4 Autovetores e autovalores de um operador hermiteano

Tamanho: px
Começar a partir da página:

Download "4 Autovetores e autovalores de um operador hermiteano"

Transcrição

1 T (ψ) j = ψ j ˆT ψ = k ψ j ˆT φ k S k = k,l ψ j φ l T (φ) S k = k,l φ l ψ j T (φ) S k = k,l SljT (φ) S k. Após todos esses passos vemos que T (ψ) j = k,l S jl T (φ) S k ou, em termos matrcas T (ψ) = S T (φ) S ndcando que as matrzes que representam o operador ˆT estão relaconadas por uma transformação untára. 4 Autovetores e autovalores de um operador hermteano A equação de autovalores para um operador ˆT é dada por: ˆT α = λ α onde α é o autovetor de ˆT e λ o corespondente autovalor. Nesta seção vamos nvestgar as propredades da equação de autovalores quando ˆT é um operador hermteano. Um operador hermteano é gual ao seu hermteano conjugado, ˆT = ˆT. Como consequênca dessa propredade a matrz que representa um operador hermteano numa dada base é uma matrz hermteana, T j = T j. 4.1 Propredades 1. Os autovalores de um operador hermteano são reas. Prova: Seja λ um autovalor de ˆT, ˆT α = λ α. Então, α ˆT α = λ α α Como ˆT é um operador hermteano, vale as relações mostradas abaxo: Igualando, temos que α ˆT α = α ˆT α = α ˆT α = λ α α (λ λ ) α α = 0. Como o autovetor tem norma não-nula, α α 0, concluímos que λ = λ, sto é, λ é real. 2. Autovetores com autovalores dstntos são ortogonas. Prova: Sejam λ 1 e λ 2 dos autovalores dstntos de ˆT, λ 1 λ 2, ou seja, Então ˆT α 1 = λ 1 α 1 ˆT α 2 = λ 2 α 2. α 2 ˆT α 1 = λ 1 α 2 α 1. Usando o fato de ˆT ser um operador hermteano para calcular esse mesmo elemento de matrz, achamos que α 2 ˆT α 1 = α 1 ˆT α 2 = α 1 ˆT α 2 = λ 2 α 1 α 2 = λ 2 α 2 α 1 8

2 Igualando, temos que (λ 2 λ 1 ) α 2 α 1 = 0. Como λ 1 λ 2 conclumos que os autovetores são ortogonas, α 2 α 1 = Resolução da equação de autovalores. Para resolver a equação de autovalores ˆT α = λ α. temos que determnar a representação do operador hermteano, ˆT, numa dada base { e } ˆT e = j T j e j, com T j = e j ˆT e. Expandndo os autovetores nessa mesma base, { e }, α = c e, podemos calcular faclmente ˆT α = c ˆT e =,j c T j e j e λ α = j λc j e j. Igualando, vemos que a equação de autovalores fca gual a, T j c = λc j ou, na forma matrcal T c = λc. Assm reduzmos o problema de achar os autovalores e autovetores de um operador hermteano ao problema de achar os autovalores e autovetores de uma matrz hermteana, a representação do operador numa dada base. Os autovalores dessa matrz são os autovalores do operador e os autovetores são as componentes da expansão do autovetor nessa mesma base. 4. Cálculo dos autovalores. Equação característca. A equação de autovalores é um sstema de n equações lneares homogêneas acopladas (T j δ j )c = 0 que tem solução somente se o determnante das ncógntas é nulo onde 1 é a matrz undade de ordem n. det(t λ1) = 0 Calculando o determnante, chegamos numa equação algébrca de ordem n em λ, chamada de equação característca para os autovalores. O fato da matrz ser hermteana garante que ela tem n razes reas nclundo a multplcdade. Para cada raz, resolvemos o sstema de equações lneares acopladas para achar as componentes dos autovetores. 9

