EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ

Tamanho: px
Começar a partir da página:

Download "EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ"

Transcrição

1 EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ

2

3 EXPRESSÕES DE CÁLCULO DO ÍNDICE IREQ No presente nexo presentm-se s expressões de cálculo utilizds pr determinção do índice do Isolmento Térmico do Vestuário Requerido, IREQ, de cordo com o Reltório Técnico ISO/TR (1993). Est publicção inclui um progrm informático pr determinr o IREQ que se considerou exibir lgums limitções, designdmente s que dizem respeito à usênci de um opção que permit grvção dos ddos em ficheiro e à impossibilidde de visulizr os diversos prâmetros clculdos pelo progrm, à excepção d interpretção dos resultdos. Fce estes condicionlismos procedeu-se diverss modificções no progrm. Assim, pr lém d substituição d lingugem Pscl pelo Fortrn, nov versão benefici ds lterções necessáris pr ultrpssr s limitções referids. N Figur A.1 ilustr-se, esquemticmente, o procedimento de vlição de mbientes térmicos frios proposto n ISO/TR 11079, seguindose presentção ds equções usds n determinção do IREQ. AMBIENTES TÉRMICOS FRIOS Medição Tempertur do r Tempertur opertiv Tempertur médi rdinte Velocidde do r (Humidde) Arrefecimento locl Arrefecimento gerl Interior Exterior Medição ou estimtiv do metbolismo Corrente de r locl Tempertur d pele ds mãos Clcul WCI Tempertur d pele ds mãos Determinção de IREQ Determinção de I cl Selecção do vestuário Compr IREQ com o vlor do isolmento térmico do vestuário resultnte I clr Determinção do isolmento térmico resultnte, I clr. Correcção de I cl em função d velocidde do vento, d velocidde d mrch, etc. I clr < IREQ mínimo IREQ mínimo < I clr < IREQ neutrl I clr > IREQ neutrl Vestuário insuficiente. Durção limite de exposição. Suficiente pr prevenir o rrefecimento. Sensção neutrl ou ligeirmente fri. Vestuário suficiente. Possível risco de sobrequecimento pr níveis de ctividde superiores Clcul durção limite de exposição recomendd, DLE mínimo Clcul durção limite de exposição recomendd, DLE neutrl Figur A.1 Procedimento de vlição de mbientes térmicos frios (dptdo de ISO/TR 11079, 1993). 305

4 EXPRESSÕES DE CÁLCULO UTILIZADAS PARA O CÁLCULO DO ÍNDICE DO ISOLAMENTO TÉRMICO DO VESTUÁRIO REQUERIDO, IREQ O índice IREQ especific isolmento térmico do vestuário requerido pr mnutenção do blnço térmico trvés de um modelo bsedo n equção do blnço térmico globl do corpo humno. Est expressão é definid por ( res res + M W )( K +C + R + E)+( C + E ) S. (A.1) Como já foi visto, M represent o metbolismo energético, W o trblho mecânico externo, K, C, R, E, C res e E res, s perds de clor por condução, convecção, rdição, perspirção e sudção, sensível e ltente por respirção, respectivmente. S represent crg térmic no corpo. Tendo metodologi de cálculo do IREQ sido presentd no Cpítulo 3, neste nexo procede-se pens à listgem ds expressões utilizds pr estimr os vários mecnismos de troc térmic. Metbolismo, M A vlição do metbolismo fz-se trvés dos métodos especificdos n Norm ISO 8996 (1990). Trblho Mecânico Útil, W O trblho mecânico útil present normlmente um vlor reduzido e, n mior prte ds situções industriis, pode ser desprezdo. Troc de Clor por Condução, K Conforme referido n secção (3.5.1) troc de clor por condução não é considerd directmente, sendo englobd ns expressões d troc de clor por convecção e rdição pr situção em que s superfícies do corpo não estivessem em contcto com elementos sólidos. 306

