UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B"

Transcrição

1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA TÓPICOS DE MATEMÁTICA APLICADA B JORGE MELO PAULO FLORES PLANO DE AULA PESQUISA OPERACIONAL PARA O ENSINO MÉDIO PORTO ALEGRE 2009

2 Jorge Melo Paulo Flores PLANO DE AULA PESQUISA OPERACIONAL PARA O ENSINO MÉDIO Plano de aula para disciplina de Tópicos de Matemática Aplicada B, apresentado como requisito para nota parcial na disciplina do curso de mestrado na Universidade Federal do Rio Grande do Sul. Orientador: Maria Paula Fachin Porto Alegre 2009

3 Introdução - Justificativa Os Referenciais Curriculares do Rio Grande do Sul (em consonância com os PCN s) indicam como caminhos para se fazer Matemática na sala de aula a resolução de problemas e a modelagem, formas de dar sentido ao que se ensina. Acreditamos que um assunto que se enquadra bem neste perfil é a Pesquisa Operacional, que pode ser trabalhado pelo menos no aspecto geométrico. Assim podemos trabalhar diversos assuntos da educação básica como funções, inequações, análise de gráficos. Todos permeados pela resolução de problemas e modelagem, além de permitir uma aproximação com tecnologias através de programas gráficos, por exemplo, o winplot, que é um freeware. Um bom momento de desenvolver este estudo, de programação linear, é no 1º ano do ensino médio, após o estudo de funções e inequações do 1º grau.

4 Primeira Aula Número de períodos: 2 Nesta primeira aula é feita uma sensibilização dos alunos sobre modelagem matemática, problemas de otimização e o significado de Pesquisa Operacional como uma ciência voltada para a resolução de situações-problema, que utiliza diversas técnicas para se chegar aos resultados que são utilizados para tomada de decisões. Neste momento podemos colocar exemplos de situações-problemas para mostrar ao aluno a utilização do processo gráfico na resolução dos problemas de otimização. O objetivo desta aula é o aluno conhecer a pesquisa operacional como processo útil na solução de problemas práticos. encontro. Nesta etapa a observação em aula se enquadra bem para se fazer a avaliação deste 1º Problema do Galinheiro João quer fazer um galinheiro retangular para sua avó que mora no interior do Rio de Janeiro. Para isso comprou 80 metros de tela. Porém, para agradar sua querida avó, João deseja obter, com esse material, um galinheiro com maior área possível. Qual o modelo matemático para este problema? Este é um simples problema de maximização. De fato, deseja-se maximizar a área do galinheiro. Quais são as variáveis de decisão? Para determinar o retângulo precisamos da medida dos seus lados. Assim, sejam x e y os comprimentos, em metros, dos lados do retângulo. Qual a função-objetivo? A área em função de x e y, ou seja, A(x, y) = x.y. Quais as condições que devem ser satisfeitas? Ou seja, quais as restrições do problema? Como João tem 80 metros de arame devemos ter x + y = 80. Para completar o modelo resta acrescentar a restrição de não-negatividade das variáveis de decisão, isto é, x 0 e y 0. Temos assim o seguinte modelo: Maximizar: Área = x. y sujeito a: x + y = 80 x 0, y 0 Embora este problema de otimização não seja linear, é bem simples para o entendimento do aluno da utilidade da pesquisa operacional.

5 Segunda Aula Número de períodos: 2 Explorar, no laboratório de informática, o programa winplot (pode ser outro programa que faz gráficos) construindo gráficos de funções, inequações, famílias de funções. O objetivo desta aula é buscar a familiarização, da parte dos alunos, do programa gráfico escolhido e revisar conceitos matemáticos que serão utilizados na solução de problemas relativos a pesquisa operacional. A avaliação nesta etapa, além da observação, pode ser feita através de alguns exercícios no final da aula. Exercícios: 1) Utilizando do programa Winplot, construa os gráficos das funções abaixo: a) f(x) = 2x + 1 b) f(x) = -2x - 3 c) y = 3x + 2 d) 2x y = 3 e) -3x + y = 10 2) Esboce, utilizando do programa Winplot, num mesmo sistema de eixos, os gráficos das funções: a) f(x) = 2x + k, para k Є {-2, -1, 0, 1, 2} b) -2x - y = k, para k Є {-2, -1, 0, 1, 2} 3) Utilizando do programa Winplot, construa os gráficos das inequações abaixo: a) 2x + y 2 b) -3x + 2y 1 c) 5x 2y -2

6 Terceira Aula Número de períodos: 2 1º momento (1 período) Criação de um modelo para solução de um problema de otimização. Problema do Sítio Após anos de economia, em busca de uma vida mais tranqüila João resolve comprar uma pequena fazenda de 45 hectares para plantar milho e feijão. Cada hectare de milho gera um lucro de R$ 200,00 e cada hectare de feijão retorna R$ 300,00 de lucro. O número de empregados e fertilizantes necessários para cada hectare são descritos na tabela abaixo. Considerando que João pode contar com 100 empregados e 120 toneladas de fertilizantes, como ele pode maximizar seu lucro? Milho Feijão Empregados 3 2 Fertilizantes 2 ton. 4 ton. Construindo o modelo matemático: Seleção das Variáveis de Decisão: João precisa decidir em quantos hectares vai plantar milho e em quantos irá plantar feijão. Assim, sejam x 1 a quantidade de hectares onde será plantado milho e x 2 a quantidade de hectares onde será plantado feijão. Função-objetivo: João deseja maximizar seu lucro. Cada hectare plantado com milho gera um lucro, após a colheita, de R$ 200,00, enquanto cada hectare com feijão gera R$ 300,00 de lucro. Logo a função-objetivo é Lucro = 200x x 2. Restrições: Além da restrição de não-negatividade (só faz sentido quantidade de hectares maior ou igual a zero), temos a área total do sítio, a quantidade de empregados e de fertilizantes disponíveis. Assim, temos mais três restrições: (i) Área Total: x 1 + x 2 45; (ii) Número de Empregados: 3x 1 + 2x 2 100; (iii) Quantidade de Fertilizantes: 2x 1 + 4x Podemos escrever desta forma o Problema de Programação Linear: Maximizar Lucro = 200x x2 sujeito a: x 1 + x x 1 + 2x x 1 + 4x x i 0, i = 1, 2.

7 2º momento (1 período) Resolvendo o problema de modo gráfico (utilizando winplot). x 1 + x x 1 + 2x x 1 + 2x e x 1 + x x 1 + 2x 2 100, x 1 + x 2 45 e 2x 1 + 4x Região Viável do Problema do Sítio Curvas de Nível da Função-objetivo

8 Podemos, por tentativa e erro, atribuir valores a função-objetivo Lucro, por exemplo Lucro = z 0, e verificar se a reta, que chamaremos de curva de nível, intercepta a região viável. De fato, se z 0 0, z 0 Є R qualquer ponto da reta 200x x 2 = z 0 que intercepta a região viável, satisfaz as restrições e tem Lucro = z 0. O último gráfico traz as curvas de nível (retas tracejadas) para Lucro = 1000; 3000; 5000; 8000; A reta 200x x 2 = intercepta o ponto (20, 20) da região viável e que, no caso de aumentarmos o valor de z 0, a curva de nível 200x x 2 = z 0 não interceptará a região viável. Concluímos, assim, que o ponto onde o lucro é máximo é justamente o ponto (20, 20), que chamaremos de solução ótima. Logo, o plano ótimo para João é plantar milho em 20 hectares e feijão também em 20 hectares.

9 Quarta Aula Número de períodos: 2 É proposto um problema para a turma resolver. Uma empresa é contratada para fornecer alimentação a alunos da rede pública de ensino. Um dos pratos a ser servido é polenta com molho de carne moída. A empresa tem por objetivo obter o maior lucro possível, porém, cumprindo as exigências do contrato com a Secretaria de Educação. Segundo este contrato, cada porção servida aos alunos deve conter um mínimo de 400 kcal de energia, 65 gramas de carboidratos e 15 gramas de proteínas e não pode conter menos que 60 gramas de carne. Cada 100 gramas de farinha de milho ( fubá ) fornece 350 kcal de energia, 80 gramas de carboidratos e 6 gramas de proteínas. A carne moída refogada fornece a cada 100 gramas, 170 kcal de energia, 9 gramas de carboidratos e 15g de proteínas. Considerando que 100 gramas de fubá custam R$ 0,20 e que 100 gramas de carne custam R$ 1,00, determinar a quantidade de cada alimento para que a empresa obtenha o menor custo sem descumprir o contrato. OBS: Em um primeiro momento o problema pode parecer difícil para uma turma de ensino médio, mas esperamos que busquem uma solução coletiva com bastante troca de idéias a ajudas mútuas. Nesta fase a avaliação pode ser feita por pela observação da forma como os alunos se colocam frente a uma situação-problema.