3 5. Os autovetores de um operador hermteano formam uma base no espaço dos vetores de estado. Devemos dstngur dos casos : Caso (): Os autovalores são dstntos. Nesse caso vamos destacar duas propredades. Uma, que os autovetores são ortogonas. A outra que, nesse caso, exste uma relação bunívoca entre autovetor e autovalor, o que permte rotular o autovetor pelo correspondente autovalor, ˆT λ = λ λ, λ j λ = δ j. Caso (): Exste degenerescênca. A degenerescênca ocorre quando exstem raízes com multplcdade dferente de 1, por exemplo, o autovalor λ tem multplcdade d, sto é, o autovalor λ tem degenerescênca gual a d. O fato da matrz ser hermteana garante que no subespaço degenerado exste d vetores lnearmente ndependentes que podem ser ortogonalzados, por exemplo, pelo método de Gram-Schmdt. Dferente do caso anteror, não exste uma relação bunívoca entre autovetor e autovalor, e precsamos outro rótulo para seleconar um entre os d autovetores degenerados. Um exemplo de uma possível escolha sera { λ, τ k }, k = 1,..., d com d sendo a ordem da degenerescênca do autovalor λ ˆT λ, τ k = λ λ, τ k λ, τ k λ j, τ jl = δ j δ kl. 6. Dagonalzação. Uma vez resolvda a equação de autovalores, termnamos com duas bases no espaço dos vetores de estado: a base escolhda para resolver a equação de autovalores e a base dos autovetores do operador hermteano ˆT. Como dscutmos anterormente, as duas bases estão relaconadas por uma transformação untára, α k = Ŝ e k onde o índce k estabelece uma ordenação do conjunto dos autovetores de ˆT. Os elementos da matrz S são determnados pelas componentes da expansão dos autovetores na base { e }, α k = j e j S jk α k = j e j c (k)) j Comparando, vemos que os elementos da k-ésma coluna da matrz S são as componentes da expansão do k-ésmo autovetor na base { e j }, S jk = c (k) j. S gera uma transformação untára que dagonalza T : λ = S T S onde λ é uma matrz dagonal cujos elementos da dagonal são os autovalores de ˆT, λ j = λ δ j. 5 Equação de Schrödnger dependente do tempo. Estados estaconáros. (a) O vetor de estado do sstema no nstante t é determnado resolvendo-se a equação de Schrödnger dependente do tempo: ψ(t) = Ĥ ψ(t) t dado o vetor de estado no nstante ncal ψ(t 0 ), onde Ĥ é o operador hamltonana do sstema. 10

4 (b) Os estados estaconáros são caracterzados pela propredade da dependênca temporal de ψ(t) ser da forma ψ(t) = e Et ψ A condção para que ψ(t) seja uma solução da equação de Schrödnger dependente do tempo é ψ ser uma solução da equação de Schrödnger ndependente do tempo Ĥ ψ = E ψ. (c) A equação de Schrödnger ndependente do tempo é uma equação de autovalores para o operador hamltonana Ĥ, o estado estaconáro ψ é o autovetor e E é o autovalor. (d) Os autovalores de Ĥ são os níves de energa do sstema. (e) A equação de autovalores fornece uma coleção de soluções ψ 1, ψ 2,..., ψ n assocada as energas E 1, E 2,..., E n caso exsta, nclundo a multplcdade. Essa coleção de autovetores de Ĥ formam uma base no espaço dos vetores de estado. (f) A solução mas geral da equação de Schrödnger dependente do tempo pode ser escrta como uma combnação lnear dos estados estaconáros ψ(t) = n c n e En(t t0) ψ n onde os coefcentes c n são os coefcentes da expansão do estado ncal na base de estados estaconáros ψ(t 0 ) = n c n ψ n com c n = ψ n ψ(t 0 ). 6 Prncípo da ncerteza 6.1 Valor médo e dspersão das meddas de um observável Valor médo Se o sstema está no estado ψ, a probabldade de numa medda do observável  acharmos o valor a, é dado pelo módulo ao quadrado do produto escalar de ψ com o autovetor de  com autovalor a 1, p(a, ψ) = a ψ 2. Por defnção o valor médo das meddas de um observável  se o sstema está no estado ψ é dado por  = a p(a, ψ) = a a ψ 2. Como os autovetores de autovetores de Â, com Então  formam uma base, ψ pode ser escrto como uma combnação lnear dos  ψ = ψ = c a c = a ψ. c  a = a a ψ a 11

