ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
|
|
|
- Artur Sintra Sanches
- 10 Há anos
- Visualizações:
Transcrição
1 ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
2 Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}. III. Existe uma função f : S T injetiva. IV. Nenhuma função g : T S é sobrejetiva. Então, é(são) verdadeira(s) a) apenas I. b) apenas IV. c) apenas I e IV. d) apenas II e III. e) apenas III e IV. I. Falsa. O símbolo é usado para relacionar um elemento e um conjunto e não para relacionar dois conjuntos. O certo seria {0} S. II. Falsa. O conjunto S T U é formado pelos elementos que pertencem, simultaneamente, aos conjuntos S, T e U, portanto S T U=. III. Falsa. Como S tem mais elementos que T, então existirá x 1 S e x 2 S, x x, tais que 1 2 f(x 1 ) = f(x 2 ). Portanto, f não pode ser injetiva. IV. Verdadeira. Pelo motivo expresso no item III, g não pode ser injetiva e portanto não poderá ser sobrejetiva. gabarito: Letra b
3 Matemática Questão 02 Em uma mesa de uma lanchonete, o consumo de 3 sanduíches, 7 xícaras de café e 1 pedaço de torta totalizou R$ 31,50. Em outra mesa, o consumo de 4 sanduíches, 10 xícaras de café e 1 pedaço de torta totalizou R$ 42,00. Então, o consumo de 1 sanduíche, 1 xícara de café e 1 pedaço de torta totaliza o valor de a) R$ 17,50. b) R$ 16,50. c) R$ 12,50. d) R$ 10,50. e) R$ 9,50. Seja "s" o preço de um sanduíche, "c" o preço de uma xícara de café e "t" o preço de um pedaço de torta. Então, temos: Mesa 1: 3. s + 7. c + 1. t = R$ 31,50 Mesa 2: 4. s c + 1. t = R$ 42,00 Multiplicando a 1ª equação por 3 e a 2ª por 2, temos: 9. s c + 3. t = R$ 94,50 8. s c + 2. t = R$ 84,00 Subtraindo a 2ª equação da 1ª temos: 1. s + 1. c + 1. t = R$ 10,50 gabarito: Letra d
4 Matemática Questão 03 Uma circunferência passa pelos pontos A = (0,2), B = (0,8) e C = (8,8). Então, o centro da circunferência e o valor de seu raio, respectivamente, são a) (0,5) e 6. b) (5,4) e 5. c) (4,8) e 5,5. d) (4,5) e 5. e) (4,6) e 5. Observe que o ângulo é reto, e como ele está inscrito na circunferência, ele determina um arco de 180. Portanto, é diâmetro da circunferência. Aplicando o teorema de Pitágoras no triângulo ABC, temos: O centro da circunferência será o ponto médio do segmento. gabarito: Letra d
5 Matemática Questão 04 Sobre o número é correto afirmar que a) x ]0, 2[. b) x é racional. c) é irracional. d ) x 2 é irracional. e ) x ]2, 3[. Por inspeção, da identidade acima, temos x = 2. gabarito: Letra b
6 Matemática Questão 05 Considere o triângulo de vértices A, B e C, sendo D um ponto do lado e E um ponto do lado. Se m ( ) = 8 cm, m ( ) = 10 cm, m ( ) = 4 cm e m ( ) = 6 cm, a razão das áreas dos triângulos ADE e ABC é a) c) e) b) d) gabarito: Letra d
7 Matemática Questão 06 Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a a) c) e) b) d) Aplicando Pitágoras no ΔAMN gabarito: Letra c
8 Matemática Questão 07 A circunferência inscrita num triângulo equilátero com lados de 6 cm de comprimento é a interseção de uma esfera de raio igual a 4 cm com o plano do triângulo. Então, a distância do centro da esfera aos vértices do triângulo é (em cm) a) b) 6. c)5. d) 4. e) No triângulo eqüilátero, a distância do centro à um dos lados é 1/3 da altura. Aplicando Pitágoras ao triângulo ao lado temos: No triângulo eqüilátero, a distância do centro a um dos vértices 2/3 da altura. 2 3 x = onde = 6 cm x = 2 3 cm 3 2 Aplicando Pitágoras ao triângulo ao lado temos: d² = h² + x² onde 2 2 h = 13 cm e x = 2 3 cm. 2 ( ) = + = 2 d d 5cm gabarito: Letra c