5 Troc de Clor por Convecção, C A troc de clor por convecção, C [W/m 2 ], entre superfície do vestuário (incluindo superfície d pele não cobert) e o mbiente pode exprimir-se trvés d relção C f h. (A.2) cl conv O fctor de áre vestid, f cl, é determindo prtir de cl f cl 1+1,97 I clr, (A.3) e o coeficiente de trnsferênci de clor por convecção, h conv [W/m 2 ºC], é clculdo prtir de um ds expressões seguintes h conv 3,5 + 5,2 v pr v 1 m/s, (A.4) r r 0, 6 hconv 8,7 vr pr vr > 1 m/s, (A.5) em que v r [m/s] represent velocidde reltiv do r, sendo determind por ( M - 58 ) vr v +0,0052, (A.6) limitndo-se contribuição devid o metbolismo 0,7 m/s. Troc de Clor por Rdição, R A troc de clor por rdição, R [W/m 2 ], entre superfície do vestuário (incluindo superfície d pele não cobert) e o mbiente é clculd por R h rd fcl cl r. (A.7) O coeficiente de trnsferênci de clor por rdição, h rd [W/m 2 ºC] é estimdo por hrd A ε r ADuBois 4 4 [( t ) - ( t ) ]/ σ, (A.8) cl dmitindo-se que A r /A DuBois (frcção d superfície cutâne prticipnte ns trocs de clor por rdição) é igul 0,67 pr o sujeito gchdo, 0,7 sentdo e 0,77 pr o sujeito em pé. r cl r Troc de Clor por Evporção, E A troc de clor por evporção, E [W/m 2 ], é definid por 307

6 E w ( p p ) sk,st. (A.9) Re,T A pressão de vpor de águ sturdo à tempertur d pele, determind pel expressão p sk, st [kp], é psk,st 18, , 183 /( t sk ) 01333, e, (A.10) enqunto que pressão prcil de vpor de águ do r mbiente, p [kp], é clculd por p rh , , 183 /( t ) 01333, e. (A.11) A resistênci evportiv totl do vestuário, R e,t [m 2 kp/w], é definid por Re,T 0, 06 Iclr im,t + I fcl. (A.12) Admitindo que o índice de permebilidde totl, i m,t, de vestuário comum e permeável de um ou dus cmds é igul 0,38, expressão (A.12) tom form I Re,T 0, 16 Iclr +, (A.13) fcl sendo o isolmento térmico d cmd superficil de r, I [m 2 ºC/W], clculdo trvés de I ( h + h ) conv 1 rd. (A.14) Troc de Clor por Respirção N respirção, s trocs de clor sensível, C res [W/m 2 ], e ltente, E res [W/m 2 ], são equcionds por V& C p, exp Cres ADuBois Eres V& h fg exp ADuBois ( W -W ), (A.15), (A.16) onde V & [kg/s] represent o cudl de r respirdo, C p, [J/kg K] o clor específico do r seco pressão constnte, t exp [ºC] tempertur do r expirdo, h fg [J/kg], o clor ltente de 308

7 vporizção d águ e W exp e W [kg H2O /kg r seco ], humidde bsolut do r expirdo e do r inspirdo. A su quntificção é ssim função ds condições do r inspirdo e expirdo e do cudl de r respirdo, proporcionl o nível de ctividde físic. N ISO TR (1993), C res e E res são estimdos doptndo vlores típicos e relcionndo o cudl de ventilção pulmonr com o metbolismo, C res 0,0014 M E res 0,0173 M, (A.17) exp ( p - p ), (A.18) exp,st clculndo-se tempertur do r expirdo, t exp [ºC], por t exp + 0, 2 t 29, (A.19) e pressão de vpor de águ sturdo do r expirdo, p exp, st [kp], trvés de pexp,st 18, , 183 /( texp ) 01333, e. (A.20) 309

Psicrometria e balanços entálpicos

Psicrometria e balanços entálpicos álculo d entlpi Psicrometri e blnços entálpicos m Psicrometri pr o cálculo d entlpi dum corrente de r recorre-se à entlpi específic. egundo crt que usmos em PQ entlpi específic vem express em J/g de r

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Definição de áreas de dependência espacial em semivariogramas

Definição de áreas de dependência espacial em semivariogramas Definição de áres de dependênci espcil em semivriogrms Enio Júnior Seidel Mrcelo Silv de Oliveir 2 Introdução O semivriogrm é principl ferrment utilizd pr estudr dependênci espcil em estudos geoesttísticos

Leia mais

16º POSMEC Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica

16º POSMEC Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica 16º POSMEC Universidde Federl de Uberlândi Fculdde de Engenhri Mecânic METODOLOGIA PARA DETERMINAÇÃO QUALITATIVA DA QUEDA DE PRESSÃO EM PAINEL EVAPORATIVO UTILIZADO EM UNIDADE DE RESFRIAMENTO EVAPORATIVO

Leia mais

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente

Leia mais

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico

Circuitos Elétricos II Experimento 1 Experimento 1: Sistema Trifásico Circuitos Elétricos Experimento 1 Experimento 1: Sistem Trifásico 1. Objetivo: Medição de tensões e correntes de linh e de fse em um sistem trifásico. 2. ntrodução: As tensões trifásics são normlmente

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

A atmosfera e a radiação solar

A atmosfera e a radiação solar @cláudi lobto Simone oliveir A tmosfer e rdição solr A tmosfer tem: > um limite inferior que mrc o seu início e que corresponde o nível médio ds águs do mr (0 metros) superfície d Terr; > um limite superior,

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

DC3 - Tratamento Contabilístico dos Contratos de Construção (1) Directriz Contabilística n.º 3

DC3 - Tratamento Contabilístico dos Contratos de Construção (1) Directriz Contabilística n.º 3 Mnul do Revisor Oficil de Conts DC3 - Trtmento Contbilístico dos Contrtos de Construção (1) Directriz Contbilístic n.º 3 Dezembro de 1991 1. Est directriz plic-se os contrtos de construção que stisfçm

Leia mais

P1 de CTM OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar.

P1 de CTM OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar. P de CTM 0. Nome: Assintur: Mtrícul: Turm: OBS: Est prov contém 7 págins e 6 questões. Verifique ntes de começr. Tods s resposts devem ser justificds. Não é permitido usr clculdor. As questões podem ser

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho

Equilíbrio do indivíduo-consumidor-trabalhador e oferta de trabalho Equilíbrio do indivíduo-consumidor-trblhdor e ofert de trblho 6 1 Exercício de plicção: Equilíbrio de um consumidor-trblhdor e nálise de estátic comprd Exercícios pr prátic do leitor Neste cpítulo, presentmos

Leia mais

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO SECRETARIA DE POLÍTICA AGRÍCOLA DEPARTAMENTO DE GESTÃO DE RISCO RURAL PORTARIA Nº 193, DE 8 DE JUNHO DE 2011 O DIRETOR DO DEPARTAMENTO DE GESTÃO DE RISCO

Leia mais

1 heae. 1 hiai 1 UA. Transferência de calor em superfícies aletadas. Tot. Por que usar aletas? Interior condução Na fronteira convecção

1 heae. 1 hiai 1 UA. Transferência de calor em superfícies aletadas. Tot. Por que usar aletas? Interior condução Na fronteira convecção Trnsferênci de clor em superfícies letds Por ue usr lets? Interior condução N fronteir convecção = ha(ts - T Pr umentr : - umentr o h - diminuir T - umentr áre A Intensificção d trnsferênci de clor Exemplo:

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Módulo V Resolução Numéric de Sistems ineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems ineres Form Gerl... n n b... n n

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Controle e Automção Período/Módulo: 3 o Período Disciplin/Unidde Curriculr: Cálculo III

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3.

6-1 Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f(x) = sin 2x, F (π) = 3. 6 Fich de eercícios de Cálculo pr Informátic CÁLCULO INTEGRAL 6- Determine primitiv F d função f que stisfz condição indicd, em cd um dos csos seguintes: ) f() = sin, F (π) = 3. b) f() = 3 + +, F (0) =

Leia mais

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss

1 a Lista de Exercícios Força Elétrica Campo Elétrico Lei de Gauss 1 1 ist de Eercícios Forç Elétric Cmpo Elétrico ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis

Leia mais

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.

Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10. Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados;

a) a amplitude de cada um dos ângulos externos do triângulo regular de que o segmento de reta BF é um dos lados; EXTERNATO JOÃO ALBERTO FARIA Fich de Mtemátic 9º ANO 1- N figur estão representds três circunferêncis congruentes, tngentes dus dus. Sendo-se que CB 16 cm, determin áre d região colorid. Apresent o resultdo

Leia mais

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas

AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas Fundmentos de Químic nlític, Ione M F liveir, Mri José F ilv e imone F B Tófni, urso de Licencitur em Químic, Modlidde Distânci, UFMG 00 UL 8 Equilíbrio Ácido Bse Equilíbrio Ácido Bse envolvendo soluções

