Spatial lowpass filter (neighborhood averaging) Highpass spatial filter. Enfatiza arestas. Máscaras usadas para calcular Gradiente: Roberts.

Tamanho: px
Começar a partir da página:

Download "Spatial lowpass filter (neighborhood averaging) Highpass spatial filter. Enfatiza arestas. Máscaras usadas para calcular Gradiente: Roberts."

Transcrição

1 9 Spaial lowpass filer (neighborhood averaging) 8 9 Highpass spaial filer 8 Enfaiza aresas Máscaras usadas para calcular Gradiene: Robers Prewi Sobel Máscara usada para calcular Laplaciano 4

2 // lowpass.cpp #include <imgall> in main() { IMGGRY a; le(a,"lennag.ga"); IMGFLT b=a; IMGFLT f(,,./9.); IMGFLT c=convolucao(b,f); imp(c,"lowpass.ga"); } // highpass.cpp #include <imgall> in main() { IMGFLT a; le(a,"lennag.ga"); a.backg()=.; IMGFLT hp(,,.,.,.,.,-8.,.,.,.,.); hp=(./9.)*hp; hp.backg()=.; } a=4.*convolucao(a,hp); imp(a,"highpass.ga"); //laplace.cpp #include <imgall> in main() { IMGGRY a; le(a,"lennag.ga"); IMGFLT b=a; IMGFLT f(,,.,-.,., -., 4.,-.,.,-.,.); f=.*f; IMGFLT c=convolucao(b,f); c=.+c; imp(c,"laplace.ga"); } //prewi.cpp #include <imgall> in main() { IMGGRY a; le(a,"lennag.ga"); IMGFLT b=a; IMGFLT f(,, -.,.,., -.,.,., -.,.,.); f=.*f; IMGFLT c=convolucao(b,f); c=.+c; imp(c,"prewi.ga"); }

3 lennag.ga lowpass.ga highpass.ga laplace.ga prewi.ga enfborda.ga

4 Espaço de escala linear (gaussiana) Normal desvio= media=(,) Normal Normal do gradiene Módulo da gradiene do gradiene do gradiene do gradiene Laplaciano 4

5 Módulo da convolução com gradiene do gaussiano (σ=,) Thresholding σ=, σ=,

6 casa.ga σ= p=+ br=- (laplaciano) zero-crossing σ=. σ=. 6

7 σ=.7 σ= 7

8 Scale-space: Trabalhar em diferenes escalas (muli-escala ou muli-resolução).. Esruura piramidal. Wavele. Scale-space Scale-space:. Gaussiano (linear). Não-linear ou anisorópico. Morfológico Teoria original: para sinais D, mas pensando em aplicá-la em imagem. Convolução: Dadas duas funções f, g : a convolução é: f ( ) g( ) = ( f g)( ) = f ( u) g( u) du No fundo, é calcular média ariméica ponderada. Caso unidimensional: Definição: A disribuição normal N ( µ, σ), onde µ é média e σ é desvio-padrão, é definida aravés da função gaussiana: ( µ ) g (, µ, σ) = ep σ π σ Cosuma-se adoar σ = e µ = para ober a noação: Observação: limg ( ) G ( ) = ep 4π 4 resula em impulso de Dirac. Definição: Dado um sinal f :, definimos o espaço de escala de Gaussiano de f como a função F : + (denoada por F (, ) ou F () ) dada por: F ( ) = G ( ) f ( ) Veja a figura do [Wikin-98]. O espaço de escala Gaussiano em as seguines propriedades básicas: Linearidade: a ransformação L que leva o sinal original f () ao espaço de escala () é linear, iso é, L { f + λg}( ) = L { f ( )} + λl { g( )}. Invariância por ranslação: se T é uma ranslação qualquer, o espaço de escala de (F), iso é, G ( ) Tf ( ) = T G ( ) f ( ). T ( ) F T ( f ) Causalidade: o sinal f é simplificado com a escala, iso é, os cruzamenos de zero não aumenam com o aumeno de. é 8