9 Matemática Questão 08 Uma esfera de raio r é seccionada por n planos meridianos. Os volumes das respectivas cunhas esféricas contidas em uma semiesfera formam uma progressão aritmética de razão. Se o volume da menor cunha for igual a, então n é igual a a) 4 c) 3 e) 7 b) 6 d) 5 Uma esfera seccionada por n planos meridianos é dividida em 2n cunhas, como a que foi destacada na figura.portanto, em uma semiesfera temos n cunhas, cujos volumes estão em P.A. O volume da 1ª cunha e a razão da progressão foram dados e o volume da semiesfera é Então, temos: estão em P.A. Calculando a soma desta P.A., gabarito: Letra c
10 Matemática Questão 09 Considere um prisma regular em que a soma dos ângulos internos de todas as faces é 7 200º. O número de vértices deste prisma é igual a a) 11 c) 10 e) 22 b) 32 d) 20 Considere um prisma regular em que as bases são polígonos regulares de n lados. A soma dos ângulos internos de um polígono de n lados é, Sn = (n - 2) 180º. Este prisma terá n faces laterais, que são quadrangulares e as duas bases, que possuem n lados. Portanto, 7200º = n. S S n 7 200º = n (4-2) 180º + 2. (n - 2) 180º n = 11 lados. Se cada base é um polígono de 11 lados, teremos 22 vértices no prisma. Resposta: e
11 Matemática Questão 10 Em relação a um sistema de eixos cartesiano ortogonal no plano, três vértices de um tetraedro regular são dados por A = (0, 0), B = (2,2) e C =. O volume do tetraedro é a) c) e) 8. b) 3. d) O tetraedro regular é um sólido que tem como faces 4 triângulos equiláteros. Uma dessas faces está representada anteriormente. As arestas deste tetraedro são iguais ao comprimento do segmento. Aplicando o teorema de Pitágoras no triângulo ABD, temos: a² = 2² + 2² O volume de um tetraedro regular da aresta "a" é gabarito: Letra a
12 Matemática Questão 11 No desenvolvimento de (ax 2-2bx + c + 1) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e -1 são raízes de p(x), então a soma a + b + c é igual a a). c). e). b). d) 1. P (x) = (ax 2-2 bx + c + 1) 5 p (0) = p (-1) = 0, pois 0 é -1 são raízes e p (1) = 32, pois os coeficientes de p (x) somam 32. Substituindo, temos: gabarito: Letra A
13 Matemática Questão 12 O menor inteiro positivo n para o qual a diferença fica menor que 0,01 é a) c) e) b) d) gabarito: Letra b
14 Matemática Questão 13 Seja D = R \ {1} e f : D D uma função dada por. Considere as afirmações: I. f é injetiva e sobrejetiva. II. f é injetiva, mas não sobrejetiva. III. = 0, para todo x D, x 0 IV. f(x). f(-x) = 1, para todo x D. Então são verdadeiras a) apenas I e III. b) apenas I e IV. c) apenas II e III. d) apenas I, III e IV. e) apenas II, III e IV. f (x) é injetiva (x) é sobrejetiva, pois =IR \ {1} fazendo x = -1, temos f(x).f(-x)= 1 e f (1) não está definido. gabarito: Letra A
15 Matemática Questão 14 O número complexo 2 + i é raiz do polinômio f(x) = x 4 + x 3 + px 2 + x + q, com p, q R. Então, a alternativa que mais se aproxima da soma das raízes reais de f é a) 4 c) 6 e) -5 b) -4 d) i é raiz e p, q, R 2 - i é raiz f(x) é divisível por [x-(2+i)][ x-(2-i)] = x 2-4x + 5 x 4 +x 3 +px 2 +x+q cujas raízes são 2+i, 2-i,-2 e -3 S = -2-3 = -5 gabarito: Letra e