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017

Física III Escola Politécnica GABARITO DA P2 25 de maio de 2017 Físic - 4323203 Escol Politécnic - 2017 GABARTO DA P2 25 de mio de 2017 Questão 1 Um esfer condutor de rio está no interior de um csc esféric fin condutor de rio. A esfer e csc esféric são concêntrics

Leia mais

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss

1 a Lista de Exercícios Carga Elétrica-Lei de Gauss 1 1 ist de Eercícios Crg Elétric-ei de Guss 1. Um crg de 3, 0µC está fstd 12, 0cm de um crg de 1, 5µC. Clcule o módulo d forç ue tu em cd crg. 2. ul deve ser distânci entre dus crgs pontuis 1 = 26, 0µC

Leia mais

b para que a igualdade ( ) 2

b para que a igualdade ( ) 2 DATA DE ENTREGA: 0 / 06 / 06 QiD 3 8º ANO PARTE MATEMÁTICA. (,0) Identifique o monômio que se deve multiplicr o monômio 9 5 8 b c. 5 b pr obter o resultdo. (,0) Simplifique s expressões bixo. ) x + x(3x

Leia mais

20/07/15. Matemática Aplicada à Economia LES 201

20/07/15. Matemática Aplicada à Economia LES 201 Mtemátic Aplicd à Economi LES 201 Auls 3 e 4 17 e 18/08/2015 Análise de Equilíbrio Sistems Lineres e Álgebr Mtricil Márci A.F. Dis de Mores Análise de Equilíbrio em Economi (Ching, cp 3) O significdo do

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Considerando a necessidade de contínua atualização do Programa de Controle da Poluição do Ar por Veículos Automotores - PROCONVE;

Considerando a necessidade de contínua atualização do Programa de Controle da Poluição do Ar por Veículos Automotores - PROCONVE; http://www.mm.gov.br/port/conm/res/res97/res22697.html Pge 1 of 5 Resoluções RESOLUÇÃO Nº 226, DE 20 DE AGOSTO DE 1997 O Conselho Ncionl do Meio Ambiente - CONAMA, no uso ds tribuições que lhe são conferids

Leia mais

Elementos Finitos Isoparamétricos

Elementos Finitos Isoparamétricos Cpítulo 5 Elementos Finitos Isoprmétricos 5.1 Sistems de Referênci Globl e Locl Considere o elemento liner, ilustrdo n Figur 5.1, com nós i e j, cujs coordends são x i e x j em relção o sistem de referênci

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Plano de Trabalho Docente Ensino Médio

Plano de Trabalho Docente Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: Ciêncis d Nturez, Mtemátic e sus Tecnologis Componente Curriculr: MATEMÁTICA

Leia mais

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

Conceitos de Cavitação. Capítulo 8: Conceitos de Cavitação

Conceitos de Cavitação. Capítulo 8: Conceitos de Cavitação Conceitos de Cvitção Cpítulo 8: Conceitos de Cvitção Cpítulo 8: Conceitos de Cvitção Introdução Os fluidos podem pssr do estdo líquido pr o gsoso dependendo ds condições de pressão e tempertur que estão

Leia mais

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim

Questão 1: (Valor 2,0) Determine o domínio de determinação e os pontos de descontinuidade da 1. lim Escol de Engenhri Industril e etlúrgic de olt edond Pro Gustvo Benitez Alvrez Nome do Aluno (letr orm): Prov Escrit Nº 0/006 Não rsure est olh, pois cálculos relizdos nest, não serão considerdos Use olh

Leia mais

Phoenix do Brasil Ltda.

Phoenix do Brasil Ltda. RESISTOR DE FIO AXIAL - AC CARACTERÍSTICAS Resistores de uso gerl Alt potênci em tmnho compcto Alto desempenho em plicções de pulso Váris opções de pré-form dos terminis Revestimento pr lt tempertur TECNOLOGIA

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Capítulo 7. Misturas de Gás e Vapor e Condicionamento de Ar

Capítulo 7. Misturas de Gás e Vapor e Condicionamento de Ar Cpítulo 7 Mitur de Gá e Vpor e Condicionmento de Ar Objetivo Etudr o fundmento d Picrometri, que é Termodinâmic d mitur de r e vpor d águ. Avlir lgum plicçõe d Picrometri em proceo de Condicionmento de

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais