p. 18/1 Conjuntos Enumeráveis e não-enumeráveis TEOREMA N N é enumerável. COROLÁRIO O produto cartesiano de dois conjuntos enumeráveis é um conjunto enumerável. COROLÁRIO Seja (X i ) i N uma família enumerável de conjuntos enumeráveis. Então i N X i é enumerável.

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

é um grupo abeliano.

é um grupo abeliano. Notas de aulas de Álgebra Moderna Prof a Ana Paula GRUPO Definição 1: Seja G munido de uma operação: x, y x y sobre G A operação sobre G é chamada de grupo se essa operação se sujeita aos seguintes axiomas:

Leia mais

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n.

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n. Sucessões Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. Notações: Ÿu n nn, Ÿu n n ou Ÿu n. u n v termo geral da sucessão Exemplos importantes:

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1 Relações Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página:  daniel.miranda Daniel 1 1 email: daniel.miranda@ufabc.edu.br sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a

Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a Séries Numéricas Definições básicas S Chama-se série numérica a uma expressão do tipo representada em geral por u 1 u 2 C u n C u n, nu1 onde Ÿu n é uma sucessão de reais u 1, u 2, C v termos da série

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

COMPREENDENDO AS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS COM O AUXÍLIO DO CÁLCULO DIFERENCIAL

COMPREENDENDO AS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS COM O AUXÍLIO DO CÁLCULO DIFERENCIAL COMPREENDENDO AS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS COM O AUXÍLIO DO CÁLCULO DIFERENCIAL Airton Temistocles Gonçalves de Castro Universidade Federal de Pernambuco airton@dmat.ufpe.br Ademilson do Nascimento

Leia mais

Limites e Continuidade

Limites e Continuidade Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/1 Revisão Elementos de Lógica Matemática p. 2/1 Limite de uma Função num

Leia mais

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática

INDUÇÃO MATEMÁTICA. Primeiro Princípio de Indução Matemática INDUÇÃO MATEMÁTICA Indução Matemática é um método de prova matemática tipicamente usado para estabelecer que um dado enunciado é verdadeiro para todos os números naturais, ou então que é verdadeiro para

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

Os números naturais. Capítulo Operações em N

Os números naturais. Capítulo Operações em N Capítulo 1 Os números naturais O conjunto dos números naturais, denotado por N, é aquele composto pelos números usados para contar. Na verdade, o mais correto seria dizer que é o conjunto dos números usados

Leia mais

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS 1 CURSO PRÉ-VESTIULR MTEMÁTIC UL 02 SSUNTO: TEORI DOS CONJUNTOS Esta aula é composta pelo texto da apostila abaixo e por um link de acesso à UL VIRTUL gravada. Estude com atenção o texto antes de acessar

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Teorema Fundamental da Aritmética

Teorema Fundamental da Aritmética Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Fundamental da Aritmética

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

Carga horária: 60 horas Créditos: 04

Carga horária: 60 horas Créditos: 04 Carga horária: 60 horas Créditos: 04 Ementa Matemática Elementar Prof. Inaldo Barbosa de Albuquerque Curso de Licenciatura em Matemática UFPBVIRTUAL inaldobarbosa@uol.com.br Curso de Matemática UFPBVIRTUAL

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos Marcus Vinícius Midena Ramos Curso de Engenharia de Computação Universidade Federal do Vale do São Francisco 22 de abril de 2008 Sumário 1 Elementos de Matemática Discreta

Leia mais

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi Conjuntos Numéricos Aula 6 Conjuntos Numéricos E-mail: armando.caputi@ufabc.edu.br Página: http://professor.ufabc.edu.br/~armando.caputi Sala 549-2 - Bloco A - Campus Santo André Conjuntos Numéricos Aula

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

Axioma dos inteiros. Sadao Massago

Axioma dos inteiros. Sadao Massago Axioma dos inteiros Sadao Massago setembro de 2018 Sumário 1 Os Números 2 1.1 Notação......................................... 2 1.2 Números naturais não nulos (inteiros positivos)................... 2

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS

CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS LUCAS GLAZAR GAZZOLI - RA: 071572 DAVID RICARDO BARRETO LIMA SILVA - RA: 042885 1. Introdução Dado um corpo K, finito, é fácil observar que vale a seguinte