16 Matemática Questão 15 Considere a equação em x, a x+1 = b x/1, em que a e b são números reais positivos, tais que ln b = 2ln a > 0. A soma das soluções da equação é A) 0 B) 1 C) 1 D) ln 2 E) 2 RESOLUÇÃO: ln b = 2 ln a > 0 b > a > 1 ln b = 2 ln a ln b a 2 b = a 2 E, substituindo na equação, temos GABARITO: Letra B
17 Matemática Questão 16 O intervalo I R que contém todas as soluções da inequação arctan a) [-1,4]. c) [-2,3]. e) [4,6]. b) [-3, 1]. d) [0,5]. Sejam α e β tais que : Assim, temos: gabarito: Letra C
18 Matemática Questão 17 Seja z C com z = 1. Então, a expressão a) maior que 1, para todo ω com ω > 1. b) menor que 1, para todo ω com ω < 1. c) maior que 1, para todo ω com ω z. d) igual a 1, independente de ω com ω z. e) crescente para ω crescente, com ω < z assume valor z C, z = 1 = z z. z = z 2 = 1 gabarito: Letra D
19 Matemática Questão 18 O sistema linear, não admite solução se somente o número real b for igual a: A) 1 B) 0 C) 1 D) 2 E) 2 Escalonando O sistema é impossível, se e somente se, b = 0 e b 2 b Isso ocorre para b = 1 gabarito: Letra A
20 Matemática Questão 19 Retiram-se 3 bolas de uma urna que contém 4 bolas verdes, 5 bolas azuis e 7 bolas brancas. Se P 1 é a probabilidade de não sair bola azul e P 2 é a probabilidade de todas as bolas saírem com a mesma cor, então a alternativa que mais se aproxima de P 1 + P 2 é: A) 0,21 B) 0,25 C) 0,28 D) 0,35 E) 0,40 gabarito: Letra E
21 Matemática Questão 20 A distância focal e a excentricidade da elipse com centro na origem e que passa pelos pontos (1, 0) e (0, 2) são, respectivamente, a = 2, b = 1 c 2 = a 2 b 2 c = ¹3 2c = 2¹3 e c/a = gabarito: Letra E
22 Matemática Questão 21 Seja a 1, a 2,... uma progressão aritmética infinita tal que Determine o primeiro termo e a razão da progressão. fazendo n = 1 temos: a 3 = ¹2 + π fazendo n = 2 temos: a 3 + a 6 = 2¹2 + 4π a 6 = ¹2 + 3π então como a 6 = a 3 + 3r, onde r é a razão ¹2 + 3π = ¹2 + π +3r r = e ainda a1 = a3 2r a1 = ¹2 + π a1 = ¹2
23 Matemática Questão 22 Seja C a circunferência de centro na origem, passando pelo ponto P = (3, 4). Se t é a reta tangente a C por P, determine a circunferência C' de menor raio, com centro sobre o eixo x e tangente simultaneamente à reta t e à circunferência C. (t): 3x + 4y 25 = 0 C'O' = C'T
24 Matemática Questão 23 Sejam A e B matizes de 2 X 2 tais que AB = BA e que satisfazem à equação matricial A 2 + 2AB B = 0. Se B é inversível, mostre que A) AB 1 = B 1 A e que B) A é inversível A) A = A AI = I.A A.(B.B 1 ) = (B.B 1 ).A (A.B).B 1 = B.B 1.A (B.A).B 1 = B.B 1.A Multiplicando-se por B 1 pela esquerda, vem: (B 1.B).A.B 1 = (B 1.B).B 1.A I.A.B 1 = I.B 1.A AB 1 = B 1.A B) A AB = B A(A + 2B) = B det A. det (A + 2B) = det B E como B é inversível de t B 0 det A 0 A é inversível
25 Matemática Questão 24 Seja n o número de lados de um polígono convexo. Se a soma de n 1 ângulos (internos) do polígono é 2004º, determine o número n de lados do polígono. Como o polígono é convexo, cada ângulo interno é menor que 180º, e: 2004º < S i < 2184º 2004º < (n 2). 180º < 2184º 2364º < 180º n < 2544º 13,13 < n < 14,13 n = 14 O número de lados do polígono é 14.