5 e ψ  ψ = a a ψ ψ a = a a ψ a ψ = a a ψ 2. Assm, o valor médo das meddas de Â, se o sstema está no estado ψ é gual a Dspersão das meddas de   = ψ  ψ. Por defnção a dspersão das meddas de  é dada por σ 2 A = (a  )2 p(a, ψ). Como a dspersão fca gual a (a  )2 = a 2 2a  +  2 σ 2 A = (a 2 2a  +  2 )p(a, ψ). Dado que p(a, ψ) = ψ ψ = 1, a p(a, ψ) =  = ψ  ψ, a 2 p(a, ψ) = Â2 = ψ Â2 ψ onde a últma relação é faclmente deduzda se lembrarmos que  2 a = a 2 a. chegamos a concluão que a dspersão é dada pelo valor médo de Â2 menos o valor médo de  ao quadrado σa 2 = ψ Â2 ψ ψ  ψ 2 ou uma expressão equvalente σa 2 = ψ (  )2 ψ. A gualdade dessas duas expressões segue medatamente de: (  )2 = Â2 2  +  2. Como o valor médo de um operador hermteano é um número real, ψ  ψ = ψ  ψ = ψ  ψ, podemos conclur que a últma expressão de σ 2 A é a norma ao quadrado do vetor de estado α = (  ) ψ : σ 2 A = α α. Vemos então que a dspersão se anula se e somente se α é o vetor nulo, α =, ou sto é, ψ é um autovetor de  com autovalor Â. (  ) ψ =  ψ =  ψ 12

6 6.2 Prncípo da ncerteza Vamos demonstrar que se  e ˆB são dos observáves vale a relação de ncerteza, σaσ 2 B ψ [Â, ˆB] ψ 4 onde[â, ˆB] é o comutador de  e ˆB: [Â, ˆB] =  ˆB ˆB Observáves para os quas [Â, ˆB] 0 são chamados de observáves ncompatíves. Vemos então que, como exste um lmte nferor para o produto das dspersões, elas não podem ser reduzdas ndependentemente. Por exemplo, se Â, ˆB é um par de observáves ncompatíves, quão mas precsas são as meddas de  mas mprecsas são as de ˆB. Por outro lado, observáves para os quas [Â, ˆB] = 0 são chamados de observáves compatíves. Nesse caso não exste nenhuma restrção quanto a precsão das meddas desses dos observáves. 6.3 Prova do prncípo da ncerteza Para provar o prncípo da ncerteza vamos enuncar três lemas: Lema 1 Desgualdade de Schwarz: α α β β α β 2. Prova: Seja γ = α + λ β. Então a norma de γ é dada por : Se λ = β α β β a norma de γ fca gual a, γ γ = α α + λ α β + λ β α + λ 2 β β. γ γ = α α α β 2 β β portanto A gualdade ocorre se γ = ou α = λ β. = α α β β α β 2 β β α α β β α β 2. 0 Lema 2 O valor médo de um operador hermteano é real. Prova: e portanto ψ  ψ = ψ  ψ = ψ  ψ ψ  ψ = ψ  ψ. Lema 3 O valor médo de um operador ant-hermteano é puramente magnáro. Prova: Um operador ant-hermteano é gual a menos o seu hermteano conjugado,â =  ψ  ψ = ψ  ψ = ψ  ψ portanto ψ  ψ = ψ  ψ. 13

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Interpolação Segmentada

Interpolação Segmentada Interpolação Segmentada Uma splne é uma função segmentada e consste na junção de váras funções defndas num ntervalo, de tal forma que as partes que estão lgadas umas às outras de uma manera contínua e

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Lnear (PL) Aula : Dualdade. Defnção do Problema Dual. Defnção do problema dual. O que é dualdade em Programação Lnear? Dualdade sgnfca a exstênca de um outro problema de PL, assocado a cada

Leia mais

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f

Leia mais

O Formalismo Matemático da Mecânica Quântica

O Formalismo Matemático da Mecânica Quântica O Formalsmo Matemátco da Mecânca Quântca Márco H. F. Bettega Departamento de Físca Unversdade Federal do Paraná bettega@fsca.ufpr.br Escola de Verão de Físca de Curtba - 2019. Introdução Vamos dscutr nesta

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

MAP Cálculo Numérico e Aplicações

MAP Cálculo Numérico e Aplicações MAP0151 - Cálculo Numérco e Aplcações Lsta 5 (Correção Neste ponto, todos já sabemos que todas as questões têm o mesmo valor, totalzando 10.0 pontos. (Questão 1 Fque com vontade de fazer mas do que fo

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

A de nição do operador derivada, em coordenadas cartesianas ortogonais é dada por. + r i^e i i ; i =

A de nição do operador derivada, em coordenadas cartesianas ortogonais é dada por.   + r i^e i  i ; i = 1 Segunda aula Lucana Eban luc.eban@gmal.com Sumáro: 1. Operador Dferencal; 2. Grandente de uma função escalar; 3. Dvergente de um vetor; 4. Rotaconal de um vetor; 5. Laplacano; 6. Algumas dentdades; 7.

Leia mais

Eletrotécnica AULA Nº 1 Introdução

Eletrotécnica AULA Nº 1 Introdução Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca

Leia mais

[T ] Subespaços Invariantes

[T ] Subespaços Invariantes Subespaços Inarantes Sea um R-espaço etoral n dmensonal e T : um operador lnear O subespaço etoral S é denomnado subespaço etoral narante pelo operador T ou subespaço etoral T-narante quando T ( S S, sendo

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Covariância na Propagação de Erros

Covariância na Propagação de Erros Técncas Laboratoras de Físca Lc. Físca e Eng. omédca 007/08 Capítulo VII Covarânca e Correlação Covarânca na propagação de erros Coefcente de Correlação Lnear 35 Covarânca na Propagação de Erros Suponhamos

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

A ; (1) A z. A A y

A ; (1) A z. A A y 1 Prmera aula Thals Grard thalsjg@gmal.com Sumáro 1. Introdução da notação ndcal 2. O produto escalar e o de Kronecker 3. Rotações 4. O produto vetoral e o " de Lev-Cvta 5. Trplo produto escalar e determnantes

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. vall@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ Em mutas stuações duas ou mas varáves estão relaconadas e surge então a necessdade de determnar a natureza deste relaconamento. A análse

Leia mais

2 Análise de Campos Modais em Guias de Onda Arbitrários

2 Análise de Campos Modais em Guias de Onda Arbitrários Análse de Campos Modas em Guas de Onda Arbtráros Neste capítulo serão analsados os campos modas em guas de onda de seção arbtrára. A seção transversal do gua é apromada por um polígono conveo descrto por

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Equações de Bloch. Richard H. Chaviguri November 27, 2017

Equações de Bloch. Richard H. Chaviguri November 27, 2017 INSTITUTO DE FÍSICA DE SÃO CARLOS-USP Equações de Bloch Rchard H. Chavgur November 7, 017 1 INTRODUÇÃO O estudo da nteração radação-matéra abrange dversos processos tas como: absorçao, ndução tanto espontânea

Leia mais

O íon lantanídeo no acoplamento Russell-Saunders e a classificação de seus estados segundo os subgrupos do grupo GL(4

O íon lantanídeo no acoplamento Russell-Saunders e a classificação de seus estados segundo os subgrupos do grupo GL(4 O íon lantanídeo no acoplamento Russell-aunders e a classfcação de seus estados segundo os subgrupos do grupo G(4 ) O hamltonano, H, dos íons lantanídeos contém uma parte que corresponde ao campo central,

Leia mais

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall

Programa do Curso. Sistemas Inteligentes Aplicados. Análise e Seleção de Variáveis. Análise e Seleção de Variáveis. Carlos Hall Sstemas Intelgentes Aplcados Carlos Hall Programa do Curso Lmpeza/Integração de Dados Transformação de Dados Dscretzação de Varáves Contínuas Transformação de Varáves Dscretas em Contínuas Transformação