Leia mais

Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado

Árvores UFES. Teoria dos Grafos. CC/EC/Mestrado Árvores Árvores Grafo Acíclico: não possui ciclos Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo acíclico Árvores Grafo Acíclico: não possui ciclos Uma árvore é um grafo conexo

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 005/006 Estas notas constituem um material

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Aula 01 Introdução a Geometria Plana Ângulos Potenciação Radiciação Introdução a Geometria Plana Introdução: No estudo da Geometria Plana, consideraremos três conceitos primitivos:

Leia mais

Matemática I Capítulo 08 Função Inversa

Matemática I Capítulo 08 Função Inversa Nome: Nº Curso: Mineração Interado Disciplina: Matemática I Ano Prof. Leonardo Data: / /06 Matemática I Capítulo 08 Função Inversa 8. Função Inversa Consideremos os conjuntos A = {0,, 4, 6, 8} e B = {,

Leia mais

Introdução à Aritmética Modular. George Darmiton da Cunha Cavalcanti CIn - UFPE

Introdução à Aritmética Modular. George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução à Aritmética Modular George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Em alguns problemas o interesse se concentra no resto da divisão entre dois números, por exemplo Que horas serão

Leia mais

Bases Matemáticas. Juliana Pimentel. 15 de junho de 2016

Bases Matemáticas. Juliana Pimentel. 15 de junho de 2016 Bases Matemáticas Juliana Pimentel juliana.pimentel@ufabc.edu.br 15 de junho de 016 Princípio de Indução Finita Uma propriedade particularmente importante dos números naturais é expressa pelo Princípio

Leia mais

Limites e Continuidade

Limites e Continuidade MAT111 p. 1/2 Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 7/8 Álgebra Linear e Geometria Analítica

Leia mais

TEORIA DOS NÚMEROS NATURAIS

TEORIA DOS NÚMEROS NATURAIS TEORIA DOS NÚMEROS NATURAIS Maicon Luiz Collovini Salatti - luizcollovini@gmail.com Universidade Federal de Pelotas, Polo de Arroio dos Ratos, 96740-000 - Arroio dos Ratos, RS, Brasil. Luis Felipe Kiesow

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Grupo de Classes de Ideais em Reticulados Quadráticos

Grupo de Classes de Ideais em Reticulados Quadráticos Grupo de Classes de Ideais em Reticulados Quadráticos J. C. Silva, F. S. Costa Depto de Matemática e Informática, DEMATI, UEMA, 65055-970, São Luís, MA E-mail: joaocoelho@cecen.uema.br, felixsilvacosta@gmail.com

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

Sistemas de Vírgula Flutuante

Sistemas de Vírgula Flutuante Luiz C. G. Lopes Departamento de Matemática e Engenharias Universidade da Madeira MAT 2 05 2007/08 Definição. Diz-se que um número real x R\{0} é um número de vírgula flutuante normalizado se forem verificadas

Leia mais

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções Métodos Formais Relações e Funções por Mauro Silva Agenda Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções MF - Relações e Funções 2 1 Relações Binárias Definição

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Fatoração Equação do 1º Grau Equação do 2º Grau Aula 02: Fatoração Fatorar é transformar uma soma em um produto. Fator comum: Agrupamentos: Fatoração Quadrado Perfeito Fatoração

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Sistemas Lienares 1 Sistemas e Matrizes 2 Operações Elementares e

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

Parte 1. Conjuntos finitos, enumeráveis e

Parte 1. Conjuntos finitos, enumeráveis e Parte 1 Conjuntos finitos, enumeráveis e não-enumeráveis Georg Ferdinand Ludwig Philipp Cantor (1845-1818) Rússia. A descoberta de que há diversos tipos de infinito deve-se a Georg Cantor. Mas, para os

Leia mais

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y

2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,

Leia mais

MATRIZ - FORMAÇÃO E IGUALDADE

MATRIZ - FORMAÇÃO E IGUALDADE MATRIZ - FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: 2. Se M = ( a ij ) 3x2 é uma

Leia mais

SÍMBOLOS MATEMÁTICOS. adição Lê-se como "mais" Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5.