26 Matemática Questão 25 A) Mostre que o número real é raiz da equação x 3 + 3x 4 = 0. B) Conclua de A que α é um número racional. A) B)
27 Matemática Questão 26 Considere a equação em x sendo m um parâmetro real. A) Resolva a equação em função do parâmetro m. B) Determine todos os valores de m para os quais a equação admite solução não nula. A) B) para que tenhamos as soluções deveremos ter. Demonstração: (i) (ii)
28 (iii) testanto a solução: (iv) testando a solução: De (i), (ii), (iii) e (iv) vem que
29 Matemática Questão 27 Um dos catetos de um triângulo retângulo mede ³2 cm. O volume do sólido gerado pela rotação deste triângulo em torno da hipotenusa é π cm 3. Determine os ângulos deste triângulo. Os ângulos são 30º, 60º e 90º.
30 Matemática Questão 28 São dados dois cartões, sendo que um deles tem ambos os lados na cor vermelha, enquanto o outro tem um lado na cor vermelha e o outro lado na cor azul. Um dos cartões é escolhido ao acaso e colocado sobre uma mesa. Se a cor exposta é vermelha, calcule a probabilidade de o cartão escolhido ter a outra cor também vermelha. 1º cartão: face v 1 e face v 2. 2º cartão: face v 3 e face a. A face exposta pode ser v 1 ou v 2 ou v 3. Ω = {v 1, v 2, v 3 } Para que a outra face seja vermelha, a face exposta tem que ser v 1 ou v 2. E = {v 1, v 2 }
31 Matemática Questão 29 Obtenha os pares (x, y), com x, y [0,2 π], tais que sen (x + y) + sen (x y) = sen x + cos y = 1 Fatorando-se a 1º equação tem-se: 2 sen x. cos y = sen x + cos y = 1 cos y = 1 sen x 2. sen x. (1 sen x) = 4 sen 2 x 4 sen x + 1 = 0
32 Matemática Questão 30 Determine todos os valores reais de α para os quais a equação admita exatamente três soluções distintas. (x 1) 2 = x a (x 1) 2 = x a (i) Se x a 0 (x 1) 2 = x a x 2 x + 1 = x a x 2 3x + a + 1 = 0 1 = 9 4a 4 = 5 4a x = (ii) Se x a < 0 (x 1) 2 = a x x 2 2x + 1 a = 0 2 = a = 4a 3 x = Três serão os casos com possibilidade de resposta: 1º caso: 1 > 0 e 2 = 0 5 4a > 0 a < ^ 4a 3 = 0 a = a = É importante notar que 2º caso: 1 = 0 e 2 > 0 Note que 3º caso: 1 > 0 e 2 > 0 e há raízes comuns nos casos (i) e (ii) Portanto os valores de a pedidos são 1, e.
Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.
NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto
PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010
PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto [email protected]
A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se
PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B
NOTAÇÕES C: conjunto dos números compleos. Q: conjunto dos números racionais. R: conjunto dos números reais. Z: conjunto dos números inteiros. N {0,,,,...}. N {,,,...}. 0: conjunto vazio. A \ B { A; B}.
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C
Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)
Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)
Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se
"Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
Resolução da Prova da Escola Naval 2009. Matemática Prova Azul
Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova
n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1
FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.
FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8
UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?
UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe
1) Na figura abaixo, a reta r tem equação x+3y-6=0 e a reta s passa pela origem e tem coeficiente angular 3
) Na figura abaixo, a reta r tem equação x+y-6=0 e a reta s passa pela origem e tem coeficiente angular. A área do triângulo OAB, em unidades de área, é igual a: a) b) c) d)4 (correta) e)5 O(0,0) 0 6 0
Obs.: São cartesianos ortogonais os sistemas de coordenadas
MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
1 B 1 Dado z = ( 1 + 3 i), então z n é igual a
MATEMÁTICA NOTAÇÕES : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária:
www.exatas.clic3.net
www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ
Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre
Gabarito - Matemática - Grupos I/J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$
Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B
1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,
MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.
MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio
ITA - 2003 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2003 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z. Das seguintes afirmações independentes: argumento de ω. é (são) verdadeira(s) A) todas. C) apenas II e III.
Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *
Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b
o anglo resolve a prova de Matemática do ITA
o anglo resolve a prova de Matemática do ITA Código: 858005 É trabalho pioneiro. Prestação de serviços com tradição de confiabilidade. Construtivo, procura colaborar com as Bancas Examinadoras em sua tarefa
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA
UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,
Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750
Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo
Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:
Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares
2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:
Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN
Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que
POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3
POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz
Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.
Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.
RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.
RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B
Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,
Vestibular 2ª Fase Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível
Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio
Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.
Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)
Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.
PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.
NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.
Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou
Prova Final 2012 1.ª chamada
Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9
RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função
FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA
FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
Geometria Métrica Espacial. Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos
MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números
MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.
PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos
Simulado OBM Nível 2
Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
PROFº. LUIS HENRIQUE MATEMÁTICA
Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,
Vestibular 1ª Fase Resolução das Questões Objetivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano
Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo
Questão 1. Questão 3. Questão 2. alternativa E. alternativa B. alternativa E. A figura exibe um mapa representando 13 países.
Questão A figura eibe um mapa representando países. alternativa E Inicialmente, no recipiente encontram-se 40% ( 000) = 400 m de diesel e 60% ( 000) = = 600 m de álcool. Sendo, em mililitros, a quantidade
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual
RASCUNHO {a, e} X {a, e, i, o}?
01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.
1ª Parte Questões de Múltipla Escolha
MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo
Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E
Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)
O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),
0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo
Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População
TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:
TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.
TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm
. Determine os valores de P(1) e P(22).
Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Matrizes; Matrizes Especiais; Operações com Matrizes; Operações Elementares
Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.
Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B
Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
27. O algarismo das unidades de 99 9-4 44 é. 28. Por qual potência de 10 deve ser multiplicado. 29. Considere os gráficos das funções f, g e h,
MATEMÁnCA 26. A expressão (0,125) 15 é equivalente a {A) 545. (B) 5--4 5 (C) 245. (D) 2--4 5 (E) (-2)45. 27. O algarismo das unidades de 99 9-4 44 é (A) 1. (B) 2.. (C). (D) 4. (E) 5. 28. Por qual potência
( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18
Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:
no de Questões A Unicamp comenta suas provas
Cad no de Questões A Unicamp comenta suas provas 99 SEGUNDA FASE 4 de Janeiro de 998 Matemática 0 prova de Matemática do Vestibular Unicamp procura identificar nos candidatos um conhecimento crítico e
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
PROBLEMAS DE OTIMIZAÇÃO
(Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é
Capítulo 1. x > y ou x < y ou x = y
Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos
15 + 17 + 19 +... + 35 + 37 = 312
MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos
MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário
Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por
XXIX Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas
Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 Sabemos que a água do mar contém 3, 5% do seu peso em sal, isto é, um quilograma de água do mar contém 35 gramas de sal (a) Determine quantos litros
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,
Questão 01. Questão 02
PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo
Relações Métricas nos. Dimas Crescencio. Triângulos
Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem
FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.
FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se
Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C
Questão 1 Um reservatório, com 40 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 18% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
UFRJ- VESTIBULAR 2004 PROVA DE MATEMÁTICA.
UFRJ- VESTIBULAR 00 ROVA DE MATEMÁTICA Resolução e comentário pela rofessora Maria Antônia Conceição Gouveia Apresente suas soluções de forma clara, indicando, em cada caso, o raciocínio que conduziu à