Leia mais

1º Exame de Mecânica Aplicada II

1º Exame de Mecânica Aplicada II 1º Exame de Mecânca Aplcada II Este exame é consttuído por 4 perguntas e tem a duração de três horas. Justfque convenentemente todas as respostas apresentando cálculos ntermédos. Responda a cada pergunta

Leia mais

Resumo de Álgebra Linear - parte II

Resumo de Álgebra Linear - parte II Aula 7 Resumo de Álge Lnear - parte II 7.1 Resumo Nesta aula contnuamos desenvolvendo concetos báscos de álge lnear, aprmorando a famlardade com a notação de Drac. Bblograa: Moysés, 8.7 (em parte), e Cohen-Tannoudj,

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

Regressão Múltipla. Parte I: Modelo Geral e Estimação

Regressão Múltipla. Parte I: Modelo Geral e Estimação Regressão Múltpla Parte I: Modelo Geral e Estmação Regressão lnear múltpla Exemplos: Num estudo sobre a produtvdade de trabalhadores ( em aeronave, navos) o pesqusador deseja controlar o número desses

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíves resultados de um expermento. Evento é qualquer subconjunto do espaço amostral. Evento combnado: Possu duas ou

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min)

PROVA 2 Cálculo Numérico. Q1. (2.0) (20 min) PROVA Cálculo Numérco Q. (.0) (0 mn) Seja f a função dada pelo gráfco abaxo. Para claro entendmento da fgura, foram marcados todos os pontos que são: () raízes; () pontos crítcos; () pontos de nflexão.

Leia mais

Parênteses termodinâmico

Parênteses termodinâmico Parênteses termodnâmco Lembrando de 1 dos lmtes de valdade da dstrbução de Maxwell-Boltzmann: λ

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

3 Método Numérico. 3.1 Discretização da Equação Diferencial

3 Método Numérico. 3.1 Discretização da Equação Diferencial 3 Método Numérco O presente capítulo apresenta a dscretação da equação dferencal para o campo de pressão e a ntegração numérca da expressão obtda anterormente para a Vscosdade Newtonana Equvalente possbltando

Leia mais

MODELOS DE REGRESSÃO PARAMÉTRICOS

MODELOS DE REGRESSÃO PARAMÉTRICOS MODELOS DE REGRESSÃO PARAMÉTRICOS Às vezes é de nteresse nclur na análse, característcas dos ndvíduos que podem estar relaconadas com o tempo de vda. Estudo de nsufcênca renal: verfcar qual o efeto da

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO

4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO 4. ESTÁTICA E PRINCÍPIO DOS TRABALHOS VIRTUAIS 4.1. INTRODUÇÃO Na Estátca, estuda-se o equlíbro dos corpos sob ação de esforços nvarantes com o tempo. Em cursos ntrodutóros de Mecânca, esse é, va de regra,

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teora Elementar da Probabldade MODELOS MATEMÁTICOS DETERMINÍSTICOS PROBABILÍSTICOS PROCESSO (FENÓMENO) ALEATÓRIO - Quando o acaso nterfere na ocorrênca de um ou mas dos resultados nos quas tal processo

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é Note bem: a letra destes apontamentos não dspensa de modo algm a letra atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo alno resolvendo os problemas

Leia mais

8 Soluções Não Ideais

8 Soluções Não Ideais 8 Soluções Não Ideas 8.1 Convenções para o coefcente de atvdade na escala de frações molares Para a solução deal temos ln x onde é função apenas da pressão e temperatura. Fo anterormente mostrado que todas

Leia mais

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo

3 Metodologia de Avaliação da Relação entre o Custo Operacional e o Preço do Óleo 3 Metodologa de Avalação da Relação entre o Custo Operaconal e o Preço do Óleo Este capítulo tem como objetvo apresentar a metodologa que será empregada nesta pesqusa para avalar a dependênca entre duas

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert

Aerodinâmica I. Asas Finitas Teoria da Linha Sustentadora Método de Glauert α ( y) l Método de Glauert Γ( y) r ( y) V c( y) β b 4 V b ( y) + r dy dγ y y dy Método de resolução da equação ntegro-dferencal da lnha sustentadora através da sua transformação num sstema de equações