10 CONSIDERAÇÕES FINAIS Não tivemos oportunidade de colocar em prática esta aula, sendo assim, não temos resultados para avaliar. Acreditamos que este trabalho teria um bom resultado pelos componentes de dar sentido a matemática associado ao uso de tecnologia, que os jovens normalmente gostam. No próximo ano (2010) será realizado o plano de aula em turmas de 1º ano.

11 REFERÊNCIAS BIBLIOGRÁFICAS LOESCH, Cláudio; HEIN, Nelson. Pesquisa Operacional: fundamentos e modelos. Blumenau: Editora da FURBE, p SOUZA, S. A. Usando o WINPLOT. Disponível em < >. Acesso em: 11 dez Brasil. Ministério da Educação. PCN s. Rio Grande do Sul. Secretaria da Educação. Referenciais Curriculares.

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Otimização da cerca Objetivos da unidade 1. Resolver um problema de otimização através do estudo de uma função quadrática. 2. Estudar as propriedades de

Leia mais

A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES

A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES Bruno BAZZO brunobaz@seed.pr.gov.br Resumo Maria Regina C M LOPES mrlopes@unicentro.br Este trabalho apresenta algumas atividades envolvendo

Leia mais

O ENSINO DA FUNÇÃO AFIM COM O AUXÍLIO DO SOFTWARE GEOGEBRA

O ENSINO DA FUNÇÃO AFIM COM O AUXÍLIO DO SOFTWARE GEOGEBRA O ENSINO DA FUNÇÃO AFIM COM O AUXÍLIO DO SOFTWARE GEOGEBRA Conceição BRANDÃO de Lourdes Farias FACIG clfb_05@hotmail.com Evanilson LANDIM Alves UFPE evanilson.landim@ufpe.br RESUMO O uso das tecnologias

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

Plano de Aula de Matemática. Competência 3: Aplicar os conhecimentos, adquiridos, adequando-os à sua realidade.

Plano de Aula de Matemática. Competência 3: Aplicar os conhecimentos, adquiridos, adequando-os à sua realidade. Plano de Aula de Matemática Competência 3: Aplicar os conhecimentos, adquiridos, adequando-os à sua realidade. Habilidade: H27. Resolver situações-problema de adição ou subtração envolvendo medidas ou

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 3 Modelação Matemática usando o software Modellus Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Modelação Matemática

Leia mais

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016 DEPARTAMENTO DE 1º Ciclo - Grupo 110 Planificação Anual / Critérios de avaliação Disciplina: Matemática 2.º ano 2015/2016 Domínio (Unidade/ tema) Subdomínio/Conteúdos Metas de Aprendizagem Estratégias/

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA. MATRIZ CURRICULAR Graduação em Matemática

UNIVERSIDADE FEDERAL DE OURO PRETO CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA. MATRIZ CURRICULAR Graduação em Matemática MATRIZ CURRICULAR Graduação em Matemática Período Códigos NOME DAS DISCIPLINAS (Esta matriz está sendo reformulada junto com o Projeto Pedagógico) Carga Horária Crédito Pré - Requisito EAD500 Estudo em

Leia mais

ISSN 2316-7785 UM OLHAR REFLEXIVO SOBRE A APRENDIZAGEM GEOMÉTRICA NO 9º ANO DO ENSINO FUNDAMENTAL

ISSN 2316-7785 UM OLHAR REFLEXIVO SOBRE A APRENDIZAGEM GEOMÉTRICA NO 9º ANO DO ENSINO FUNDAMENTAL ISSN 2316-7785 UM OLHAR REFLEXIVO SOBRE A APRENDIZAGEM GEOMÉTRICA NO 9º ANO DO ENSINO FUNDAMENTAL Tawana Telles Batista Santos Instituto Federal do Norte de Minas Gerais Campus Salinas tawanatelles@yahoo.com.br

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Oficina - Álgebra 1. Oficina de CNI EM / Álgebra 1 Material do Monitor. Setor de Educação de Jovens e Adultos. Caro monitor,

Oficina - Álgebra 1. Oficina de CNI EM / Álgebra 1 Material do Monitor. Setor de Educação de Jovens e Adultos. Caro monitor, Oficina - Álgebra 1 Caro monitor, As situações de aprendizagem apresentadas nessa atividade têm como objetivo desenvolver o raciocínio algébrico, e assim, proporcionar que o educando realize a representação

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Propostos

Aula 5 - Parte 1: Funções. Exercícios Propostos Aula 5 - Parte 1: Funções Exercícios Propostos 1 Construção de Funções: a) Um grupo de amigos deseja alugar uma van, por um dia, para um passeio, ao custo de R$300,00. Um levantamento preliminar indicou

Leia mais

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número. Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) II Métodos numéricos para encontrar raízes (zeros) de funções reais. Objetivos:

Leia mais

Guia do Professor. Consumo de Energia. Experimentos

Guia do Professor. Consumo de Energia. Experimentos Guia do Professor Consumo de Energia Experimentos Coordenação Geral Elizabete dos Santos Autores Bárbara Alvim Souza Karina Pessoa Lourdes Maria Werle de Almeida Luciana Gastaldi S. Souza Márcia da Costa

Leia mais

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I

Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Universidade Federal do Pará Centro de Ciências Exatas e Naturais Departamento de Física Laboratório Básico I Experiência 02 CONSTRUÇÃO DE GRÁFICOS E PÊNDULO SIMPLES 1. OBJETIVOS Ao término das atividades

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

PRATICANDO O RCNEI NO ENSINO DE CIÊNCIAS - A CHUVA EM NOSSA VIDA! RESUMO

PRATICANDO O RCNEI NO ENSINO DE CIÊNCIAS - A CHUVA EM NOSSA VIDA! RESUMO PRATICANDO O RCNEI NO ENSINO DE CIÊNCIAS - A CHUVA EM NOSSA VIDA! Roberta Soares de Vargas 1 e Suzane Maier França 1 Ricardo Antonini 2 RESUMO O trabalho aqui apresentado é o resultado de estudos e pesquisas

Leia mais

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por

Função polinomial Seja dado um número inteiro não negativo n, bem como os coeficientes reais a 0, a 1,,a n, com a n 0. A função definida por Funções polinomiais 4 Antes de ler o capítulo Esse capítulo trata de um grupo particular de funções, de modo que, antes de lê-lo, o leitor precisa dominar o conteúdo do Capítulo 1. Depois de tratarmos

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo

Problemas de Otimização. Problemas de Otimização. Solução: Exemplo 1: Determinação do Volume Máximo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Eemplo 1: Determinação

Leia mais

UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear

UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear UFV Universidade Federal de Viçosa DMA Departamento de Matemática MAT 138 Noções de Álgebra Linear 1 2 a LISTA DE EERCÍCIOS - 2005/I 1. Resolva os sistemas abaixo e classifique-os quanto ao número de soluções:

Leia mais

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3

1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 Função do Primeiro Grau 1)Faça a representação gráfica das seguintes funções do primeiro grau: a)y = - x + 3 b)f(x) = - 3x + 5 c)y = x + 2 d)y = x + 3 2)Uma função polinomial do 1 o grau y = f(x) é tal

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1 FÍSICA 01 - A figura a seguir representa um eletroímã e um pêndulo, cuja massa presa à extremidade é um pequeno imã. Ao fechar a chave C, é correto afirmar que C N S (001) o imã do pêndulo será repelido

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

INTERPRETAÇÃO GRÁFICA DOS SISTEMAS LINEARES UTILIZANDO O SOFTWARE WINPLOT

INTERPRETAÇÃO GRÁFICA DOS SISTEMAS LINEARES UTILIZANDO O SOFTWARE WINPLOT INTERPRETAÇÃO GRÁFICA DOS SISTEMAS LINEARES UTILIZANDO O SOFTWARE WINPLOT Susana Pereira da Cunha de Matos, Vanessa da Silva Pires 1 RESUMO Este trabalho apresenta uma interpretação gráfica dos sistemas

Leia mais

Plano de aula Objeto de Aprendizagem: Desafio Empresarial

Plano de aula Objeto de Aprendizagem: Desafio Empresarial Plano de aula Objeto de Aprendizagem: Desafio Empresarial Dados de identificação Disciplina: Matemática. Assunto: Gráficos, tabelas e funções. Séries indicadas: 7ª série/ 8º ano, 8ª série/ 9º ano do ensino

Leia mais

A FORMAÇÃO DO PROFESSOR POLIVALENTE E O TRABALHO COM RESOLUÇÃO DE PROBLEMAS NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL

A FORMAÇÃO DO PROFESSOR POLIVALENTE E O TRABALHO COM RESOLUÇÃO DE PROBLEMAS NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL ISSN: 1981-3031 A FORMAÇÃO DO PROFESSOR POLIVALENTE E O TRABALHO COM RESOLUÇÃO DE PROBLEMAS NOS ANOS INICIAIS DO ENSINO FUNDAMENTAL Juliane dos Santos Medeiros (UFAL) jumedeiros_santos@yahoo.com.br Rosemeire

Leia mais

Ana Lucia Infantozzi Jordão

Ana Lucia Infantozzi Jordão PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP Ana Lucia Infantozzi Jordão Produto da Dissertação: Um Estudo sobre a resolução algébrica e gráfica de Sistemas Lineares 3x3 no 2º ano do Ensino Médio

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Resolução nº 027, de 26 de março de 2013.

Resolução nº 027, de 26 de março de 2013. SERVIÇO PÚBLICO FEDERAL Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Conselho Superior Resolução nº

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini. Recursos: Sala de informática, Software GeoGebra, folha de atividades.

Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini. Recursos: Sala de informática, Software GeoGebra, folha de atividades. COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO Plano de aula 10 Funções do 1º Grau Bolsistas: Guimara Bulegon, Maiara Ghiggi e Viviane Polachini Supervisora: Raquel Marchetto Disciplina: Matemática Série: 1º

Leia mais

Aprovação do curso e Autorização da oferta. PROJETO PEDAGÓGICO DE CURSO FIC : Formação Básica em Desenho Técnico Auxiliado por Computador

Aprovação do curso e Autorização da oferta. PROJETO PEDAGÓGICO DE CURSO FIC : Formação Básica em Desenho Técnico Auxiliado por Computador MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA Aprovação do curso e Autorização da oferta PROJETO PEDAGÓGICO

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Notação. Quantidades Económicas de Encomenda. 1.1 Quantidade Económica de Wilson. 1.1 Quantidade Económica de Wilson

Notação. Quantidades Económicas de Encomenda. 1.1 Quantidade Económica de Wilson. 1.1 Quantidade Económica de Wilson Notação uantidades Económicas de Encomenda. Taxa de Constante taxa de procura (unidades de produto / unidade de ) A custo de encomenda ( / encomenda) C custo unitário do produto ( / unidade de produto)

Leia mais

GNUPLOT Uma breve introdução

GNUPLOT Uma breve introdução GNUPLOT Uma breve introdução O GNUPLOT é um programa para traçado de gráficos bi e tridimensionais distribuído livremente na Internet. Ele está disponível para plataformas Linux, Windows e outras do mundo

Leia mais

Manual SIGEESCOLA Matrícula - 2009

Manual SIGEESCOLA Matrícula - 2009 Manual SIGEESCOLA Matrícula - 2009 GOVERNO DO ESTADO DO CEARÁ SECRETARIA DA EDUCAÇÃO BÁSICA COORDENADORIA DE DESENVOLVIMENTO DA ESCOLA PASSO A PASSO DA UTILIZAÇÃO DO SIGE ESCOLA 2009 1. PARA ACESSAR O

Leia mais

A RESOLUÇÃO DE PROBLEMAS NO ENSINO DAS PROPRIEDADES DE POTÊNCIAS

A RESOLUÇÃO DE PROBLEMAS NO ENSINO DAS PROPRIEDADES DE POTÊNCIAS A RESOLUÇÃO DE PROBLEMAS NO ENSINO DAS PROPRIEDADES DE POTÊNCIAS Felipe de Almeida Duarte Bolsista PIBID 1 - UTFPR Campus Cornélio Procópio felipeaduart@hotmail.com Marila Torres de Aguiar Bolsista PIBID¹

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

MATEMÁTICA E CIDADANIA NO CONTEXTO DA SALA DE AULA

MATEMÁTICA E CIDADANIA NO CONTEXTO DA SALA DE AULA MATEMÁTICA E CIDADANIA NO CONTEXTO DA SALA DE AULA Maria Nilza Fernandes Alves Escola Municipal Ridalva Corrêa de Melo Figueiredo nilzafernandes06@yahoo.com.br Ana Paula de Oliveira Cardoso Universidade

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO

O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO O ENSINO DE CÁLCULO NUMÉRICO: UMA EXPERIÊNCIA COM ALUNOS DO CURSO DE CIÊNCIA DA COMPUTAÇÃO Prof. Leugim Corteze Romio Universidade Regional Integrada URI Campus Santiago-RS leugimcr@urisantiago.br Prof.