9 Vamos eplicar melhor a causalidade: Definição: Um cruzameno de zero (CZ) de uma função conínua fechado [ a, b] (possivelmene com a=b) al que: f ([ a, b]) = lim sinal( f ( )) = a lim sinal( f ( )) b+ f () é um inervalo Proposição (causalidade CZ): Dada f () conínua qualquer, considere o seu espaço de escala Gaussiano F () ; o número de cruzamenos de zero de F () não aumena à medida em que cresce. Corolário: Se f () é diferenciável, enão o número de máimos e mínimos de F () não aumena à medida em que cresce. Proposição: () é uma função suave (infiniamene diferenciável) para qualquer > fio. F Demonsração: Noe que n F = n que eise pois a função gaussiana n n G ( G ( ) f ( ) ) = f ( ) n G ( ) () é suave para qualquer >. Observação: Em qualquer escala, um eremo da n-ésima derivada (em relação à ) é dada pelo cruzameno de zero de (n+)-ésima derivada. Assim, para achar as aresas da imagem, devemos procurar cruzamenos de zero da segunda derivada. O espaço de escala da segunda (ou da n-ésima) derivada pode ser calculado pela proposição acima. Proposição: A parir de um sinal f () monamos o espaço de escala Gaussiano (). Enão o espaço de escala de h( ) = F ( ) é dado por H ( ) = F ( ). Caso bidimensional n + Definição: A disribuição normal bidimensional N (,, σ), onde (, ) é média e σ é desvio-padrão, é definida aravés da função gaussiana: ( ) ( ) g (,, σ) = ep πσ σ Cosuma-se adoar σ = e, ) (,) para ober a noação: ( = Definição: Dada uma imagem conínua G + (, ) = ep 4π 4 + :, definimos o espaço de escala de Gaussiano de f como a função F : (denoada por (, ) ) dada por: f F (, ) = G (, ) f (,F ) Proposição (separabilidade): A convolução acima pode ser calculada aravés de duas convoluções com Gaussianas unidimensionais: F (, ) = G ( ) G ( ) f (, ) ( ) ( ) Esa propriedade acelera a compuação dos espaços de escala Gaussianos para imagens. Além da linearidade e da invariância por ranslações, o espaço de escala Gaussiano bidimensional possui a invariância por roações do domínio: F 9

10 Proposição: Seja f uma imagem qualquer e g = R f corresponde à roação de f de ângulo θ. Enão o espaço de escala G é a roação de ângulo θ de F, iso é: θ f G = RθF g = R. [Teieira-]: Tenemos agora enender o que será o princípio da causalidade em D. Noe que não faz senido falar em número de cruzamenos de zero de uma imagem, já que em geral os cruzamenos de zero de uma imagem formam um conjuno de curvas, não um conjuno discreo de ponos. Por ouro lado, pode-se falar do número de máimos e mínimos locais de uma imagem genérica (ou de u msinal n-dimensional). No enano, não é verdade que o número de ponos críicos diminua com a escala no espaço de escala de uma imagem qualquer. θ Bibliografia: [Wikin-98] A. P. Wikin, Scale-Space Filering, Proc. 7h Join Conf. Arificial Inelligence, pp. 9-, Karlsruhe, W. German, 98. [Teieira-] L. Velho, R. Teieira, J. Gomes, Inrodução aos Espaços de Escala, Escola de Compuação, IME-USP.

11 funcion deriv N=; d=.6; for i=:n-; (ind(i))=i/n-.; end; for i=:*n-; (ind(i))=i/n-; end; for i=:n-; =(ind(i)); =*pi*; if (.<= & <.4); (ind(i))=.4; elseif (-.<= & <-.); (ind(i))=; elseif (-.<= & <-.) (ind(i))=-.4; else; (ind(i))=sin()+sin(*); end; end; for i=:n-; =*pi*(ind(i)); lg(ind(i)) =... ( ( (^) / ((*pi)^.*d^) ) -... ( /( (*pi)^.*d^ ) )... ) *... ep( (-^) / (*d^)... ); end; sd=(d/(4*n)^.).* conv(lg,); figure; plo(,,'b',,sd,'r',,*d^.7.* lg,'g'); grid; ile('derivada d=.6 sinal-azul SegDef-verm LapGau-verd'); ais([ ]); label(''); label(''); funcion deriv N=; d=.8; for i=:n-; (ind(i))=i/n-.; end; for i=:*n-; (ind(i))=i/n-; end; for i=:n-; =(ind(i)); =*pi*; if (.<= & <.4); (ind(i))=.4; elseif (-.<= & <-.); (ind(i))=; elseif (-.<= & <-.) (ind(i))=-.4; else; (ind(i))=sin()+sin(*); end; end; for i=:n-; =*pi*(ind(i)); gg(ind(i))= (-/((*pi)^.*d^)) * ep(-(^)/(*d^)); end; pd=(d/(4*n)^.).* conv(gg,); figure; plo(,,'b',,pd,'r',, *d^.7.* gg,'g'); grid; ile('derivada d=.8 sinal-azul PrimDer-verm GradGau-verd'); ais([ ]); label(''); label('');

12 Derivada d=. sinal-azul SegDef-verm LapGau-verd Derivada d=. sinal-azul SegDef-verm LapGau-verd Derivada d=. sinal-azul SegDef-verm LapGau-verd Derivada d=.4 sinal-azul SegDef-verm LapGau-verd Derivada d=.8 sinal-azul SegDef-verm LapGau-verd Derivada d=.6 sinal-azul SegDef-verm LapGau-verd

13 Derivada d=. sinal-azul PrimDer-verm GradGau-verd Derivada d=. sinal-azul PrimDer-verm GradGau-verd Derivada d=. sinal-azul PrimDer-verm GradGau-verd Derivada d=.4 sinal-azul PrimDer-verm GradGau-verd Derivada d=.8 sinal-azul PrimDer-verm GradGau-verd Derivada d=.6 sinal-azul PrimDer-verm GradGau-verd

14 Espaço de escala linear (coninuação) Discreizações. Desvio= normal:ponilhado bessel modificado o ipo:solido Desvio=. normal:ponilhado bessel modificado o ipo:solido

15 Função modificada de Bessel (de primeiro ipo) em MaLab : besseli(n,) Obs: a implemenação de MaLab4 coném erro. Função modificada de Bessel (de primeiro ipo) em C++: #include <cmah> double faorial(in ) { double =; for (in c=; c>; --c) =*c; reurn ; } double besseli(in n, double ) { double eps=e-/; if (abs()<eps) { if (n==) reurn ; else reurn ; } else { double =/; if (n<) n=-n; double ermo=pow(,n)/faorial(n); double soma=ermo; double ermoan; in cona=; for (in k=; cona<; ++k) { ermoan=ermo; ermo=(ermo**)/(k*(k+n)); soma=soma+ermo; if (abs(ermo-ermoan)<eps) cona++; else cona=; } reurn soma; } } K=. blue=ep(-abs(t)/k) red=/(+(t/k) ) T

16 Imagem original k=., λ=., 6 ierações k=., λ=., 6 ierações k=., λ=., 6 ierações 6

17 PEE-796 Algorimos para Proc., Anál. e Sínese de Imagens, o período de Aula 8 Espaço de escala anisorópica Perona Perona Tuke ma =, σ =., λ =. ma =, σ =., λ =. ma =, σ =., λ =. ma =, σ =.4, λ =. ma =, σ =.4, λ =. ma =, σ =.4, λ =. 7

18 Perona Perona Tuke ma =, σ =.8, λ =. ma =, σ =.8, λ =. ma =, σ =.8, λ =. ma =, σ =.6, λ =. ma =, σ =.6, λ =. ma =, σ =.6, λ =. 8

19 original gaussiana mediana difusão anisorópica 9

Programa de conversão imagem grayscale para imagem float:

Programa de conversão imagem grayscale para imagem float: Conversão de IMGGRY para IMGFLT: Imagem grascale ImagemG.ma : 4 4 8 5 6 8 9 4 6 8 55 9 4 Programa de conversão imagem grascale para imagem floa: #include in main() { IMGGRY a; le(a,"imagemg.ma");

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Filtros espaciais. Processamento e Recuperação de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP)

Filtros espaciais. Processamento e Recuperação de Imagens Médicas. Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP) Processamento e Recuperação de Imagens Médicas Prof. Luiz Otavio Murta Jr. Depto. De Computação e Matemática (FFCLRP/USP) 1 Propriedades Operadores de suavização os elementos da máscara são positivos e

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

Capítulo 3: Difusão Anisotrópica

Capítulo 3: Difusão Anisotrópica Capíulo 3: Difusão Anisorópica Resumo e nossas conribuições O espaço de escala é uma das eorias uilizadas para a análise muli-escala de imagens e sinais. A écnica do espaço de escala linear gera as imagens

Leia mais

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x 18 - Diferencial.1 Plano angene O plano angene a uma superfície z f(x, no pono (x 0, y 0,f(x 0,y 0 )) é dado por: z f ( x0,.(.( y Exemplo 1: Deerminar o plano angene a superfície z x +y nos ponos P(0,0,0)

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Incertezas na Robótica Móvel Filtros Bibliografia Recomendada. EESC-USP M. Becker /78

Incertezas na Robótica Móvel Filtros Bibliografia Recomendada. EESC-USP M. Becker /78 Aula 5 Inrodução à Robóica Móvel Lidando com Incerezas Prof. Dr. Marcelo Becker EESC - USP Sumário da Aula Inrodução às Incerezas Incerezas na Robóica Móvel Filros Bibliografia Recomendada EESC-USP M.

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

Filtragem linear. jorge s. marques, questão: como remover artefactos?

Filtragem linear. jorge s. marques, questão: como remover artefactos? Filtragem linear questão: como remover artefactos? redução de ruído como reduzir o ruído de uma imagem? ideia: substituir cada piel por uma média Jm,n = m+ k n+ k k + p= m kq= n k Ip,q k= k+ k+ k= filtro

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes 6 8 - - - -6-8 -3-3 Frequency (khz) Hamming kair Chebyshev Simas Lineares e Invarianes Power Specral Densiy Env B F CS1 CS B F CS1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz) Sine Wave Join

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO . INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. RINCIAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por f, β α 0, Notação: ~ Uα, β.

Leia mais

Espaço de Escala. Introdução. Resumo

Espaço de Escala. Introdução. Resumo Espaço de Escala Resumo O espaço de escala é uma das teorias utilizadas para a análise multi-escala de imagens e sinais. A técnica do espaço de escala linear gera as imagens em resoluções grossas fazendo

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 6: Inrodução ao Cálculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

Filtros espaciais (suavizaçào)

Filtros espaciais (suavizaçào) Processamento de Imagens Médicas Filtros espaciais (suavizaçào) Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Física e Matemática (FFCLRP/USP) 1 Necessidade de pré-processamento 2 Propriedades

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 79 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 5: Represenações Enrada-Saída e o Domínio Transformado; Transformada de

Leia mais

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2

CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2 CDI II - TP Esboço de Resolução o Semesre 7/8 o Tese /Novembro/7 JUSTIFIQUE AS SUAS RESPOSTAS + 5 vals) Calcule ou mosre que não eise: i) a) b) sin) sin sin ) sin ) ii),,) +,,) + sin) sin,,) + sin) sin,,)

Leia mais

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995 1 III Congresso da Sociedade Poruguesa de Esaísica Guimarães, 26 a 28 Junho 1995 Políicas Ópimas e Quase-Ópimas de Inspecção de um Sisema Sujeio a Falhas Cláudia Nunes, João Amaral Deparameno de Maemáica,

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

PRINCIPAIS MODELOS CONTÍNUOS

PRINCIPAIS MODELOS CONTÍNUOS RINCIAIS MODELOS CONTÍNUOS 0 5.. Modelo uniforme Uma v.a. contínua tem distribuição uniforme com parâmetros α e β α β se sua função densidade de probabilidade é dada por, f β α 0, Notação: ~ Uα, β. 0,

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes 6 8 - - - -6-8 -3-3 Frequency (Hz) Hamming aiser Chebyshev Sisemas Lineares e Invarianes Power Specral Densiy Env B F CS1 CS B F CS1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz) Sine Wave

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

2 Formulação do Problema

2 Formulação do Problema 30 Formulação do roblema.1. Dedução da Equação de Movimeno de uma iga sobre Fundação Elásica. Seja a porção de viga infinia de seção ransversal consane mosrada na Figura.1 apoiada sobre uma base elásica

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Seja X uma variável aleatória com conjunto de valores X(S). Se o conjunto de valores for infinito não enumerável então a variável

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Redes de Computadores sem Fio

Redes de Computadores sem Fio Redes de Computadores sem Fio Prof. Marcelo Gonçalves Rubinstein Programa de Pós-Graduação em Engenharia Eletrônica Faculdade de Engenharia Universidade do Estado do Rio de Janeiro Programa Introdução

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Adapação: Aoria: João alo ereira Anónio Cosa Cladio Esperança alo Roma Caalcani onos e Vecores (2D) ono: Denoa posição no plano ( Vecor: Denoa deslocameno, iso é, incli

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 04 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 00 5.. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros α e β (α β) se sua função densidade de probabilidade é dada por f ( ) β α 0, Notação:

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Teoria da Informação

Teoria da Informação Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

REDUÇÃO DE DIMENSIONALIDADE

REDUÇÃO DE DIMENSIONALIDADE Análise de componenes e discriminanes REDUÇÃO DE DIMENSIONALIDADE Uma esraégia para abordar o problema da praga da dimensionalidade é realizar uma redução da dimensionalidade por meio de uma ransformação

Leia mais

Probabilidade Aula 08

Probabilidade Aula 08 332 Probabilidade Aula 8 Magno T. M. Silva Escola Politécnica da USP Maio de 217 A maior parte dos exemplos dessa aula foram extraídos de Jay L. Devore, Probabilidade e Estatística para engenharia e ciências,

Leia mais

Introdução à Computação Gráfica Geometria. Claudio Esperança Paulo Roma Cavalcanti

Introdução à Computação Gráfica Geometria. Claudio Esperança Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Cladio Esperança alo Roma Caalcani onos e Veores (2D) ono: Denoa posição no plano Veor: Denoa deslocameno, iso é, incli a noção de direção e magnide Ambos são normalmene

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

PROVA DE ENGENHARIA GRUPO II

PROVA DE ENGENHARIA GRUPO II Quesão 34 PROVA DE ENGENHARIA GRPO II Resposa esperada a) (Alernaiva 1) Ober inicialmene o equivalene elérico do corpo umano e depois monar o circuio elérico equivalene do sisema. Assim, pela Figura, noa-se

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário

2.ª AULA Representação gráfica de sinais Rampa unitária, Impulso unitário e Escalão unitário Insiuo Poliécnico de Seúbal Engenharia Elecroécnica Conrolo.ª AULA Represenação gráfica de sinais Rampa uniária, Impulso uniário e Escalão uniário Docene Prof.ª Sónia Marques Insiuo Poliécnico de Seúbal

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Processamento Digital de Imagens

Processamento Digital de Imagens Ciência da Computação Processamento Digital de Imagens Tópicos Detecção de Pontos Isolados Detecção de Linhas Prof. Sergio Ribeiro 2 Operações lógicas e aritméticas orientadas a vizinhança utilizam o conceito

Leia mais

Cálculo I - Lista 3: Derivadas

Cálculo I - Lista 3: Derivadas Faculdade de Zooecnia e Engenharia de Alimenos Universidade de São Paulo - Lisa : Derivadas Prof. Responsável: Andrés Vercik. (i) U a definição para ober o coeficiene angular da angene ao gráfico de f

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

Processamento Digital de Imagens Aula 04

Processamento Digital de Imagens Aula 04 exatasfepi.com.br Processamento Digital de Imagens Aula 04 André Luís Duarte A sabedoria oferece proteção, como o faz o dinheiro, mas a vantagem do conhecimento é esta: a sabedoria preserva a vida de quem

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1)

EXAME DE ESTATÍSTICA AMBIENTAL 2ª Época (V1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (V) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

PMR2560 Visão Computacional Filtragem e Suavização. Prof. Eduardo L. L. Cabral

PMR2560 Visão Computacional Filtragem e Suavização. Prof. Eduardo L. L. Cabral PMR50 Visão Computacional Filtragem e Suavização Prof. Eduardo L. L. Cabral Objetivos Processamento de imagens: Convolução; Filtragem D; Suavização de imagens. Convolução Definição de convolução no tempo

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 2 - Quarta Lista - 02/2016 Lisa de Exercícios de Cálculo 3 Módulo 2 - Quara Lisa - 02/2016 Pare A 1. Deermine as derivadas das funções abaixo com relação as suas respecivas variáveis. (a) f(x, y) = 3x 3 2x 2 y + xy (b) g(x, y) =

Leia mais

3 Modelos de Markov Ocultos

3 Modelos de Markov Ocultos 23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

Projeto de Filtros IIR. Métodos de Aproximação para Filtros Analógicos

Projeto de Filtros IIR. Métodos de Aproximação para Filtros Analógicos Projeto de Filtros IIR Métodos de Aproximação para Filtros Analógicos Introdução Especificações para filtros passa-baixas analógicos - Faixa de passagem: 0 W W p - Faixa de rejeição: W W r - Ripple na

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

VE1deFMID-4/5/2007 Questão Total Pontuação

VE1deFMID-4/5/2007 Questão Total Pontuação Nome: VE1deFMID-/5/007 Quesão 1 3 5 Toal Ponuação Máximo 10 10 10 0 0 90 1)[10 ps] O espaço veorial das radiações eleromagnéicas visíveis em infinias dimensões. No enano, para represenar cor, uilizamos

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais