Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a

Tamanho: px
Começar a partir da página:

Download "Séries Numéricas. S Chama-se série numérica a uma expressão do tipo. S Designam-se por somas parciais da série. S Chama-se a soma parcial de ordem n a"

Transcrição

1 Séries Numéricas Definições básicas S Chama-se série numérica a uma expressão do tipo representada em geral por u 1 u 2 C u n C u n, nu1 onde Ÿu n é uma sucessão de reais u 1, u 2, C v termos da série u n v termo geral da série u n ou u n, S Designam-se por somas parciais da série S 1 u 1, S 2 u 1 u 2, S 3 u 1 u 2 u 3, S Chama-se a soma parcial de ordem n a B S n u 1 u 2 C u n S À sucessão ŸS n chama-se a sucessão das somas parciais da série Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 1

2 S Uma série un diz-se convergente se a sucessão das somas parciais, ŸS n, converge para um número real S (que se designa por soma da série) Escreve-se u n S S Uma série que não é convergente diz-se divergente S Duas séries dizem-se da mesma natureza se forem ambas convergentes ou ambas divergentes Atenção: À série un temos associadas duas sucessões: S Ÿu n, a partir da qual definimos a série; S ŸS n, a sucessão das suas somas parciais A natureza da série é determinada pela convergência ou não da sucessão das suas somas parciais O facto de Ÿu n ser convergente não garante que un seja convergente Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 2

3 Exemplos: 1 Para a série n S n 1 2 C n n 1 n 2 Como lims n, a série é divergente 2 Para a série Ÿ"1 n S n "1 se n é ímpar 0 se n é par Como ŸS n não tem limite, a série é divergente 3 Para a série 1 2 n"1 S n 1 " " 1 2 n 2 1 " 1 2 n pelo que a série é convergente e a sua soma é 2 Nota: Podemos também considerar séries indexadas em N 0 ou N p, com p N As definições e propriedades são análogas às das séries indexadas em N Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 3

4 Séries Geométricas Séries Importantes Chama-se série geométrica de razão r à série em que r é um número real r n"1 1 r r 2 r 3 C r n"1 C, S n 1"r n 1"r, se r p 1 n, se r 1, pelo que S se r 1, a série geométrica é convergente e a sua soma é S 1 1"r ; S se r u 1, a série geométrica é divergente Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 4

5 Séries Redutíveis ou de Mengoli As séries que se podem escrever na forma Ÿu n " u nk, em que k é um número natural fixo, chamam-se séries redutíveis, séries de Mengoli ou ainda séries telescópicas Quando k 1, a série é da forma e Assim, para k 1 : Ÿu n " u S n u 1 " u S se u n é convergente, a série a sua soma é S u 1 " limu n ; S se u n é divergente, a série Exemplos: São séries de Mengoli Ÿun " u é convergente e Ÿun " u é divergente 1 nÿn 1 e n " n 1 Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 5

6 Séries de Dirichlet Chama-se série de Dirichlet qualquer série da forma com)um número real fixo 1 n ) S À série de Dirichlet para) 1 1n chama-se série harmónica A série harmónica é divergente pois: S se) 1, S se) t 1, 1 n) é convergente; 1 n) é divergente (Será justificado mais adiante) Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 6

7 Propriedades gerais das Séries Proposição: Se, a partir de certa ordem, u n v n, então u n e v n têm a mesma natureza Ou seja, a natureza de uma série não se altera modificando um número finito dos seus termos No entanto a soma da série é, em geral, alterada Proposição: Se existe p N tal que, a partir de certa ordem, u n v np, então as séries têm a mesma natureza Ou seja, duas séries cujos termos gerais estejam apenas desfasados um certo número de termos, têm a mesma natureza Definição: Seja u n uma série convergente com soma S Chamamos resto de ordem p, com p N, à soma da série que resulta de suprimir os p primeiros termos: u p1 C u n C u n Então R p S " S p np Observação: Pelo resultado anterior, a nova série também é convergente A sua soma é precisamente o erro que se comete quando se toma para soma da série u n o valor da soma parcial S p Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 7

8 Proposição: 1 Se u n e v n são duas séries convergentes, então a série Ÿu n v n é convergente e Ÿu n v n u n v n 2 Se u n é uma série convergente e c R, então a série cu n é convergente e cu n cu n Observação: Da alínea 2 resulta que não se altera a natureza de uma série multiplicando o termo geral por uma constante diferente de zero Proposição: Se u n é uma série convergente então u n v 0 Ou seja, se Ÿu n não tende para zero, então u n é divergente A afirmação recíproca é falsa: u n v 0 não implica que u n é convergente Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 8

9 Séries de Termos Não Negativos Definição: Uma série u n diz-se de termos não negativos se u n 0, para qualquer n N Nota: Neste caso, a sucessão ŸS n é crescente Proposição: (Cond Necessária e Suficiente de Convergência) Uma série de termos não negativos é convergente se e só se a sucessão das suas somas parciais é majorada Proposição: (1º Critério da Comparação) Sejam u n e v n séries de termos não negativos tais que u n t v n,n N Então: S se v n é convergente, u n é convergente e u n t v n ; S se u n é divergente, v n é divergente Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 9

10 Proposição: (2º Critério de comparação) Sejam u n uma série de termos não negativos e v n uma série de termos positivos tais que u n v n v L Então: S se L p 0,, as séries são da mesma natureza; S se L 0 e v n é convergente, u n também é convergente; S se L e v n é divergente, u n também é divergente Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 10

11 Proposição: (Critério de Cauchy) Seja u n é uma série de termos não negativos tal que lim n u nv n Então: L (finito ou infinito) S se L 1, u n é convergente; S se L 1, u n é divergente; S se L 1, nada se pode concluir Recorde-se o Corolário do Teorema da Média Geométrica: se u u n v a (com a finito ou infinito) então n u n v a Proposição: (Critério de D Alembert) Seja u n é uma série de termos positivos tal que (finito ou infinito) lim nv u u n L Então: S se L 1, u n é convergente; S se L 1, u n é divergente; S se L 1, nada se pode concluir Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 11

12 Proposição: (Critério do Integral) Seja f : 1, v R uma função contínua, positiva e decrescente Para a sucessão de termo geral u n fÿn, tem-se que: a série u n é convergente sse o integral impróprio ; 1 fÿx dx é convergente 1 Corolário: A série de Dirichlet n), com) R, é convergente se) 1 e divergente se) t 1 Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 12

13 Séries de Termos sem Sinal Fixo Definição: Uma série diz-se de termos sem sinal fixo se possui infinitos termos positivos e infinitos termos negativos Sendo u n 0, n N, a série (de termos sem sinal fixo) Ÿ"1 u n u 1 " u 2 u 3 " Ÿ"1 u n diz-se uma série alternada Exemplo: Ÿ"1 v série harmónica alternada Proposição: (Critério de Dirichlet) Se a sucessão das somas parciais da série v n é limitada e se Ÿu n é uma sucessão decrescente com limite nulo, então a série u n v n é convergente Proposição: (Critério de Leibniz) Se Ÿu n é uma sucessão decrescente e com limite nulo, então a série Ÿ"1 u n é convergente Ÿ"1 1 n, é Exemplo: A série harmónica alternada, convergente Nota: No caso de uma série alternada nas condições do critério de Leibniz, temos uma majoração para o valor absoluto resto de uma certa ordem De facto, se Ÿ"1 u n é uma série alternada nas condições do critério de Leibniz, então R p t u p1 Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 13

14 Séries Absolutamente Convergentes Definição: Uma série u n diz-se absolutamente convergente se a série dos módulos é convergente u n Uma série diz-se simplesmente convergente se é convergente e não é absolutamente convergente Exemplo: A série Ÿ"1 1 n é simplesmente convergente Proposição: Toda a série absolutamente convergente é convergente Nota: Este resultado é consequência de, para qualquer x R, 0 t x x t 2 x Ana Matos - AMII 0607 (versão de 12 de Abril) S Num 14

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n.

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n. Sucessões Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. Notações: Ÿu n nn, Ÿu n n ou Ÿu n. u n v termo geral da sucessão Exemplos importantes:

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries Numéricas DMAT Séries Numéricas Definições básicas Chama-se série numérica a uma expressão do tipo a a 2, em geral representada por, ou, onde é uma sucessão

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Definição: Uma sucessão de números reais é uma aplicação u do conjunto dos números inteiros positivos,, no conjunto dos números reais,. A expressão u n que associa a cada n a sua imagem designa-se

Leia mais

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas.

Neste capítulo, vamos estender o conceito de adição, válido para um número finito de parcelas, à uma soma infinita de parcelas. 5. SÉRIES NUMÉRICAS Neste capítulo, vamos esteder o coceito de adição, válido para um úmero fiito de parcelas, à uma soma ifiita de parcelas. 5.: Defiição e exemplos: Série geométrica e série de Dirichlet

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 005/006 Estas notas constituem um material

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

Conjuntos Finitos e Infinitos

Conjuntos Finitos e Infinitos Conjuntos Finitos e Infinitos p. 1/1 Conjuntos Finitos e Infinitos Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Axiomas de Peano Conjuntos Finitos e Infinitos p. 2/1 Conjuntos

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. uma expressão com significado Uma expressão pode ser expressão sem significado

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Cálculo II Sucessões de números reais revisões Mestrado Integrado em Engenharia Aeronáutica António Bento bento@ubi.pt Departamento de Matemática Universidade da Beira Interior 2012/2013 António Bento

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

f(x) = b lim x a a] f x n

f(x) = b lim x a a] f x n II.0 Limites de funções No Ensino Secundário foi dada uma definição de ite de função recorrendo aos ites de sucessões. É costume designá-la por definição de ite segundo Heine, em homenagem ao matemático

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

1 Teoria de conjuntos e lógica

1 Teoria de conjuntos e lógica 1 Teoria de conjuntos e lógica Estes breves apontamentos dizem respeito à parte do programa dedicada à teoria de conjuntos e à lógica matemática. Embora concebidos sem grandes formalismos e com poucas

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

FABIANO KLEIN CRITÉRIOS NÃO CLÁSSICOS DE DIVISIBILIDADE

FABIANO KLEIN CRITÉRIOS NÃO CLÁSSICOS DE DIVISIBILIDADE FABIANO KLEIN CRITÉRIOS NÃO CLÁSSICOS DE DIVISIBILIDADE FLORIANÓPOLIS 2007 FABIANO KLEIN CRITÉRIOS NÃO CLÁSSICOS DE DIVISIBILIDADE Trabalho de conclusão de Curso apresentado ao curso de Matemática Habilitação

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23,

(1, 6) é também uma solução da equação, pois 3 1 + 2 6 = 15, isto é, 15 = 15. ( 23, Sistemas de equações lineares generalidades e notação matricial Definição Designa-se por equação linear sobre R a uma expressão do tipo com a 1, a 2,... a n, b R. a 1 x 1 + a 2 x 2 +... + a n x n = b (1)

Leia mais

é um grupo abeliano.

é um grupo abeliano. Notas de aulas de Álgebra Moderna Prof a Ana Paula GRUPO Definição 1: Seja G munido de uma operação: x, y x y sobre G A operação sobre G é chamada de grupo se essa operação se sujeita aos seguintes axiomas:

Leia mais

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes

ALGA - Eng.Civil - ISE - 2009/2010 - Matrizes 1. Matrizes ALGA - Eng.Civil - ISE - 00/010 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::; mg f1; ; :::; ng R:

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

GABARITO PROVA AMARELA

GABARITO PROVA AMARELA GABARITO PROVA AMARELA 1 MATEMÁTICA 01 A 11 A 0 E 1 C 03 Anulada 13 Anulada 04 A 14 B 05 B 15 C 06 D 16 A 07 D 17 E 08 A 18 C 09 E 19 C 10 C 0 C GABARITO COMENTADO PROVA AMARELA 01. Utilizando que (-1)

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO CURSO DE MATEMÁTICA APLICADA À ECONOMIA E GESTÃO ANÁLISE MATEMÁTICA II ELEMENTOS DE ANÁLISE REAL Volume 2 Por : Gregório Luís I PREFÁCIO O presente texto destina-se

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS

Projecto Delfos: Escola de Matemática Para Jovens 1 TEORIA DOS NÚMEROS Projecto Delfos: Escola de Matemática Para Jovens 1 A Teoria dos Números tem como objecto de estudo o conjunto Z dos números inteiros (a letra Z vem da palavra alemã Zahl que significa número). 1. DIVISIBILIDADE

Leia mais

Por menor que seja a quantidade δ > 0, há uma ordem p N tal que. x n a δ,

Por menor que seja a quantidade δ > 0, há uma ordem p N tal que. x n a δ, DEFINIÇÃO DE CONVERGÊNCIA E LIMITE Seja (x n ) uma sucessão de números em R ou pontos em R 2. Dizemos que (x n ) converge para a, ou que a é o limite de x n, e escrevemos x n a quando n ou lim x n = a

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Chama-se sucessão de números reais, ou sucessão, a uma aplicação de N R (por vezes considera-se Ν 0 = { }

Chama-se sucessão de números reais, ou sucessão, a uma aplicação de N R (por vezes considera-se Ν 0 = { } Aáli Matemática II ao lectivo 006/007 III- Séries. Sucessões ( breves revisões) Def.. Chama- sucessão de úmeros reais, ou sucessão, a Ν 0 ). u: N R uma aplicação de N R (por vezes cosidera- Ν 0 = { } Utiliza-

Leia mais

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4

AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4 MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()

Leia mais

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página:  daniel.miranda Daniel 1 1 email: daniel.miranda@ufabc.edu.br sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição

Leia mais

Lista 7.2 Optimização Livre

Lista 7.2 Optimização Livre Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II 1. Extremante local de uma função escalar f: Ponto do domínio de f cuja imagem é não superior ou não inferior às imagens de

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries Numéricas Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries Numéricas A soma dos termos de uma sequência a n é denominada de série de termo geral e é denotada por S n = a

Leia mais

Engenharia Econômica

Engenharia Econômica UNIVERSIDADE FEDERAL DE PERNAMBUCO UFPE CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA ENGENHARIA CIVIL Engenharia Econômica Aula I Professora Jocilene Otilia da Costa, Dra Conteúdo Juros Simples Juros

Leia mais

Matemática Régis Cortes MÚLTIPLOS E DIVISORES

Matemática Régis Cortes MÚLTIPLOS E DIVISORES MÚLTIPLOS E DIVISORES Múltiplos e divisores de um número Um número é múltiplo de outro quando, ao dividirmos o primeiro pelo segundo, o resto é zero. Observe as seguintes divisões entre números Naturais:

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

Progressão aritmética ( PA )

Progressão aritmética ( PA ) Progressão aritmética ( PA ) Definição Consideremos a seqüência ( 2, 4, 6, 8, 10, 12, 14, 16). Observamos que, a partir do segundo termo, a diferença entre qualquer termo e seu antecessor é sempre a mesma:

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções

Leia mais

MATEMÁTICA Apontamentos e Exercícios

MATEMÁTICA Apontamentos e Exercícios MATEMÁTICA Apontamentos e Exercícios Paulo Manuel de Barros Correia Escola de Ciências e Tecnologia ISBN 978-989-97060-3-3 200-20 Índice Prefácio 5 O sistema de números reais 7. Breves noções da Teoria

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

MATEMÁTICA ENSINO FUNDAMENTAL

MATEMÁTICA ENSINO FUNDAMENTAL CEEJA MAX DADÁ GALLIZZI PRAIA GRANDE - SP PARABÉNS!!! VOCÊ JÁ É UM VENCEDOR! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos esse material.

Leia mais

SÍMBOLOS MATEMÁTICOS. adição Lê-se como "mais" Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5.

SÍMBOLOS MATEMÁTICOS. adição Lê-se como mais Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. SÍMBOLOS MATEMÁTICOS Símbolo Nome Explicação + adição Lê-se como "mais" 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração Lê-se como "menos" 5-3 = 2, significa que se subtrairmos 3

Leia mais

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A.

Definição de determinantes de primeira e segunda ordens. Seja A uma matriz quadrada. Representa-se o determinante de A por det(a) ou A. Determinantes A cada matriz quadrada de números reais, pode associar-se um número real, que se designa por determinante da matriz Definição de determinantes de primeira e segunda ordens Seja A uma matriz

Leia mais

1 Séries de números reais

1 Séries de números reais Universidade do Estado do Rio de Janeiro - PROFMAT MA 22 - Fundamentos de Cálculo - Professora: Mariana Villapouca Resumo Aula 0 - Profmat - MA22 (07/06/9) Séries de números reais Seja (a n ) n uma sequência

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

Sucessões. Limites de sucessões O essencial

Sucessões. Limites de sucessões O essencial Sucessões Limites de sucessões O essencial Limite de uma sucessão Dada uma sucessão (u n ), um número real l designa-se por limite da sucessão (u n ) ou limite de u n quando n tende para + quando, para

Leia mais

Determinantes. Matemática Prof. Mauricio José

Determinantes. Matemática Prof. Mauricio José Determinantes Matemática Prof. Mauricio José Determinantes Definição e Conceito Matriz de ordem 1 Dizemos que um determinante é um resultado (numérico) de operações que são realizadas em uma matriz quadrada.

Leia mais

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1

Relações. Antonio Alfredo Ferreira Loureiro. loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro. UFMG/ICEx/DCC MD Relações 1 Relações Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Relações 1 Introdução O mundo está povoado por relações: família, emprego, governo, negócios, etc. Entidades

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I 1 Os Números reais e suas propriedades O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e

Leia mais

Cálculo diferencial em IR n

Cálculo diferencial em IR n Cálculo diferencial em IR n (Elementos de Topologia) DMAT 17 Abril 001 Conteúdo 1 Introdução Noções Topológicas em IR n.1 NoçãodeVizinhança.... NoçõesTopológicasElementares... 5 1 17/Abril/001 1 Introdução

Leia mais

Números escritos em notação científica

Números escritos em notação científica Notação Científica Números escritos em notação científica Escrever um número em notação científica tem muitas vantagens: Para números muito grandes ou muito pequenos poderem ser escritos de forma abreviada.

Leia mais

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS 1 CURSO PRÉ-VESTIULR MTEMÁTIC UL 02 SSUNTO: TEORI DOS CONJUNTOS Esta aula é composta pelo texto da apostila abaixo e por um link de acesso à UL VIRTUL gravada. Estude com atenção o texto antes de acessar

Leia mais

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 4 Determinantes ALGA 2008/2009 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições Seja M n n o conjunto das matrizes quadradas reais (ou complexas) de ordem n Chama-se determinante de

Leia mais

Números inteiros Z ± 7º Ano / 2013

Números inteiros Z ± 7º Ano / 2013 Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número.

Leia mais

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A =

Determinantes. Vamos associar a cada matriz quadrada A um número a que chamaremos determinante. a11 a Uma matriz de ordem 2, A = Determinantes Vamos associar a cada matriz quadrada A um número a que chamaremos determinante de A. [ ] a11 a Uma matriz de ordem 2, A 12, é invertível se e só se a 21 a 22 a 11 a 22 a 21 a 12 0, como

Leia mais

CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS

CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS CORPOS FINITOS E SEUS GRUPOS MULTIPLICATIVOS LUCAS GLAZAR GAZZOLI - RA: 071572 DAVID RICARDO BARRETO LIMA SILVA - RA: 042885 1. Introdução Dado um corpo K, finito, é fácil observar que vale a seguinte

Leia mais

Módulo de Sistemas de Numeração e Paridade. Divisibilidade em Diferentes Bases de Numeração. Tópicos Adicionais

Módulo de Sistemas de Numeração e Paridade. Divisibilidade em Diferentes Bases de Numeração. Tópicos Adicionais Módulo de Sistemas de Numeração e Paridade Divisibilidade em Diferentes Bases de Numeração Tópicos Adicionais Professores Tiago Miranda e Cleber Assis Sistemas de Numeração e Paridade Divisibilidade em

Leia mais

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer

Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois

Leia mais

Testes de Convergência

Testes de Convergência Testes de Convergência Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas outubro - 203 Teste da Divergência Teorema Se a série a n for convergente, então lim a n =

Leia mais

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 12.º Ano de Escolaridade Teste Intermédio de Matemática A Entrelinha,5 Teste Intermédio Matemática A Entrelinha,5 (Versão única igual à Versão ) Duração do Teste: 90 minutos 8.0.03.º Ano de Escolaridade Decreto-Lei n.º 74/004,

Leia mais

ESTUDO DE UM CIRCUITO RC COMO FILTRO

ESTUDO DE UM CIRCUITO RC COMO FILTRO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T6 Física Experimental I - 2007/08 ESTUDO DE UM CIRCUITO RC COMO FILTRO 1. Objectivo Estudo do funcionamento, em regime estacionário,

Leia mais

EXPOENTES DE LYAPUNOV E TEOREMA ERGÓDICO MULTIPLICATIVO

EXPOENTES DE LYAPUNOV E TEOREMA ERGÓDICO MULTIPLICATIVO EXPOENTES DE LYAPUNOV E TEOREMA ERGÓDICO MULTIPLICATIVO Resumo. Introduz-se o conceito de expoente de Lyapunov no caso de transformações diferenciáveis e discutem-se alguns aspectos da extrutura que surge

Leia mais

PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição

PROPOSIÇÕES. Proposições Simples e Proposições Compostas. Conceito de Proposição PROPOSIÇÕES Conceito de Proposição Definição: chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo. As proposições transmitem pensamentos, isto é,

Leia mais

condicional tem sentido porque até recentemente as escolas ensinavam que 5

condicional tem sentido porque até recentemente as escolas ensinavam que 5 Cálculo I Lista zero - solução números racionais tarcisio.praciano@gmail.com T. Praciano-Pereira Sobral Matemática 25 de dezembro de 204 produzido com L A TEX - Debian/Gnu/Linux página http://www.calculo.sobralmatematica.org/

Leia mais

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller

ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável

Leia mais

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.

Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Ivete Maria Baraldi Unidade Faculdade de Ciências Departamento Departamento

Leia mais

Ciclo com Contador : instrução for. for de variável := expressão to. expressão do instrução

Ciclo com Contador : instrução for. for de variável := expressão to. expressão do instrução Métodos de Programação I 2. 27 Ciclo com Contador : instrução for identificador downto for de variável := expressão to expressão do instrução UMA INSTRUÇÃO (SIMPLES OU COMPOSTA) Neste caso o ciclo é repetido

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU

ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso 1503 - Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006308A - Fundamentos de Matemática Elementar Docente(s) Maria Edneia Martins Salandim Unidade Faculdade de Ciências Departamento

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

2.1 Sucessões. Convergência de sucessões

2.1 Sucessões. Convergência de sucessões Capítulo 2 Sucessões reais Inicia-se o capítulo introduzindo os conceitos de sucessão limitada, sucessão monótona, sucessão convergente e relacionando estes conceitos entre si. A análise da convergência

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas

1. À primeira coluna (P), atribui-se uma quantidade de valores V igual à metade do total de linhas LÓGICA MATEMÁTICA Walter Sousa Resumo teórico 1) PROPOSIÇÕES LÓGICAS SIMPLES Uma proposição é uma sentença declarativa que pode ser classificada em verdadeira (V) ou falsa (F), mas não ambas as interpretações.

Leia mais

Equações paramétricas da Reta

Equações paramétricas da Reta 39 6.Retas e Planos Equações de Retas e Planos Equações da Reta Vamos supor que uma reta r é paralela a um vetor V = a, b, c) não nulo e que passa por um ponto P = x, y, z ). Um ponto P = x, pertence a

Leia mais

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis

Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Teorema de Pitágoras- Unidade 2 1.ºP Tema Calendarização Domínio N.º de aulas de 45 minutos Agrupamento de Escolas Júlio Dantas Escola Básica Tecnopolis Planificação Curricular a Longo Prazo Matemática

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 7/8 Álgebra Linear e Geometria Analítica

Leia mais

Exercícios de Matemática Equações de Terceiro Grau

Exercícios de Matemática Equações de Terceiro Grau Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Mudança de Coordenadas Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região ser mais bem adaptada

Leia mais

Lista de Exercícios Campo Elétrico

Lista de Exercícios Campo Elétrico Considere k o = 9,0. 10 9 N. m 2 /C 2 Lista de Exercícios Campo Elétrico 1. Uma partícula de carga q = 2,5. 10-8 C e massa m = 5,0. 10-4 kg, colocada num determinado ponto P de uma região onde existe um

Leia mais

Gabarito de Matemática do 6º ano do E.F.

Gabarito de Matemática do 6º ano do E.F. Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor

Leia mais

Exercícios de Macro III

Exercícios de Macro III Acadêmico(a): Disciplina: Macroeconomia III Semestre: 5º Professor: Felipe Ferraz Vazquez Exercícios de Macro III Lista 01: Blanchard (Cap. 10 e 11) e Jones (até o item 2.2) Atenção: Esta lista foi montada

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Um pouco da História dos Logaritmos

Um pouco da História dos Logaritmos Um pouco da História dos Logaritmos Os logaritmos, como instrumento de cálculo, surgiram para realizar simplificações, uma vez que transformam multiplicações e divisões nas operações mais simples de soma

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Noções de Lógica e de Topologia

Noções de Lógica e de Topologia Análise Matemática 1 Ano Lectivo 2012/2013 Fernanda Sousa Isabel Silva Magalhães Faculdade de Engenharia da Universidade do Porto Mestrado Integrado em Engenharia Civil Prefácio A lógica e a topologia

Leia mais

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado

CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de

Leia mais

Nome: N.º: Turma: Classificação: Professor: Enc. Educação:

Nome: N.º: Turma: Classificação: Professor: Enc. Educação: Escola EB, de Ribeirão (Sede) ANO LECTIVO 010/011 Dezembro 010 Nome: Nº: Turma: Classificação: Professor: Enc Educação: Ficha de Avaliação de Matemática Versão Duração do Teste: 90 minutos 6 de Dezembro

Leia mais

SÉRIE INFINITA HARMÔNICA E AS NOTAS MUSICAIS

SÉRIE INFINITA HARMÔNICA E AS NOTAS MUSICAIS SÉRIE INFINITA HARMÔNICA E AS NOTAS MUSICAIS BORO, M. C. mayaraboro@hotmail.com FRANCISCON, H. M. heidefranciscon@hotmail.com MERLI, R. F. renato.francisco@fap.com.br Resumo: Este trabalho traz um estudo

Leia mais