Leia mais

Lista 2 - Modelos determinísticos

Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Lista 2 - Modelos determinísticos Exercício 1 A Companhia Ferroviária do Brasil (CFB) está planejando a alocação de vagões a 5 regiões do país para

Leia mais

A MATEMÁTICA ATRÁVES DE JOGOS E BRINCADEIRAS: UMA PROPOSTA PARA ALUNOS DE 5º SÉRIES

A MATEMÁTICA ATRÁVES DE JOGOS E BRINCADEIRAS: UMA PROPOSTA PARA ALUNOS DE 5º SÉRIES A MATEMÁTICA ATRÁVES DE JOGOS E BRINCADEIRAS: UMA PROPOSTA PARA ALUNOS DE 5º SÉRIES Haiane Regina de Paula, PIC(UNESPAR/FECILCAM)) Valdir Alves (OR), FECILCAM RESUMO:A pesquisa A Matemática Através de

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Critérios de Avaliação

Critérios de Avaliação Critérios de Avaliação 1.º Ciclo do Ensino Básico CRITÉRIOS DE AVALIAÇÃO 1º CICLO Critérios de Avaliação, 1º Ciclo - Ano Letivo 2014-15 Página 1 de 10 1. Domínios de avaliação: AGRUPAMENTO DE ESCOLAS N.º

Leia mais

PROJETOS DE ENSINO DE LÍNGUA PORTUGUESA: DO PLANEJAMENTO À AÇÃO.

PROJETOS DE ENSINO DE LÍNGUA PORTUGUESA: DO PLANEJAMENTO À AÇÃO. PROJETOS DE ENSINO DE LÍNGUA PORTUGUESA: DO PLANEJAMENTO À AÇÃO. LETICIA VICENTE PINTO TEIXEIRA (UNIVERSIDADE FEDERAL DE GOIAS). Resumo É sabido o quanto é grande o esforço das escolas em ensinar a leitura

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

Aprovação do curso e Autorização da oferta PROJETO PEDAGÓGICO DE CURSO FIC INTRODUÇÃO AO CÁLCULO. Parte 1 (solicitante)

Aprovação do curso e Autorização da oferta PROJETO PEDAGÓGICO DE CURSO FIC INTRODUÇÃO AO CÁLCULO. Parte 1 (solicitante) MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA Aprovação do curso e Autorização da oferta PROJETO PEDAGÓGICO

Leia mais

MICROECONOMIA II. 1º Teste 04/04/2008 A. Licenciatura em Economia LEC106

MICROECONOMIA II. 1º Teste 04/04/2008 A. Licenciatura em Economia LEC106 Licenciatura em Economia MICROECONOMIA II LEC106 1º Teste 0/0/2008 A Antes de iniciar o exame, leia atentamente as observações que se seguem: a duração da prova é de 1 hora e 15 minutos; a prova é constituída

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Universidade da Beira Interior Departamento de Matemática. Fábrica 1 Fábrica 2 Fábrica 3 Mina 1 45 80 140 Mina 2 70 145 95

Universidade da Beira Interior Departamento de Matemática. Fábrica 1 Fábrica 2 Fábrica 3 Mina 1 45 80 140 Mina 2 70 145 95 Universidade da Beira Interior Departamento de Matemática INVESTIGAÇÃO OPERACIONAL Ano lectivo: 2008/2009; Curso: Economia Ficha de exercícios nº5: Problema de Transportes e Problema de Afectação. 1. Uma

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

Lista de Exercícios 3 Estrutura Condicional

Lista de Exercícios 3 Estrutura Condicional 1 Lista de Exercícios 3 Estrutura Condicional 1. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um

Leia mais

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos

Aula 9 ESCALA GRÁFICA. Antônio Carlos Campos Aula 9 ESCALA GRÁFICA META Apresentar as formas de medição da proporcionalidade entre o mundo real e os mapas através das escalas gráficas. OBJETIVOS Ao final desta aula, o aluno deverá: estabelecer formas

Leia mais

O ESTUDO DA CONSTRUÇÃO DE CASAS POPULARES E A RELAÇÃO COM CONTEÚDOS MATEMÁTICOS

O ESTUDO DA CONSTRUÇÃO DE CASAS POPULARES E A RELAÇÃO COM CONTEÚDOS MATEMÁTICOS ISSN 2177-9139 O ESTUDO DA CONSTRUÇÃO DE CASAS POPULARES E A RELAÇÃO COM CONTEÚDOS MATEMÁTICOS Edimar Fonseca da Fonseca edyyfon@yahoo.com.br Fundação Universidade Federal do Pampa, Campus Caçapava do

Leia mais

UTILIZAÇÃO DA PLATAFORMA MOODLE PARA O ENSINO DE MATRIZES E DETERMINANTES

UTILIZAÇÃO DA PLATAFORMA MOODLE PARA O ENSINO DE MATRIZES E DETERMINANTES UTILIZAÇÃO DA PLATAFORMA MOODLE PARA O ENSINO DE MATRIZES E DETERMINANTES Jailson Lourenço de Pontes Universidade Estadual da Paraíba jail21.jlo@gmail.com Renata Jacinto da Fonseca Silva Universidade Estadual

Leia mais

O Colégio Seta é mantido pelo Colégio Seta S/C LTDA., estabelecida a Rua Antonio Agu, 361 Osasco Centro, Cep 06013-006.

O Colégio Seta é mantido pelo Colégio Seta S/C LTDA., estabelecida a Rua Antonio Agu, 361 Osasco Centro, Cep 06013-006. 1. Identificação 1.1. A Escola O Colégio Seta tem sede em Osasco, São Paulo à Rua Antonio Agú, 361 Centro Cep 06013-006, Tel/Fax 3681-9695, CNPJ 48.890.693.0001-61, inscrito na DEO sob o número 130928.

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

MÓDULO 2 PLANEJAMENTO LOGÍSTICO ASSOCIADO AO TRANSPORTE

MÓDULO 2 PLANEJAMENTO LOGÍSTICO ASSOCIADO AO TRANSPORTE MÓDULO 2 PLANEJAMENTO LOGÍSTICO ASSOCIADO AO TRANSPORTE 2.1 - Níveis de Planejamento O planejamento logístico tenta responder aos questionamentos de: O QUE? QUANDO? COMO? Nos níveis estratégico, tático

Leia mais

AGRUPAMENTO DE ESCOLAS JOSÉ ESTÊVÃO. DEPARTAMENTO DE 1.º CICLO Planificação Anual da Disciplina de Português 3.º ano Ano Letivo de 2015/2016

AGRUPAMENTO DE ESCOLAS JOSÉ ESTÊVÃO. DEPARTAMENTO DE 1.º CICLO Planificação Anual da Disciplina de Português 3.º ano Ano Letivo de 2015/2016 1º PERÍODO AGRUPAMENTO DE ESCOLAS JOSÉ ESTÊVÃO DEPARTAMENTO DE 1.º CICLO Planificação Anual da Disciplina de Português 3.º ano Ano Letivo de 2015/2016 Unidades/Conteúdos Tempos Oralidade -Escutar para

Leia mais

APOSTILA 1 Funções e Estatística Básica

APOSTILA 1 Funções e Estatística Básica ' Disciplina de Matemática Aplicada II Curso Técnico em Mecânica Professora Valéria Espíndola Lessa APOSTILA 1 Funções e Estatística Básica 014 FUNÇÕES Noção de Função A ideia de função surgiu de observações

Leia mais

PLANO DE ENSINO / PLANO DE TRABALHO

PLANO DE ENSINO / PLANO DE TRABALHO PLANO DE ENSINO / PLANO DE TRABALHO IDENTIFICAÇÃO EIXO TECNOLÓGICO: Licenciatura em Matemática CURSO: Matemática FORMA/GRAU:( )integrado ( )subsequente ( ) concomitante ( ) bacharelado (X) licenciatura

Leia mais

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica 2008 SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA

Leia mais

Marketing Varejo e Serviços

Marketing Varejo e Serviços Aula 5_8 Marketing Varejo e Serviços Nogueira Definição de valor e de satisfação para o cliente- foco no Serviço. Valor para o cliente: os clientes comprarão da empresa que oferecer o maior valor, segundo

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein)

Se A é o sucesso, então é igual a X mais Y mais Z. O trabalho é X; Y é o lazer; e Z é manter a boca fechada. (Albert Einstein) Escola Básica Integrada c/ Jardim de Infância da Malagueira Teste de Avaliação Matemática 9ºB Nome: Nº: Data: 4 3 11 Classificação: A prof: O Enc. Educação: Se A é o sucesso, então é igual a X mais Y mais

Leia mais

A EDUCAÇÃO AMBIENTAL NA EDUCAÇÃO INFANTIL

A EDUCAÇÃO AMBIENTAL NA EDUCAÇÃO INFANTIL A EDUCAÇÃO AMBIENTAL NA EDUCAÇÃO INFANTIL ALVES, Ana Paula PUCPR SAHEB, Daniele PUCPR Grupo de Trabalho - Didática: Teorias, Metodologias e Práticas Agência Financiadora: não contou com financiamento Resumo

Leia mais

Planejamento e Análise de Sistemas de Produção

Planejamento e Análise de Sistemas de Produção Aula 26 Planejamento e Análise de Sistemas de Produção Paulo Augusto Valente Ferreira Departamento de Telemática Faculdade de Engenharia Elétrica e Computação Universidade Estadual de Campinas Conteúdo

Leia mais

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS

Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente

Leia mais

CRITÉRIOS DE AVALIAÇÃO DO ENSINO BÁSICO

CRITÉRIOS DE AVALIAÇÃO DO ENSINO BÁSICO CRITÉRIOS DE AVALIAÇÃO DO ENSINO BÁSICO Considerando que a Portaria nº 9 /2013, de 11 de fevereiro revogou a Portaria nº 29/2012, de 6 de março referente à avaliação das aprendizagens e competências no

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I

MATEMÁTICA. Prof. Paulo Roberto MÓDULO I MATEMÁTICA Prof. Paulo Roberto MÓDULO I ENCONTRO 01---------------Função, Domínio e Imagem, Tipos, composição e inversibilidade. ENCONTRO 0 ---------------Função (função do primeiro grau). ENCONTRO 03---------------Função

Leia mais

QUANTO É? PALAVRAS-CHAVE: Aulas investigativas, lúdico, aprendizagem. INTRODUÇÃO

QUANTO É? PALAVRAS-CHAVE: Aulas investigativas, lúdico, aprendizagem. INTRODUÇÃO QUANTO É? Danielle Ferreira do Prado - GEEM-UESB RESUMO Este trabalho trata sobre um trabalho que recebeu o nome de Quanto é? que foi desenvolvido depois de vários questionamentos a cerca de como criar

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

Pesquisa Operacional. Componentes de um modelo de PL

Pesquisa Operacional. Componentes de um modelo de PL Pesquisa Operacional Introdução à Modelagem de Problemas Lineares Recursos Escasso. Componentes de um modelo de PL O modelo Matemático é composto por: Função Objetivo (eq. Linear, Ex.: Lucro) Restrições

Leia mais

Sistemas de Apoio à Decisão

Sistemas de Apoio à Decisão Sistemas de Apoio à Decisão Processo de tomada de decisões baseia-se em informação toma em consideração objectivos toma em consideração conhecimento sobre o domínio. Modelar o processo de tomada de decisões

Leia mais

MODELAGEM MATEMÁTICA EM UM CURSO DE LICENCIATURA AÇÕES NA BUSCA DE UMA ABORDAGEM PEDAGÓGICA RESUMO

MODELAGEM MATEMÁTICA EM UM CURSO DE LICENCIATURA AÇÕES NA BUSCA DE UMA ABORDAGEM PEDAGÓGICA RESUMO MODELAGEM MATEMÁTICA EM UM CURSO DE LICENCIATURA AÇÕES NA BUSCA DE UMA ABORDAGEM PEDAGÓGICA Denise Knorst da Silva 1 denisek@unijui.tche.br RESUMO Neste trabalho é apresentada uma discussão sobre atividades

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

utilizando o software geogebra no ensino de certos conteúdos matemáticos

utilizando o software geogebra no ensino de certos conteúdos matemáticos V Bienal da SBM Sociedade Brasileira de Matemática UFPB - Universidade Federal da Paraíba 18 a 22 de outubro de 2010 utilizando o software geogebra no ensino de certos conteúdos matemáticos ermínia de

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais