Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia

Tamanho: px
Começar a partir da página:

Download "Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia"

Transcrição

1 Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move como se toda a massa do sistema estivesse concentrada nesse ponto e como se todas as forças externas estivessem aplicadas nesse ponto. Podemos pensar no centro de massa de um corpo qualquer como sendo um ponto que se comporta como se simplesmente toda a massa do corpo estivesse concentrada nele. Consideramos que é este ponto que possui a aceleração resultante, ou então, que apresenta momento igual ao momento total do sistema, seja ele um corpo simples, como um dado, ou complexo, como uma galáxia. A posição do centro de massa do corpo em relação a O é dada pelo vetor R definido pela relação: Reescrevendo esta equação teremos: Quando as partículas estão dispostas de tal forma que sua distribuição seja em três dimensões, a posição do centro de massa deve ser especificada por três coordenadas. Assim temos: Exemplo: 1) Três partículas de massas m1 = 1,2 Kg, m2 = 2,5 Kg e m3 = 3,4 Kg formam um triângulo equilátero de lado a = 140 cm. Onde fica o centro de massa desse sistema? Resolução: Para facilitar os cálculos escolhemos os eixos x e y de tal forma que uma das partículas esteja na origem e um dos lados do triângulo esteja em um dos eixos. Assim temos: Partículas Massas ( KG ) X (cm ) Y (cm ) 1 1, , ,

2 Agora calculamos o centro de massa em relação ao eixo x e depois em relação ao eixo y. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) A segunda Lei de Newton para um Sistema de Partículas Agora que já sabemos determinar a posição do centro de massa de um sistema de partículas, vamos discutir a relação entre as forças externas e o centro de massa. Embora o centro de massa seja apenas um ponto, ele se move como uma partícula cuja a massa é igual a massa total do sistema ; podemos atribuir-lhe uma posição, uma velocidade e uma aceleração, assim temos: ( ) Esta equação é a segunda lei de Newton para o movimento do centro de massa de um sistema de partículas. Contudo, as três grandezas que aparecem devem ser usadas com algum critério: 1 - é a força resultante de todas as forças externas que agem sobre o sistema, as forças internas devem ser desconsideradas; 2- M é a massa total do sistema. Supomos que nenhuma massa entra ou sai do sistema durante o movimento, de modo que M permanece constante. Nesse caso dizemos que o sistema é fechado. 3 - é a aceleração do centro de massa do sistema, pois a equação não fornece nenhuma informação a respeito da aceleração de outros pontos do sistema.

3 Exemplo: 1) As três partículas da figura abaixo estão inicialmente em repouso. Cada uma sofre a ação de um força externa devido a agentes fora do sistema das três partículas. As orientações das forças estão indicadas e os módulos são: F1 = 6,0 N, F2 = 12 N, F3 = 14 N. Qual é a aceleração do centro de massa do sistema e em que direção ele se move? Resolução: Como as partículas estão inicialmente em repouso, o centro de massa também deve está em repouso. Quando o centro de massa começa a acelerar, ele se move na direção da e da. Assim podemos calcular: ( ) ( ) Assim, o módulo de é dado por: ( ) ( ) = 1,16 m/ E o ângulo ( em relação ao semi eixo x positivo ) é dado por θ =

4 2) Três pontos materiais, A, B e D, de massas iguais a m estão situados nas posições indicadas na figura ao lado. Determine as coordenadas do centro de massa do sistema de pontos materiais. VELOCIDADE DO CENTRO DE MASSA Considere um sistema de pontos materiais cujas massas são m1, m2,..., mn, e sejam v1, v2,..., vn, respectivamente, suas velocidades num certo instante. Neste instante, o centro de massa possui velocidade vc dada por uma média ponderada das velocidades dos pontos materiais do sistema, sendo os pesos dessa média as respectivas massas, ou seja: Chamemos de m a massa total do sistema, isto é: Substituindo-se a expressão _ na expressão _, resulta: Mas pontos materiais (Qsistema). Logo: representa a quantidade de movimento total do sistema de