SÍMBOLOS MATEMÁTICOS. adição Lê-se como mais Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. SÍMBOLOS MATEMÁTICOS Símbolo Nome Explicação + adição Lê-se como "mais" 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração Lê-se como "menos" 5-3 = 2, significa que se subtrairmos 3

Leia mais

Expressões de sequencias

Expressões de sequencias Expressões de sequencias Semana Olímpica/01 Prof. Armando 01 de fevereiro de 01 1 Introdução Um assunto que cai com frequência em olimpíada são as sequências. Sequências são listas ordenadas de números

Leia mais

f(x) = b lim x a a] f x n

f(x) = b lim x a a] f x n II.0 Limites de funções No Ensino Secundário foi dada uma definição de ite de função recorrendo aos ites de sucessões. É costume designá-la por definição de ite segundo Heine, em homenagem ao matemático

Leia mais

1a Semana. KP (n) = (K n+1 \{0})/

1a Semana. KP (n) = (K n+1 \{0})/ 1. Descrever um atlas para a esfera 1a Semana S n = {(x 1, x 2,..., x n+1 ) R n+1 x 2 1 + x 2 2 + + x 2 n+1 = 1} e correspondentes mudanças de coordenadas. 2. Mostrar que o toro T := R 2 /, onde é uma

Leia mais

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão MC3305 Algoritmos e Estruturas de Dados II Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 Custo de um algoritmo

Leia mais

Matemática Fascículo 05 Manoel Benedito Rodrigues

Matemática Fascículo 05 Manoel Benedito Rodrigues Matemática Fascículo 05 Manoel Benedito Rodrigues Índice Revisão de Tópicos do Ensino Fundamental Exercícios...1 Dicas...2 Resoluções... Revisão de Tópicos do Ensino Fundamental Exercícios 01. Sobre o

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Profa. Sheila Morais de Almeida DAINF-UTFPR-PG março - 2016 A invariante de laço pode ser definida como uma relação entre as variáveis de um algoritmo que é verdadeira em um determinado

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Para satisfazer mais necessidades, criou-se a necessidade de números racionais, que são aqueles que podem ser escritos na forma m n

Para satisfazer mais necessidades, criou-se a necessidade de números racionais, que são aqueles que podem ser escritos na forma m n UMA PROVA DA IRRACIONALIDADE 2 VIA TEOREMA FUNDAMENTAL DA ARITMÉTICA Pesquisa em andamento Rafaela Filippozzi 1 Luiz Rafael dos Santos 2 RESUMO Este trabalho é parte inicial de um projeto de Iniciação

Leia mais

1 Teoria de conjuntos e lógica

1 Teoria de conjuntos e lógica 1 Teoria de conjuntos e lógica Estes breves apontamentos dizem respeito à parte do programa dedicada à teoria de conjuntos e à lógica matemática. Embora concebidos sem grandes formalismos e com poucas

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 3. Divisibilidade 1. Carlos Gustavo Moreira e Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira e Samuel Barbosa Aula 1 Divisibilidade 1 Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.

Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp. Álgebra Linear AL Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Autovalores e Autovetores Definição e Exemplos 2 Polinômio Característico

Leia mais

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2 Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2016 QUÍMICA

PROVA COMENTADA PELOS PROFESSORES DO CURSO POSITIVO Vestibular ITA 2016 QUÍMICA 01. Alternativa: A 02. Alternativa: E 03. Alternativa: SEM RESPOSTA 04. Alternativa: E PROVA COMENTADA PELOS 05. Alternativa: C 06. A soma do n ọ de prótons com o n ọ de nêutrons é definido como número

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2

Números Reais. Gláucio Terra. Departamento de Matemática IME - USP. Números Reais p. 1/2 Números Reais Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Números Reais p. 1/2 Corpos DEFINIÇÃO Seja K um conjunto munido de duas operações, denotadas por + e. Diz-se que (K,

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso)

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Roberto Imbuzeiro Oliveira 8 de Janeiro de 2014 1 Conjuntos e funções Neste curso procuraremos fundamentar de forma precisa os fundamentos

Leia mais

Capítulo II. Elementos de Circuitos

Capítulo II. Elementos de Circuitos Capítulo II Elementos de Circuitos.1 Introdução O objetivo da engenharia é projetar e produzir dispositivos que atendam às necessidades humanas. Para tanto, é necessário que se conheçam os componentes

Leia mais

Enumerabilidade. Capítulo 6

Enumerabilidade. Capítulo 6 Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo

Leia mais

Álge g bra b B ooleana n Bernardo Gonçalves

Álge g bra b B ooleana n Bernardo Gonçalves Álgebra Booleana Bernardo Gonçalves Sumário Histórico Álgebra de Boole Axiomas da Álgebra de Boole Álgebra de Boole de dois valores literais Teoremas da Álgebra de Boole Simplificação de expressões booleanas

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

0.1 Tipos importantes de funções

0.1 Tipos importantes de funções . Tipos importantes de funções Função par: Se f(x) =f(x), paratodox Dom(f) então dizemos que a função f é uma função par. (note que o gráfico é uma curva simétrica pelo eixo y). Exemplos: f(x) =x é uma

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS

FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém

Leia mais

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS

TEORIA DOS CONJUNTOS. Turma: A - Licenciatura em Matemática 1 Semestre de Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS TEORIA DOS CONJUNTOS Turma: 0004105A - Licenciatura em Matemática 1 Semestre de 2014 Prof. Dr. Agnaldo José Ferrari OS NÚMEROS NATURAIS Em 1908 Ernst Zermelo (Alemanha / 1871 1953) propôs usar a sequência,

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com

PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR. Professor Joselias http://professorjoselias.blogspot.com PROVA RESOLVIDA DA PETROBRAS 2011 ADMINISTRADOR JUNIOR 1) (Concurso Petrobras 2011 Administrador Junior) Considere uma sequência infinita de retângulos, cada um deles com base medindo 1cm e tais que o

Leia mais

Aula 3 Função do 1º Grau

Aula 3 Função do 1º Grau 1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

PLANO DE ENSINO DA DISCIPLINA

PLANO DE ENSINO DA DISCIPLINA PLANO DE ENSINO DA DISCIPLINA Docente: FABIO LUIS BACCARIN Telefones: (43) 3422-0725 / 9116-4048 E-mail: fbaccarin@fecea.br Nome da Disciplina: Álgebra Elementar Curso: Licenciatura em Matemática Carga

Leia mais

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 4ª Lista de Exercícios. Indução e Recursão

Matemática Discreta Bacharelado em Sistemas de Informação Resolução - 4ª Lista de Exercícios. Indução e Recursão 1) Prove utilizando o princípio da indução matemática, que são verdadeiras as seguintes igualdades: a) 1+4+7+...+(3n 2) Para n 1 temos que: 3.1 2. 1 1 da indução é Supondoo que a igualdade nk seja verdadeira,

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos)

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais (inteiros positivos) Capítulo 1 Os Números 1.1 Notação Números naturais: N = {1, 2, 3,...}, mas existem vários autores considerando N = {0, 1, 2, 3,...}. Por isso, é recomendado dizer números positivos, números não negativos,

Leia mais

Função Exponencial. Função exponencial Gráfico da função exponencial Equações exponenciais Função exponencial de base e

Função Exponencial. Função exponencial Gráfico da função exponencial Equações exponenciais Função exponencial de base e Função Exponencial Função exponencial Gráfico da função exponencial Equações exponenciais Função exponencial de base e Função Exponencial Suponha que atualmente a dívida de certo município seja de milhão

Leia mais

Soluções de Questões de Vestibular UFF

Soluções de Questões de Vestibular UFF Soluções de Questões de Vestibular UFF 6 de dezembro 00 Este arquivo contém soluções comentadas das questões de matemática das provas da Universidade Federal Fluminense - UFF Universidade Federal Fluminense

Leia mais

Engenharia Econômica

Engenharia Econômica UNIVERSIDADE FEDERAL DE PERNAMBUCO UFPE CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA ENGENHARIA CIVIL Engenharia Econômica Aula I Professora Jocilene Otilia da Costa, Dra Conteúdo Juros Simples Juros

Leia mais

Introdução ao determinante

Introdução ao determinante ao determinante O que é? Quais são suas propriedades? Como se calcula (Qual é a fórmula ou algoritmo para o cálculo)? Para que serve? Álgebra Linear II 2008/2 Prof. Marco Cabral & Prof. Paulo Goldfeld

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 Tecnólogo em Construção de Edifícios Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas de todas

Leia mais