a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

Documentos relacionados
Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Matemática C Extensivo V. 7

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Aula Expressão do produto misto em coordenadas

ANÁLISE MATEMÁTICA IV A =

10. EXERCÍCIOS (ITA-1969 a ITA-2001)

Cálculo de Autovalores, Autovetores e Autoespaços Seja o operador linear tal que. Por definição,, com e. Considere o operador identidade tal que.

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Questões para o concurso de professores Colégio Pedro II

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

Derivada Escola Naval

Análise Matemática IV

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

INSTITUTO FEDERAL DA BAHIA CAMPUS JEQUIÉ LISTA DE EXERCÍCIOS DE MATEMÁTICA ALUNO:

Geometria Analítica - Aula

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

R é o conjunto dos reais; f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range).

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

Módulo de Círculo Trigonométrico. Secante, Cossecante e Cotangente. 1 a série E.M.

5.10 EXERCÍCIO pg. 215

Justifique todas as passagens

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

Matemática A Extensivo V. 6

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR A =

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

Representação de Números no Computador e Erros

1. A soma de quaisquer dois números naturais é sempre maior do que zero. Qual é a quantificação correcta?

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

1.1 O Círculo Trigonométrico

Exercícios de equilíbrio geral

Sala: Rúbrica do Docente: Registo:

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2014 Grupo I.

UCP Gestão/Economia Matemática II 9 de Abril de 2010

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO Grupo I. Questões

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Resoluções de Exercícios

3. Geometria Analítica Plana

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

UFPB CCEN DEPARTAMENTO DE MATEMÁTICA CÁLCULO DIFERENCIAL I 5 a LISTA DE EXERCÍCIOS PERÍODO

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Resolução do exame de Análise Matemática I (24/1/2003) Cursos: CA, GE, GEI, IG. 1ª Chamada

CAPÍTULO 12 REGRA DA CADEIA

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

{ : 0. Questões de resposta de escolha múltipla. Grupo I 1. ( ) D = x f x x D. Resposta: D. lim = 3, pode-se concluir que o

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

E X A M E ª FASE, V E R S Ã O 1 P R O P O S T A D E R E S O L U Ç Ã O

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

RESUMO de LIMITES X CONTINUIDADE. , tivermos que f(x) arbitr

Imersão Matemática - Trigonometria a) cinco pontos. b) quatro pontos. c) três pontos. d) dois pontos. e) apenas um ponto.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

CAPÍTULO 14. Exemplo : Mostre que y = g(x) = 1 x 2, x 1 está dado de forma implícita na equação x 2 + y 2 1 = 0.

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

Oscilações amortecidas

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

Memorize as integrais imediatas e veja como usar a técnica de substituição.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

AULA Subespaço, Base e Dimensão Subespaço.

Resolução. Admitindo x = x. I) Ax = b

Apêndice Matemático. Se este resultado for inserido na expansão inicial (A1.2), resulta

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística I - Licenciatura em MAEG 2º Ano PADEF Junho 2005 Parte teórica Prova Nome: Nº

Interbits SuperPro Web

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática

Curso de Engenharia Química Disciplina: Nota: Rubrica. Coordenador Professor: Rudson Alves Aluno:

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

FUNÇÃO REAL DE UMA VARIÁVEL REAL

6ª LISTA DE EXERCÍCIOS - DINÂMICA

Função do 2 o Grau. Uma aplicação f der emr

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

Análise Matemática IV Problemas para as Aulas Práticas

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

A seção de choque diferencial de Rutherford

Quadro de Respostas das Questões de Múltipla Escolha Valor: 65 pontos Alternativa/Questão Rascunho A B C D E. 1 e.

log 2, qual o valor aproximado de 0, 70

Controlabilidade, Observabilidade e Estabilidade

PARTE 8 DERIVADAS PARCIAIS DE ORDENS SUPERIORES

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

Enunciados equivalentes

Capítulo 4 Resposta em frequência

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

Transcrição:

Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A A rprsntam, rsptivamnt, a transposta a invrsa da matriz A =, 4 8 ntão o dtrminant da matriz T B= A A é igual a: a) 8 b) ) 66 d) 97 ) 6. (G - if 4) Considr a matriz osθ snθ A =. Sabndo-s qu snθ osθ snθ= os θ, m qu θ π, o dtrminant da matriz invrsa d A, indiado por Dt A -, val a). b). ). d). ) 5. 4. (Upb 4) S x y são númros rais não nulos x y x + y x x =, ntão o valor d x+ y é: 5 a) b) 4 ) 7 d) 5 ) 5 5. (U 4) S os númros rais x, y, z, m, n, p, u, v, w formam, nsta ordm, uma progrssão gométria d razão q, ntão o valor x y z do dtrminant da matriz M= m n p é u v w a). b). ) xnw. d) q. x 6. (Espm 4) S a matriz 4 x+ for multipliada plo valor do su dtrminant, st fiará multipliado por 49. Um dos possívis valors d x é: a) 5 b) ) d) 4 ) 7. (Purs 4) Dadas as matrizs A = [ ] 4 B= 5, 6 a) 8 b) ) d) 6 ) 7 o dtrminant dt( A B) é igual a 8. (U 4) Uma matriz quadrada P = (aij) é simétria quando aij = aji. Por xmplo, a matriz 5 7 4 é simétria. 5 4 x+ y x y xy S a matriz M= y x y é simétria, pods afirmar orrtamnt qu o dtrminant d M é 6 x+ igual a a). b). ). d). 9. (Um ) Sjam A uma matriz B C matrizs, d modo qu AB= A( B+ C ) =. Assinal o qu for orrto. ) AC =. www.soxatas.om Página

) Nssariamnt dt A. 4) S B= C =, ntão A =. 8) S A for a matriz idntidad, ntão C =. t 6) S C AB=, os dois lmntos d C são iguais.. (Maknzi ) Sndo snx os x A = os x snx log 56 log,5 B= númros rais, o valor da 4 xprssão A B é a) b) ) 5 d) ) 5. (Epar (Afa) ) Considr as matrizs A B, invrsívis d ordm n, bm omo a matriz idntidad I. Sabndo qu dt( A) 5 ( ) t dt. B.A a) n 5 n b) 5 n ) 5 n d) = ( ) é igual a. (Upb ) A quação log(x ) log(x ) log(x ) dt I.B.A =, ntão o = tm omo solução ral os valors d x: a) b) ) d) 4 ). (Uds ) Sja X o onjunto formado por todas as matrizs diagonais d ordm. Analis as proposiçõs: I. A multipliação d matrizs prtnnts a X satisfaz a propridad omutativa. II. Todas as matrizs prtnnts ao onjunto X possum invrsa. III. A matriz idntidad d ordm prtn ao onjunto X. IV. S A B são dois lmntos prtnnts a X, ntão A+ B também prtn a X. Assinal a altrnativa orrta. a) Somnt a afirmativa II é vrdadira. b) Somnt as afirmativas I, III IV são vrdadiras. ) Somnt as afirmativas I IV são vrdadiras. d) Somnt a afirmativa III é vrdadira. ) Todas as afirmativas são vrdadiras. 4. (Ufpr ) Considr o polinômio x x p(x) = x 4. x Calul as raízs d p(x). Justifiqu sua rsposta, dixando laro s utilizou propridads d dtrminants ou algum método para obtr as raízs do polinômio. b a a 5. (Ufs ) Sja A = a a uma a a matriz ral x invrtívl. a) Dtrmin os lmntos a a da matriz A, sabndo qu xist um númro ral x tal qu a = os(x) + sn qu a = s(9 π) + tg( π) sn(x). b) Calul os lmntos da sgunda linha da matriz A, sabndo qu, a a formam, nssa ordm, uma progrssão aritmétia uja soma é. ) Dtrmin os lmntos b da matriz A d modo qu b = = dt(a), sabndo qu os lmntos a a, ambos positivos, são, rsptivamnt, a part ral a part imaginária d uma das raízs omplxas da quação z 4z + 5z =. 6. (Upb ) S a matriz om dt(a) = A =, o valor d m é m a) - b) ) d) ) - 7. (Fgv ) Sja a matriz idntidad d ordm três I= A a matriz. Considr a quação polinomial na variávl ral x dada por dt(a xi) = m qu o símbolo www.soxatas.om Página

dt(a xi) india o dtrminant da matriz A xi. O produto das raízs da quação polinomial é: a) b) ) d) ) - 8. (Fval ) Sndo x y = 6, o valor d x+ 8 y+ 8 a) 6 b) 8 ) 4 d) 8 ) 44 é: 9. (Urn ) Sjam as matrizs 6 y A = x 4 B 4 =, ujos 6 y x dtrminants são, rsptivamnt, iguais a 6 49. Sndo y = x +, ntão a soma dos valors d x y é a) 7. b) 8. ). d).. (Im ) Calul as raízs d f(x) m função d a,b, sndo a,b, x (ral) x a b a x b f( x ) =. b x a b a x www.soxatas.om Página

Rsolução das Qustõs Rsposta da qustão : + + 4 = 7. Dsd qu x z 5 4x z 5, 4 = + = x y x 5 = x+ 5y 5x = x+ 5y = x+ z y = x+ y+ z =, O dtrminant d A é igual a 8 4 4. 4 8 = = Logo, 8 A 4 4 4 = =. Daí, 4 4 4, portanto, 4 4 B = =. 8 5 7 O rsultado pdido é 8 = 7 5 =. 5 7 4 A = tmos x =, y = z =. Portanto, vm 4 A =, B= C =. 4 5 [] Corrto. Tmos x+ y+ z= + + ( ) =. [] Corrto. D fato, somando a matriz A om a oposta d C, vm 4 A C = =. 4 [4] Corrto. Com fito, ftuando o produto, nontramos 4 B C = =. 5 4 [8] Inorrto. Tm-s qu x = y. Rsposta da qustão : [C] Calulando o dtrminant d A, tmos: dt(a) = os θ 6 snθ+ sn θ 6 osθ Considrando qu snθ= os θ, tmos dt(a) = dt(a ) = = dt(a) Rsposta da qustão 4: [E] Dsnvolvndo o dtrminant da quação, tmos: x 5xy+ x (x + y ) + x y= x 5xy+ x + xy + x y = 5xy+ xy + x y = xy( 5+ y+ x) = Como o produto ( x y) é não nulo, tmos: y + x - 5 = x+ y = 5 [6] Inorrto. Eftuando a adição, obtmos 4 6 4 A+ B = + =. 4 5 6 5 Rsposta da qustão : Rsposta da qustão 5: x y z x xq xq 4 5 M= m n p = xq xq xq =, u v w 6 7 8 xq xq xq primiras olunas são proporionais. 4 7 x q x q x q = = = q. x 6 x q x q pois as duas Rsposta da qustão 6: www.soxatas.om Página 4

[D] Sja k o dtrminant da matriz qu x. 4 x+ Sabndo n = λ om λ sndo um númro dt( λ A) dt A, ral n a ordm da matriz quadrada A, vm 49 k = k k k (k 49) = k = ou k = 7 ou k = 7. Dss modo, s k =, ntão x x 4x x. 4 x+ = + = = S k = 7, ntão x+ = 7 x =. S k = 7, ntão x+ = 7 x = 4. Por onsguint, um dos possívis valors d x é 4. Rsposta da qustão 7: [C] A B= [ 4+ 5+ 6] = [ ] dt(a B) = Rsposta da qustão 8: x+ y x y xy x+ y 6 x y = M= y x y = x y y x x+ x y= 6 6 x xy y + x+ = y Rsolvndo o sistma, tmos: x = y =. Portanto, 5 6 dt(m) = 4 =. 6 4 Rsposta da qustão 9: + 4 + 8 + 6 =. Sjam Logo, x y A =, z w m p B= C =. n q x y m AB= = z w n mx+ ny= mz+ nw= x y m+ p A(B+ C) = = z w n+ q [] Inorrto. Tmos (m+ p)x + (n+ q)y= (m+ p)z + (n+ q)w = (mx+ ny) + px+ qy= (mz+ nw) + pz+ qw= px+ qy=. pz+ qw= x y p px+ qy AC = = =. z w q pz+ qw [] Corrto. D fato, A(B+ C) = A A(B+ C) = A B+ C= A. Para qu a soma B+ C stja dfinida, a matriz A dv sr invrtívl. Dss modo, nssariamnt, dt A. [4] Corrto. S B= C =, ntão m=,n =,p= q=. Logo, x=, z=, y= w=. [8] Corrto. S A= I, ntão AB= B=, portanto, A(B+ C) = + C= C =. [6] Corrto. S t C AB=, ntão www.soxatas.om Página 5

p q = p q= p= q. Rsposta da qustão : ( ) A = sn x os x = sn x+ os x = B= log 56 log,5 8 ( ) 4 = 4 = + = Então, A B = =. Rsposta da qustão : ( ) ( ) ( ) ( ) ( ) dt I B A = dt B A = dt B dt A = dt B 5= dtb = 5 t ( ) ( ) n n dt B A dt (A B = = dt A B = = 5 5 n n = = 5 5 Rsposta da qustão : [E] Tmos log(x ) = log(x )[log(x ) ] = log(x ) log(x ) Rsposta da qustão : [I] Corrto. Sjam A, B X, om p B =. q Tmos log(x ) = ou log(x ) = x = ou x =. m A = n m p A B= n q mp = nq p m = q n = B A. Portanto, a multipliação d matrizs prtnnts a X possui a propridad omutativa. Obsrvação: Não é orrto dizr qu a multipliação satisfaz a propridad. Para sabr mais, onsult A matmátia do nsino médio, vol., Elon Lags Lima t al, SBM. [II] Inorrto. Sja C X, tal qu C =. Como dt C=, sgu qu C não é invrtívl. [III] Corrto. Como I = é uma matriz diagonal d ordm, é laro qu I X. [IV] Corrto. Sjam A, B X, om p B =. q Tmos m p A+ B= + n q m+ p =, n+ q m A = n qu também é uma matriz diagonal d ordm. Portanto, A+ B X. Rsposta da qustão 4: x x p(x) = x 4 x x x x p(x) = x 4 x = x 4x 9x+ 6 Apliando Rgra d Sarrus x x Portanto: (fatorando o polinômio) p(x) = x 4x 9x+ 6 p(x) = x ( x 4) 9(x 4) www.soxatas.om Página 6

p(x) = x ( x 4) 9(x 4) ( ) p(x) = (x 9) x 4 = =± x 9 x x 4= x =+ 4 Rsposta da qustão 5: a) a = os x sn x +.sn x = os x + sn x = a = - +.snx = -. b) (, a, a ) é uma P.A., ntão (, a, a ) = (, +r, ++r), ou sja: + +r + + r = r = -6 r = - Logo, a = + (-) = a = +.(-) =. ) As raízs da quação z 4z + 5.z = são, + i i, portanto, a = a =. b Logo, A = dt(a) = d = b =, ntão : dt(a) = b d=d.d d d d = d = (não onvém, pois A é invrtívl) n ou d =. Logo, b = =. Rsposta da qustão 6: Tmos dt A = = m ( ) = m. m Logo, plo Torma d Bint, sgu qu dt A dt A = m= m=. x y 6 x y 6 ( I ) = = x+ 8 = 8.(x+ ) 8.(y ) = 4x 4y = 4(x y) ( II ) y+ 8 Substituindo (I) m (II), tmos: x+ 8 = 4.6= 44 y+ 8 Rsposta da qustão 9: [A] O dtrminant da matriz A m função d x d y é dado por dt A = y + x+ 8 8 xy = x+ y xy. Mas dt A = 6 y= x+. Logo, x+ (x+ ) x(x+ ) = 6 x x + 8= Daí, (x, y) = (, 5) ou (x, y) = (9, ). x = ou x = 9. Por outro lado, o dtrminant da matriz B é dado por dtb= 4+ xy 8x+ 8 y = 8x y+ xy+ 4. Assim, dado qu dtb = 49, onluímos, por inspção, qu x= y= 5, portanto, x+ y= + 5= 7. Rsposta da qustão : Tmos Rsposta da qustão 7: [E] A x.i = x x x Calulando o dtrminant dt(a x.i) tmos x ( x) ( x) = ( x).(x ) As raízs do dtrminant são (dupla). Portanto, o produto das raízs srá.( ). =. Rsposta da qustão 8: [E] www.soxatas.om Página 7

x a b a x b f(x) = b x a b a x x+ a+ b+ a b a+ x+ + b x b = b+ + x+ a x a + b+ a+ x b a x a b x b = (x+ a+ b+ ) x a b a x x a b b = (x+ a+ b+ ) a x b a b a a b x x a+ b b b = (x+ a+ b+ ) a+ x b x b a b a+ a b a b x x a+ b b b = (x+ a+ b+ ) a+ x b x b a a b x b b = (x+ a+ b+ )(x a b+ ) x b a a b x x b + b a b+ = (x+ a+ b+ )(x a b+ ) a b x x a b = (x+ a+ b+ )(x a b+ ) a b x = (x+ a+ b+ )(x a b+ )[(x ) (a b) ] = (x+ a+ b+ )(x a b+ )(x a+ b )(x+ a b ). Portanto, os zros d f são a b, a+ b, a b+ a+ b+. www.soxatas.om Página 8