5 Portanto: A quantidade de movimento de um sistema de pontos materiais é igual à quantidade de movimento do centro de massa, considerando que toda a massa do sistema está concentrada nele. ACELERAÇÃO DO CENTRO DE MASSA Considere um sistema de pontos materiais m1, m2,..., mn, e sejam a1, a2,..., an, respectivamente, suas acelerações num certo instante. Neste instante, o centro de massa possui aceleração ac dada por uma média ponderada das acelerações dos pontos materiais do sistema, sendo os pesos dessa média as respectivas massas, ou seja: Seja m a massa total do sistema, isto é: Substituindo-se a expressão 2 na expressão 1, resulta: Mas m1a1, m2 a2,..., mnan representam, respectivamente, as forças resultantes F1, F2,..., Fn, que agem nos pontos materiais. Portanto: Entretanto, representa a resultante de todas as forças externas que agem no sistema de pontos materiais (Fext.), uma vez que a resultante das forças que uma partícula do sistema exerce sobre as outras (forças internas) é nula, devido ao princípio da ação e reação. Assim, temos: Portanto: O centro de massa se move como se fosse uma partícula de massa igual à massa total do sistema e sob ação da resultante das forças externas que atuam no sistema.

6 Momento Linear O momento linear de uma partícula é uma grandeza vetorial definida através da equação: ( momento de uma partícula) Onde m é a massa e a velocidade da partícula. Como m é uma grandeza escalar positiva a equação acima mostra que e têm a mesma orientação. A unidade de momento no SI é o quilograma metro por segundo ( kg. m/s ). A taxa de variação com o tempo do momento de uma partícula é igual a força resultante que atua sobre a partícula e tem a mesma orientação que essa força. Em outras palavras podemos afirmar que a força resultante aplicada a uma partícula faz variar o momento linear da partícula. Na verdade, o momento linear da partícula só pode mudar se a partícula estiver sujeita a uma força. Se não existir força nenhuma força, não pode mudar. Momento Linear de um sistema de partículas: O momento linear de um sistema de partículas é igual ao produto da massa total do sistema pela velocidade do centro de massa. Impulso Definimos Impulso, como sendo à força resultante que atua sobre uma partícula num determinado intervalo de tempo I =ΣF Δt Aplicando a 2ª Lei de Newton e dado que é constante teremos que portanto: também será constante, Logo o impulso será: Impulso de uma força, F, é igual à variação do momento linear da partícula.

7 Exemplo: Num curto ensaio de colisão, um automóvel de massa 1500 kg, colide com um muro, como se representa na figura. A velocidade inicial do automóvel era vi = -15,0 m/s e a final vf = 2,6 m/s, se a colisão durar 0,150 s, achar o impulso provocado pela colisão, e a força média exercida sobre o automóvel. Momento de Inércia Nesta aula vamos estudar a rotação de um corpo rígido em torno de um eixo fixo. Um corpo rígido é um corpo que pode girar com todas as partes ligadas rigidamente e sem mudar de forma. Um eixo fixo significa que o eixo não muda de posição. Rotação Pura: Significa que todos os pontos do corpo se movem ao longo de circunferências cujo o centro está sobre o eixo de rotação, e todos os pontos descrevem um mesmo ângulo em um mesmo intervalo de tempo. Translação Pura: Significa que todos os pontos se movem ao longo de linhas retas e todos os pontos sofrem o mesmo deslocamento linear em um mesmo intervalo de tempo. Em Mecânica, o momento de inércia mede a distribuição da massa de um corpo em torno de um eixo de rotação.quanto maior for o momento de inércia de um corpo, mais difícil será fazê-lo girar. Energia Cinética de Rotação: quando o disco de uma serra elétrica está girando ele certamente possui uma energia cinética associada à rotação. Porém não podemos aplicar a fórmula convencional ao disco como uma todo, pois isso nos daria apenas a energia cinética do centro de massa do disco, que é zero. Em vez disso vamos tratar o disco como um conjunto de partículas com diferentes velocidades e somar as energias cinéticas dessas partículas para obter a energia cinética do corpo como um todo. Então temos:

8 Como m i é a massa da partícula de ordem i e v i é a velocidade da partícula. A soma se estende a todas as partículas do corpo. O problema é que v i não é igual para todas as partículas, porém podemos resolver este problema usando o valor de v i. ( v i = ϖ.r ). Onde é o mesmo para todas as partículas. Assim a teremos: ( ) ( ) A grandeza entre parênteses no lado direito da equação depende da forma como a massa do corpo está distribuída em relação ao eixo de rotação. Chamamos essa quantidade de momento de inércia do corpo em relação ao eixo de rotação. O momento de inércia, representado pela letra I, depende do corpo e do eixo em torno do qual está sendo executada a rotação. ( O valor de I tem significado apenas quando se sabe em relação a que eixo o valor foi medido.) I = ( Momento de Inércia ) Assim voltando a equação da energia cinética temos: K = ( ângulo em radianos) Cálculo do Momento de Inércia: Se o corpo contém um número pequeno de partículas, podemos calcular o momento de inércia em torno de um eixo de rotação usando a equação I = mr 2 para cada partícula e depois fazer o somatório. Se um corpo rígido contém um número muito grande de partículas ( se é contínuo) substituímos o somatório por uma integral e definimos o momento de inércia do corpo como: Desta forma abaixo temos uma tabela que mostra os resultados dessa integração para nove formas geométricas comuns e para os eixos de rotação indicados. Anel fino em torno de um eixo central Cilindro oco em torno de um eixo central Cilindro maciço em torno de um eixo central Cilindro maciço em torno de um diâmetro central Barra fina em torno de um eixo central perpendicular esfera maciça em torno de um diâmetro

9 Exemplos: Resolução: a) 1) Uma varinha delgada de 1 m de comprimento tem uma massa desprezível. São colocados 5 massas de 1 kg cada uma, situadas a 0.0, 0.25, 0.50, 0.75, e 1.0 m de um dos extremos. Calcular o momento de inércia do sistema relativo a um eixo perpendicular a varinha que passa através de: a) Um extremo b) Da segunda massa c) Do centro de massa Casca Placa fina Anel fino em esférica em torno de torno de um fina em um eixo O momento de inércia relativo a um eixo perpendicular a diâmetro torno de varinha e que passa pela primeira partícula perpendicul é: I A = um ar passando diâmetro =1.875 kgm 2 pelo centro b) O momento de inércia relativo a um eixo perpendicular a varinha e que passa pela segunda partícula é: I B = = kgm 2 c) O momento de inércia relativo a um eixo perpendicular a varinha e que passa pela terceira partícula (centro de massas) é: I C = =0.625 kgm 2

10 Em vez de calcular de forma direta os momentos de inércia, podemos calcular de forma indireta empregando o teorema dos Eixos Paralelos. Conhecido I C podemos calcular I A e I B, sabendo as distâncias entre os eixos paralelos AC=0.5 m e BC=0.25 m. A fórmula que temos que aplicar é I=I C +Md 2 I C é o momento de inércia do sistema relativo a um eixo que passa pelo centro de massa I é o momento de inércia relativo a um eixo paralelo ao anterior M é a massa total do sistema d é a distância entre os dois eixos paralelos. I A = I C = =1.875 kgm 2. I B = I C = = kgm 2. 2) Vamos calcular o momento de inércia de uma varinha de massa Me comprimento L relativo a um eixo perpendicular a varinha que passa pelo centro de massas. Assim temos: Resolução: Sendo a barra de material homogêneo os comprimentos são proporcionais às massas, isto é, a cada elemento de massa corresponderá um elemento de comprimento. O momento de inércia da barra é a soma dos momentos de inércia de cada elemento da barra, ou seja: dm é a massa do elemento de comprimento da varinha, a densidade linear de massa é dado por =, então podemos determinar a densidade linear do pedaço escolhido na varinha =, isso nos dá dm =. dx. Como = temos que ( dm =. dx ), assim o momento de inércia pode ser calculado: I = [ ]

11 3 ) calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular à barra, passando pela sua extremidade? Resolução: Lembrando que a densidade linear de massa é dado por = e que dm é a massa do elemento de comprimento da barra temos: = dm = ƛ. dx dm =. dx Logo o momento de inércia é dado pela integral: 4)Aplicando o teorema dos eixos paralelos, calcule o momento de inércia do exemplo anterior. Resolução: ( ) 5) Calcular o momento de inércia de uma barra circular de material homogêneo em relação a um eixo perpendicular à barra, passando pelo Centro de Massa?

12 Resolução: A densidade linear de massa da barra é dada por ƛ= e dm = ƛ. ds, onde ds = R.dθ então: O momento de inércia da barra é a soma dos momentos de inércia de cada elemento da barra, ou seja, onde r 2 é a distância entre o eixo de rotação e a distribuição de massa que é igual a R; assim temos: Exercícios: 1) Uma partícula de 2kg tem coordenadas xy ( -1,20 m ; 0,500 m ) e uma partícula de 4,00kg tem coordenadas xy ( 0,600 m ; -0,750 m ). Ambas estão em um plano horizontal. Em que coordenada (a) x e (b) y deve ser posicionada uma terceira partícula de 3,00kg para que o centro de massa do sistema de três partículas tenha coordenadas ( -,500 m ; -0,700 m ). 2) Determine as coordenadas do centro de massa da placa homogênea de espessura constante, cujas dimensões estão indicadas na figura. 3) As partículas A e B, de massas m e 2 m, deslocam-se ao longo do eixo Ox, com velocidades escalares va _ 5,0 m/s e vb _ 8,0 m/s. Qual é a velocidade escalar do centro de massa?

13 4)As partículas A e B, de massas 1,5 kg e 1,0 kg, deslocam-se com velocidades va e vb perpendiculares entre si e de módulos va _ 2,0 m/s e vb _ 4,0 m/s. Calcule o módulo da velocidade do centro de massa do sistema constituído pelas duas partículas. 5) As esferas A e B possuem massas m e 3m, respectivamente. A esfera A é abandonada de uma altura h _ 0,45 m do solo e B está em repouso. Seja g _ 10 m/s2 a aceleração da gravidade. Determine: a) o módulo da aceleração do centro de massa do sistema constituído pelas esferas A e B, enquanto A estiver em queda livre. b) o módulo da velocidade do centro de massa do sistema, no instante em que a esfera A atinge o solo. 6) Dois patinadores, um com 65 kg de massa e o outro com 40 kg, estão de pé em um rinque de patinacão no gelo segurando uma vara de massa desprezível com 10 m de comprimento. Partindo das extremidades da vara, os patinadores se puxam ao longo da vara até se encontrarem. Qual a distância percorrida pelo patinador de 40 kg? 7) Uma pedra é deixada cair em t = 0. Uma segunda pedra, com uma massa duas vezes maior, é deixada cair do mesmo ponto em t = 100ms. a) A que distância do ponto inicial da queda está o centro de massa das duas pedras em t = 300 ms ( suponha que as duas pedras ainda não chegaram ao solo) b) Qual é a velocidade do centro de massa das duas pedras nesse instante? 8) Um automóvel de 1000 kg está parado em um sinal de trânsito. No instante em que o sinal abre o automóvel começa a se mover com uma aceleração constante de 4 m/. No mesmo instante um

14 caminhão de 2000 kg, movendo-se no mesmo sentido com velocidade constante de 8,0 m/s, ultrapassa o automóvel. a) Qual é a distância entre o CM do sistema carro caminhão e o sinal de trânsito em t = 3s? b) Qual é a velocidade do centro de massa nesse instante? 9) Uma bola de 0,70 kg está se movendo horizontalmente com uma velocidade de 5,0 m/s quando se choca com uma parede vertical e ricocheteia com uma velocidade de 2,0 m/s. Qual é o módulo da variação do momento linear da bola? 10) Um caminhão de 2100 kg viajando para o norte a 41 km/h vira leste e acelera até 51 km/h. a) Qual é a variação da energia cinética do caminhão? b) Qual é o módulo da variação do momento? 11) Uma força no sentido negativo de um eixo x é aplicada por 27 ms a uma bola de 0,40 kg que estava se movendo a 14 m/s no sentido positivo do eixo. O módulo da força é variavel e o impulso tem um módulo de 32,4 N. S. Quais são (a) o módulo e (b) o sentido da velocidade da bola imediatamente após a aplicação da força? Quais são (c) a intensidade média da força. 12) Em uma brincadeira comum, mas muito perigosa, alguém puxa uma cadeira quando uma pessoa está prestes a se sentar, fazendo com que a vítima se estatele no chão. Suponha que a vítima tem 70 kg, cai de uma altura de 0,50 m e a colisão com o piso dura 0,082 s. Quais são os módulos (a) do impulso e (b) da força média aplicada pelo piso sobre a pessoa durante a colisão? 13) Em fevereiro de 1995 um paraquedista saltou de um avião, caiu 370 m sem conseguir abrir o paraquedas e aterrissou em um campo de neve, sofrendo apenas pequenas escoriações. Suponha que sua velocidade imediatamente antes do impacto era de 56 m/s (velocidade terminal), que sua massa (incluindo os equipamentos) era de 85 kg e que a força da neve sobre ele tenha atingido o valor (relativamente seguro) de 1,2 x 10 5 N. Determine (a) a profundidade mínima da neve para que escapasse sem ferimentos graves e (b) o módulo do impulso da neve sobre ele. 14) Uma bola de 1,2 kg cai verticalmente em um piso com uma velocidade de 25 m/s e ricocheteia com uma velocidade inicial de 10m/s. (a) Qual é o impulso recebido pela bola durante o conato com o piso? (b) Se a bola fica em contato com o piso por 0,020s, qual é a força média exercida pela bola sobre o piso? 15) No tae Kwon do, a mão de um atleta atinge o alvo com uma velocidade de 13 m/s e para após 5,0 ms. Suponha que durante o choque a mão é independente do braço e tem uma massa de 0,70 kg. Determine os módulos (a) do impulso e (b) da força média que a mão exerce sobre o alvo. 16) Um bandido aponta uma metralhadora para o peito do Super-homem e dispara 100 balas/min. Suponha que a massa de uma bala é de 3 g, que a velocidade das balas é de 500 m/s e qe as balas ricocheteiam no peito do super-herói sem perder velocidade. Qual é o módulo da força média que s balas exercem sobre o peito do Super- homem? 17) Calcule o momento de inércia de uma régua de um metro, com massa de 0,56 kg, em relação a um eixo perpendicular à régua na marca de 20 cm. ( trate a régua como uma barra fina).

15 18) A figura mostra três partículas de 0,01 kg que foram coladas em uma barra de comprimento L = 6,0 cm e massa desprezível. O conjunto pode girar em torno de um eixo perpendicular que passa pelo ponto O na extremidade esquerda. Se removermos uma das partículas ( ou seja 33% da massa), de que porcentagem o momento de inércia do conjunto em relação ao eixo de rotação diminui se a partícula removida for: a) A mais interna; b) A mais externa. 19) Dois cilindros uniformes, ambos girando em torno do eixo central ( longitudinal ) com uma velocidade angular de 235 rad/s, tem a mesma massa de 1,25 kg e raios diferentes. Qual é a energia cinética de rotação: a) Do cilindro menor, de raio 0,25 m; b) Do cilindro maior de raio 0,75 m. 20) A figura abaixo mostra um disco que pode girar em torno de um eixo perpendicular à sua face a uma distância h do centro do disco. O gráfico mostra o momento de inércia I do disco em relação ao eixo em função da distância h, desde o centro até a borda do disco. A escala do eixo I é definida por I A = 0,05 Kg. m 2 e I B = 0,150 Kg. m 2. Qual a massa do disco? 21) Como calcular o momento de inércia de uma chapa circular de material homogêneo em relação a um eixo perpendicular à chapa, passando pelo Centro de Massa? 22) Duas partículas, ambas de massa m = 0,85 kg, estão ligadas uma à outra e a um eixo de rotação em O por duas barras finas, ambas de comprimento d = 5,6 cm e massa M = 1,2 kg. O conjunto gira em torno do eixo de rotação com velocidade angular = 0,30 rad/s. Em relação a O quais são: a) O momento de inércia do conjunto? b) A energia cinética do conjunto?