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

EXERCÍCIO: VIA EXPRESSA CONTROLADA

EXERCÍCIO: VIA EXPRESSA CONTROLADA EXERCÍCIO: VIA EXPRESSA CONTROLADA Engenhara de Tráfego Consdere o segmento de va expressa esquematzado abaxo, que apresenta problemas de congestonamento no pco, e os dados a segur apresentados: Trechos

Leia mais

Gráficos de Controle para Processos Autocorrelacionados

Gráficos de Controle para Processos Autocorrelacionados Gráfcos de Controle para Processos Autocorrelaconados Gráfco de controle de Shewhart: observações ndependentes e normalmente dstrbuídas. Shewhart ao crar os gráfcos de controle não exgu que os dados fossem

Leia mais

Implementação Bayesiana

Implementação Bayesiana Implementação Bayesana Defnção 1 O perfl de estratégas s.) = s 1.),..., s I.)) é um equlíbro Nash-Bayesano do mecansmo Γ = S 1,..., S I, g.)) se, para todo e todo θ Θ, u gs θ ), s θ )), θ ) θ Eθ u gŝ,

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

Flambagem. Cálculo da carga crítica via MDF

Flambagem. Cálculo da carga crítica via MDF Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca

Leia mais

4 Discretização e Linearização

4 Discretização e Linearização 4 Dscretzação e Lnearzação Uma vez defndas as equações dferencas do problema, o passo segunte consste no processo de dscretzação e lnearzação das mesmas para que seja montado um sstema de equações algébrcas

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear

Leia mais

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

UNIDADE IV DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) UNDADE V DELNEAMENTO NTERAMENTE CASUALZADO (DC) CUABÁ, MT 015/ PROF.: RÔMULO MÔRA romulomora.webnode.com 1. NTRODUÇÃO Este delneamento apresenta como característca prncpal a necessdade de homogenedade

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

Aerodinâmica I. Verificação de Códigos. Objectivo: verificar que o programa não tem erros

Aerodinâmica I. Verificação de Códigos. Objectivo: verificar que o programa não tem erros e Verfcação de Códgos Objectvo: verfcar que o programa não tem erros - O erro numérco tende para zero quando o tamanho da malha / passo no tempo tendem para zero? p ( φ ) = φ φ e + αh exact - A ordem de

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu.

GABARITO ERP19. impedância total em pu. impedância linha em pu; impedância carga em pu; tensão no gerador em pu. GABARITO ERP9 Questão mpedânca total em pu. mpedânca lnha em pu; mpedânca carga em pu; tensão no gerador em pu. Assm, tem-se que: ( ). Mas, ou seja: : ( ).. Logo: pu. () A mpedânca da carga em pu,, tem

Leia mais

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica

CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica CF372 Mecânica Quântica I Os Postulados da Mecânica Quântica 1 Introdução. Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o livro texto. Antes iremos fazer um paralelo entre

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis

Introdução. Uma lâmpada nova é ligada e observa-se o tempo gasto até queimar. Resultados possíveis Introdução A teora das probabldades é um ramo da matemátca que lda modelos de fenômenos aleatóros. Intmamente relaconado com a teora de probabldade está a Estatístca, que se preocupa com a cração de prncípos,

Leia mais

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 )

CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II. q exp( q 2 ) ( 2 π. 2 (2q 2 1) exp( q 2 ) CF372 Mecânica Quântica I Segunda Lista de Exercícios - Capítulo II 1) Dadas as funções ψ 1 (q) e ψ 2 (q), definidas no intervalo < q < + : ψ 1 (q) = ( 2 π ) 1/2 q exp( q 2 ) Calcule: a) (ψ 1, ψ 2 ); b)

Leia mais

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci

Eletromagnetismo II 1 o Semestre de 2007 Noturno - Prof. Alvaro Vannucci Eletromagnetsmo II o Semestre de 7 Noturno - Prof. Alvaro Vannu a aula /abr/7 Vmos: meos ondutores: σ + (Cte. Delétra) ω Índe de refração: n ; n n + n + ; σ ω K K + K K + K u K u ; Vetor de onda: ˆ ˆ r

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

% Al 48 b) Alumínio que fica em solução. Precisamos calcular o equilíbrio da alumina com Al e O no aço:

% Al 48 b) Alumínio que fica em solução. Precisamos calcular o equilíbrio da alumina com Al e O no aço: 1a Verfcação Refno dos s I EEIMVR-UFF, Setembro de 11 Prova A 1. Calcule o valor de γ no ferro, a 17 o C, com os dados fornecdos na prova. Vmos em aula que o 1% G e o γ estão relaconados através de 1%

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Isostática 2. Noções Básicas da Estática

Isostática 2. Noções Básicas da Estática Isostátca. Noções Báscas da Estátca Rogéro de Olvera Rodrgues .1. Força Força desgna um agente capa de modfcar o estado de repouso ou de movmento de um determnado corpo. É uma grandea vetoral e, como tal,

Leia mais

Fluido Perfeito/Ideal

Fluido Perfeito/Ideal ν ref ref e L R scosdade do fludo é nula, ν0 - Número de Renolds é nfnto Admtndo que a conductbldade térmca é 0 s s s t s s t s Ds Admtndo que a conductbldade térmca é sufcentemente pequena para que se

Leia mais

Cálculo Numérico BCC760 Interpolação Polinomial

Cálculo Numérico BCC760 Interpolação Polinomial Cálculo Numérco BCC76 Interpolação Polnomal Departamento de Computação Págna da dscplna http://www.decom.ufop.br/bcc76/ 1 Interpolação Polnomal Conteúdo 1. Introdução 2. Objetvo 3. Estênca e uncdade 4.

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

Dados ajustáveis a uma linha recta

Dados ajustáveis a uma linha recta Capítulo VI juste dos Mínmos Quadrados Dados ajustáves a uma lnha recta Determnação das constantes e B Incerteza nas meddas de Incerteza na determnação de e B juste dos mínmos quadrados a outras curvas:

Leia mais

Os Postulados da Mecânica Quântica

Os Postulados da Mecânica Quântica Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Postulados Introdução Vamos apresentar nestas notas os postulados da mecânica quântica de acordo com o

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

TENSÕES. Elysio R. F. Ruggeri Furnas Centrais Elétricas SA. Resumo

TENSÕES. Elysio R. F. Ruggeri Furnas Centrais Elétricas SA. Resumo ENSÕES Elyso R. F. Rugger Furnas Centras Elétrcas SA Resumo Este artgo ampla a exposção ordnára da teora das tensões para os casos em que o sstema de coordenadas curvlíneas utlzado na solução de um problema

Leia mais

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata Curso de Crcutos Elétrcos a Edção, Q rsn D Consonn, Edtora Edgard Blücher tda Pág5 Equação (5): dw( t) v( t) = dq( t) Pág5 no parágrafo após equação (36): Volume I Errata, caso em que não há energa ncal

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Simetrias na Mecânica Quântica

Simetrias na Mecânica Quântica Simetrias na Mecânica Quântica Prof. 7 de junho de 2011 Definição de Simetria na Mecânica Quântica G(a) elemento de um grupo G de transformações contínuas, G(a) M.Q. ˆT(G(a)), ˆT(G(a)) operador unitário.

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS

UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS UM PROBLEMA ECONOMÉTRICO NO USO DE VARIÁVEIS CLIMÁTICAS EM FUNÇÕES DE PRODUÇÃO AJUSTADAS A DADOS EXPERIMENTAIS Rodolfo Hoffmann * Vctor Hugo da Fonseca Porto ** SINOPSE Neste trabalho deduz-se qual é o

Leia mais

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos

22/8/2010 COMPLEXIDADE DE ALGORITMOS CES para os numeradores e 1 para o denominador. Noções de complexidade de algoritmos Razão de crescmento desse temo Imortânca de análse de algortmos Um mesmo roblema ode, em mutos casos, ser resolvdo or város algortmos. Nesse caso, qual algortmo deve ser o escolhdo? Crtéro 1: fácl comreensão,

Leia mais