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Mecânica 2007/2008. 6ª Série

Mecânica 2007/2008. 6ª Série Mecânica 2007/2008 6ª Série Questões: 1. Suponha a=b e M>m no sistema de partículas representado na figura 6.1. Em torno de que eixo (x, y ou z) é que o momento de inércia tem o menor valor? e o maior

Leia mais

Capítulo 8. Conservação do momento. Recursos com copyright incluídos nesta apresentação:

Capítulo 8. Conservação do momento. Recursos com copyright incluídos nesta apresentação: Capítulo 8 Conservação do momento Recursos com copyright incluídos nesta apresentação: Até agora consideramos o movimento de uma única partícula submetida à ação de uma força resultante. Esta descrição

Leia mais

Física Experimental I. Impulso e quantidade de. movimento

Física Experimental I. Impulso e quantidade de. movimento Física xperimental I Impulso e quantidade de movimento SSUNTOS BORDDOS Impulso Quantidade de Movimento Teorema do Impulso Sistema Isolado de Forças Princípio da Conservação da Quantidade de Movimento Colisões

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

Problemas de Mecânica e Ondas 5

Problemas de Mecânica e Ondas 5 Problemas de Mecânica e Ondas 5 P 5.1. Um automóvel com uma massa total de 1000kg (incluindo ocupantes) desloca-se com uma velocidade (módulo) de 90km/h. a) Suponha que o carro sofre uma travagem que reduz

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

FEP2195 - Física Geral e Experimental para Engenharia I

FEP2195 - Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Um corpo de massa m, enfiado em um aro circular de raio R situado em um plano vertical, está preso por uma mola de

Leia mais

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima Física Geral Série de problemas Unidade II Mecânica Aplicada Departamento Engenharia Marítima 2009/2010 Módulo I As Leis de movimento. I.1 Uma esfera com uma massa de 2,8 10 4 kg está pendurada no tecto

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

Gráficos: Q2)Para cada função posição x(t) diga se a aceleração é positiva, negativa ou nula.

Gráficos: Q2)Para cada função posição x(t) diga se a aceleração é positiva, negativa ou nula. UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA Semestre 2012.2 LISTA DE EXERCÍCIOS 2 - MOVIMENTO EM UMA DIMENSÃO Gráficos: Q1) Para cada gráfico seguinte de

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

F-128 Física Geral I 2 o Semestre 2012 LISTA DO CAPÍTULO 9

F-128 Física Geral I 2 o Semestre 2012 LISTA DO CAPÍTULO 9 Questão 1: a) Ache as coordenadas do centro de massa (CM) da placa homogênea OABCD indicada na figura, dividindo-a em três triângulos iguais; b) Mostre que se obtém o mesmo resultado calculando o CM do

Leia mais

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos

Leia mais

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS

UNIDADE 10 ESTUDOS DE MECÂNICA - INÍCIO LISTA DE EXERCÍCIOS INTRODUÇÃO À FÍSICA turma MAN 26/2 profa. Marta F. Barroso UNIDADE 1 LISTA DE EXERCÍCIOS UNIDADE 1 ESTUDOS DE MECÂNICA - INÍCIO Exercício 1 Movendo-se com velocidade constante de 15 m/s, um trem, cujo

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido Página 1 de 10 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes formas: a) Equilíbrio estático - É aquele no qual o corpo está em

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli 1. A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido 132Colégio Santa Catarina Unidade VIII: Estática e Equilíbrio de um corpo rígido 132 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes

Leia mais

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON Aluno (a): N Série: 1º Professor : Vinicius Jacques Data: 03/08/2010 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON 01. Explique a função do cinto de segurança de um carro, utilizando o

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

Lista de Exercícios - Movimento em uma dimensão

Lista de Exercícios - Movimento em uma dimensão UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - Movimento em uma dimensão Perguntas 1. A Figura 1 é uma gráfico

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

CDF-CURSO DE FÍSICA SIMULADO VIRTUAL

CDF-CURSO DE FÍSICA SIMULADO VIRTUAL 1.Suponha que desejo medir o tamanho do besouro, vamos medir com uma régua especial, graduada em centímetros, como mostra a figura.. qual das alternativas abaixo melhor caracteriza a medida do tamanho

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

LISTA 04 Capítulo 09

LISTA 04 Capítulo 09 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 04 Capítulo 09 1. (3E) Quais as coordenadas

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

!"#$%&'#()(%*+%(%&),*(-*./0* 1&#"234#-'*%*.4,#2)56%'*(%*/#-7%28"#2)*9:;<=>?@* Lista de Exercícios Figura 1: Ex. 1

!#$%&'#()(%*+%(%&),*(-*./0*  1ê#-'*%*.4,#2)56%'*(%*/#-7%28#2)*9:;<=>?@* Lista de Exercícios Figura 1: Ex. 1 ! *!"#$%&'#()(%*+%(%&),*(-*./0* "#$%&'!(#!)$*#$+,&-,.!/'(#0,*#1!#!"-2$3-,4!5'3-,-4!670-3,(,4!8!")"5! )$*#$+,&-,!9-'1:(-3,!;!1&#"234#-'*%*.4,#2)56%'*(%*/#-7%28"#2)*9:;?@** < '! =>,(&-1#4%&#!

Leia mais

a) o momento linear que o carrinho adquire no instante t=3 s; b) a distância percorrida pelo carrinho no terceiro intervalo de tempo.

a) o momento linear que o carrinho adquire no instante t=3 s; b) a distância percorrida pelo carrinho no terceiro intervalo de tempo. 1 - (PUC-PR-2002) Há alguns anos, noticiou-se que um avião foi obrigado a fazer um pouso de emergência em virtude de uma trinca no parabrisa causada pela colisão com uma pedra de gelo. a) o momento linear

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo Princípio do impulso e quantidade de

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

Lista de exercícios nº 2

Lista de exercícios nº 2 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por.

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por. Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO Questão 1 Sejam 3 vetores a, b e c dados por a = (2, 1, 3), b = ( 1, 1, 0) e c = (0, 2, 1). Determine: a)

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica

Leia mais

Lista de Exercícios- PRA Física Geral Experimental I

Lista de Exercícios- PRA Física Geral Experimental I I Velocidade Média: Lista de Exercícios- PRA Física Geral Experimental I 1 - Um avião vai de São Paulo a Recife, em 1 h 40. A distância entre as cidades é aproximadamente 3 000km. Qual a velocidade média

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física.

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física. NOME: TURMA: PROFESSOR: 1 INTRODUÇÃO AO ESTUDO DOS MOVIMENTOS Movimento: Um corpo está em movimento quando a posição entre este corpo e um referencial varia com o tempo. Este é um conceito relativo, pois

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Gráficos no MU e MUV. E alguns exercícios de vestibulares

Gráficos no MU e MUV. E alguns exercícios de vestibulares Gráficos no MU e MUV E alguns exercícios de vestibulares Tipos de movimentos -MU Velocidade positiva Velocidade negativa v = s t Que tipo de informação tiramos s x t V x t v = s t s = v. t MUV -espaço

Leia mais

(b) para o trajeto todo, desde o momento em que ele é retirado do ninho até o seu retorno?

(b) para o trajeto todo, desde o momento em que ele é retirado do ninho até o seu retorno? 1. Em uma experiência, um pombo-correio foi retirado de seu ninho, levado para um local a 5150 km do ninho e libertado. Ele retorna ao ninho depois de 13,5 dias. Tome a origem no ninho e estenda um eixo

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

Vestibular UFRGS 2015. Resolução da Prova de Física

Vestibular UFRGS 2015. Resolução da Prova de Física Vestibular URGS 2015 Resolução da Prova de ísica 1. Alternativa (C) O módulo da velocidade relativa de móveis em movimentos retilíneos de sentidos opostos pode ser obtido pela expressão matemática: v r

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

Mais aplicações das Leis de Newton

Mais aplicações das Leis de Newton Mais aplicações das Leis de Newton Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: A natureza dos diversos tipos de força de atrito

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

2. Cinemática vetorial

2. Cinemática vetorial 2. Cinemática vetorial Quando um objeto se desloca no espaço sem seguir uma trajetória determinada, a sua posição já não pode ser definida com uma única variável como nos exemplos estudados no capítulo

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

COLÉGIO JOÃO PAULO I UNIDADE SUL

COLÉGIO JOÃO PAULO I UNIDADE SUL COLÉGIO JOÃO PAULO I UNIDADE SUL Marcelo Rolim EXERCÍCIOS DE REVISÃO DE CIÊNCIAS (FÍSICA) 8ª SÉRIE ENSINO FUNDAMENTAL 2º TRIMESTRE/2012 Exercícios de Revisão 01. Calcule a distância percorrida por um móvel

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Unidade I: Introdução à CINEMÁTICA

Unidade I: Introdução à CINEMÁTICA Colégio Santa Catarina Unidade I: Introdução à Cinemática 1 O que é a Física? palavra física tem origem grega e significa natureza. ssim física é a ciência que estuda a natureza, daí o nome de ciência

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

Na análise das condições de equilíbrio de um corpo extenso verificamos que:

Na análise das condições de equilíbrio de um corpo extenso verificamos que: Na análise das condições de equilíbrio de um corpo extenso verificamos que: F=0 τ o= 0 A resultante das forças que atuam sobre o corpo é igual a zero A soma dos torques produzidos por cada uma das forças

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2. Cinemática. Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2. Cinemática. Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Cinemática Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção Cinemática Na cinemática vamos estudar os movimentos sem

Leia mais

Um momento, por favor

Um momento, por favor Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Lista de Exercícios de Recuperação do 1 Bimestre

Lista de Exercícios de Recuperação do 1 Bimestre Lista de Exercícios de Recuperação do 1 Bimestre Instruções gerais: Resolver os exercícios à caneta e em folha de papel almaço ou monobloco (folha de fichário). Copiar os enunciados das questões. Entregar

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

1) d = V t. d = 60. (km) = 4km 60 2) Movimento relativo: s V rel 80 60 = t = (h) = h = 12min

1) d = V t. d = 60. (km) = 4km 60 2) Movimento relativo: s V rel 80 60 = t = (h) = h = 12min OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor de 10 m/s 2 ; para a massa específica

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Questão 57. Questão 59. Questão 58. alternativa D. alternativa C

Questão 57. Questão 59. Questão 58. alternativa D. alternativa C OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representada por g. Quando necessário adote: para g, o valor de 10 m/s 2 ; para a massa específica

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

1 LISTA DE EXERCÍCIOS FUNDAMENTOS DE MECÂNICA CLÁSSICA. Prof. Marcio Solino Pessoa

1 LISTA DE EXERCÍCIOS FUNDAMENTOS DE MECÂNICA CLÁSSICA. Prof. Marcio Solino Pessoa 1 LISTA DE EXERCÍCIOS FUNDAMENTOS DE MECÂNICA CLÁSSICA. Prof. Marcio Solino Pessoa 1 O gráfico abaixo representa a marcação do velocímetro de um automóvel em função do tempo. Trace os gráficos correspondentes

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais