CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2

Tamanho: px
Começar a partir da página:

Download "CDI II - TP Esboço de Resolução 1o. Semestre 17/18 1o. Teste 11/Novembro/2017 JUSTIFIQUE AS SUAS RESPOSTAS. = lim. s t2"

Transcrição

1 CDI II - TP Esboço de Resolução o Semesre 7/8 o Tese /Novembro/7 JUSTIFIQUE AS SUAS RESPOSTAS + 5 vals) Calcule ou mosre que não eise: i) a) b) sin) sin sin ) sin ) ii),,) +,,) + sin) sin,,) + sin) sin,,) + Como, não eise sin) sin) sin) + sin) sin) + sin) sin,,) + s sin ) s + s sin ) s s + s + s s + ) s s + s donde s,),) s sin ) sin ) sin ) e porano s +,,) + ) ) sin + 5 vals) Seja, +, caso conrário a) Mosre que as derivadas parciais de eisem em qualquer pono de R b) Averigue em que ponos de R é que é dierenciável a) Para, é dierenciável porque Sendo dierenciável nesse ) domínio, em aí derivadas parciais em ordem a cada uma das variáveis Para emos de calcular as derivadas parciais pela sua deinição: ) ) + ) )) ) ) sin ) +

2 Oura ve para ) ) + ) )) ) ) sin ) + Porano, em derivadas parciais em qualquer pono de R b) Jusiicámos na alínea anerior que é dierenciável em qualquer SE or dierenciável em enão ) ) ) Mas,,,),,) porque, por eemplo, ) sin + + ) + o )) + ) quando ) ) +,,) sin,,) + sin,,) + sin ) Porano, não é dierenciável na origem ) ) vals) Sejam) a, b, c, d, e, parâmeros reais b e) Considere a F + b + c d, deinida em R + e + e com valores em R a) Enconre um coeiciene de Lipschi global para DF Obs a ma a, d }, d ma a, d } ) ) a b J F e d ) donde ) ) ) J F J F a ) d a ) )) + d )) ) ) a ) + d ) ma a, b } e porano M, o coeiciene de Lipschi para J F, é ma a, b }

3 b) Faça um passo do méodo de Newon para resolver F, com a ) ) a a [ DF a ) ) ] F a ) ) [ ] ) b c ) e ) ) ) ) ) b c /e be e c/b c) Baseando-se no Teorema de Kanorovich, apresene uma condição a que os parâmeros devem obedecer para que o méodo de Newon aplicado como em b), convirja para a solução do problema Deermine uma bola em R cujo echo conem uma solução de F ) F a ) [ DF a ) ) ] M c + ) c b ) be e b e b) + e) ) ma a, b } c + ma a, b } e + ) ma a, b } b Nesas ) condições, pelo Teorema de Kanorovich, o echo da bola de cenro em a /e e raio a c/b a /e) + /b) saisa o pedido 4 5 vals) Será que o sisema de equações abaio em solução para a suicienemene pequeno? + + an a an + a Considere F ) + + an an + e noe-se que F ) ) Por ouro lado, ) + + J F cos cos + cos cos + ) ) e J F ) + + cujo de é não nulo Nesas condições, o Teorema da Função Inversa airma que F admie inversa local deinida numa viinhaça de F Seja essa inversa G; enão, para a ) ) a a suicienemene pequeno, G esará deinida em e G é solução do sisema a) a) ) a a de equações original Iso é, F G a) a) 3

4 5 + vals) a) Averigue se o conjuno X R , ++ } é uma variedade e de que dimensão A condição que caraceria os ponos de X pode ser reescria à cusa da unção F ) cuja jacobiana é: J F ) 4 Esa mari não é sobrejeciva se e só se, a sua primeira linha só coniver s, iso é, se Mas se, X, enão o que não é compaível com A jacobiana é enão sobrejeciva para odos os ponos de X Pelo Teorema da Função Implícia, X é, enão, uma variedade de dim, já que 3, onde 3 é a dimensão do domínio de F e a dimensão do espaço onde esá a imagem de F b) Deermine as equações do espaço e do hiperplano angenes a X num pono de X à sua escolha sugesão: aça ) Com aemos e Enão ) 4 ) J F ) ) Enão ker J F ) R 3 ) } Enão as equações do espaço angene a X em são e, 4

5 enquano que as do hiperplano angene a X em são e 6 + vals) Sejam a e b parâmeros reais a ) Deermine e classiique os ponos críicos de 3 + a b, discuindo essa classiicação em unção dos parâmeros a) 3 + a a /a a ) ou 3 /a 3 /a a /a) a /a Os ponos críicos são enão: ), ) b) Para a sua classiicação, precisamos das as derivadas de : ) 6 ) a ) 6 Porano: ) ) a ) ) a ) ) a a Esudemos, enão, as assinauras das ormas quadráicas associadas a cada um dos ponos críicos: 5

6 i Para o pono críico : ) ) h Q [ ] [ ) ) ] h h +h h a+h h + h h h ah h a A assinaura é, ) independenemene do sinal de a) e em ocorre um pono de sela ) ) ii Para o pono críico : ) h Q [ ] [ ] h h a) + h h a + h a) a h h h + h [ ) ) ] h h h 3 a + ) Para a < assinaura é, ) e em ocorre um mínimo; para a > ) assinaura é, ) e em ocorre um máimo 7 5 vals) Seja T : R n R m uma ransormação linear com n e m ineiros posiivos) Mosre que T é dierenciável Seja a R n Vamos mosrar que T é dierenciável em a Seja h R n Tem-se: T a + h) T a) T a) + T h) T a) T h) T h) +, onde é o vecor idênicamene nulo em R m Porano, T é dierenciável em a R n Como a é genérico em R n, T é dierenciável em R n 6

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO

UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA

Leia mais

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt

Exemplo 1: Determine se os sistemas abaixo possuem o seu inverso. Em caso afirmativo, determine o sistema inverso. = dt FACULDADE DE CIÊNCIA E TECNOLOGIA DE MONTES CLAROS FACIT QUARTO PERÍODO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO DISCIPLINA: SINAIS E SISTEMAS PROFESSOR: RENATO DOURADO MAIA EXEMPLOS RESOLVIDOS AULA : SINAIS

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES 8//7 SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES Teorema: Considere o seguine sisema de k equações a diferenças lineares de primeira ordem, homogêneo: x a x a x... a x k k x a x a x... a x k k x a x a x...

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funções de Várias Variáveis (FVV UFABC, 2019-Q1 Peer Hazard Prova 1 B 19:00hs, 25 de março, Sala A002, Bloco Bea, SBC Duração: 90 minuos Aviso: É erminanemene proibido consular qualquer maerial ou colega,

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Problemas das Aulas Práticas

Problemas das Aulas Práticas Mesrado Inegrado em Engenharia Elecroécnica e de Compuadores Conrolo em Espaço de Esados Problemas das Aulas Práicas J. Miranda Lemos Fevereiro de 3 J. M. Lemos, IST P. Consrução do modelo de esado a parir

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas.

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas. DEPARTAMENTO DE MATEMÁTICA APLICADA ICTE/UFTM Lisa 0 Cálculo Diferencial e Inegral II Profa.: LIDIANE SARTINI. Calcule os seguines ies: ( 7 5 ) 0 ( 5 + + ) + 5+ + + 0 5 5 5 5 7+ 0 5 + + + l) + + 5 + 5

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: damasceno@yahoo.com.br damasceno@interjato.com.br damasceno@hotmail.com http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 2013/2014 EC0014 FÍSCA 2o ANO 1 o SEMESTRE Nome: Duração 2 horas. Prova com consula de formulário e uso de compuador. O formulário pode ocupar apenas uma

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Insiuo Poliécnico de Viseu Escola Superior de Tecnologia Ficha práica n o 4 - Transformadas de Laplace Equações e Sisemas de Equações Diferenciais. Em cada uma das alíneas seguines, deermine Lf()}., 0

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO 5 a ORMUB/7 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: INSTRUÇÕES AVALIAÇÃO Ese caderno coném 5 (cinco) quesões. A solução de cada quesão, bem

Leia mais

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY DINÂMICA OULACIONAL COM CONDIÇÃO INICIAL FUZZY Débora Vailai (ICV-UNICENTRO), Maria José de aula Casanho (Orienadora), e-mail: zeza@unicenro.br. Universidade Esadual do Cenro-Oese, Seor de Ciências Exaas

Leia mais

LISTA CÁLCULO II 2017/1 FUNÇÕES DE VÁRIAS VARIÁVEIS

LISTA CÁLCULO II 2017/1 FUNÇÕES DE VÁRIAS VARIÁVEIS LISTA CÁLCULO II 07/ FUNÇÕES DE VÁRIAS VARIÁVEIS. Dada as funções y f ( y) e y g( y ) ( y) 5 deermine: y f ( ) f ( ) c) g( ) d) g( s s s ). Deermine e esboce o domínio da região: f y ln y ( ) ( ) f ( y)

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas NOV SCHOOL OF USINESS ND ECONOMICS CÁLCULO I º Semesre / TESTE INTERMÉDIO - Correcção 8 Novembro Duração: oras Não é permiido o uso de calculadoras. Não pode desagrafar as folas do enunciado. Responda

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x

3 - Diferencial. 3.1 Plano tangente. O plano tangente a uma superfície z = f(x,y) no ponto (x 0, y 0,f(x 0,y 0 )) é dado por: f x 18 - Diferencial.1 Plano angene O plano angene a uma superfície z f(x, no pono (x 0, y 0,f(x 0,y 0 )) é dado por: z f ( x0,.(.( y Exemplo 1: Deerminar o plano angene a superfície z x +y nos ponos P(0,0,0)

Leia mais

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t

5.1. Filtragem dos Estados de um Sistema Não-Linear Unidimensional. Considere-se o seguinte MEE [20] expresso por: t t 5 Esudo de Casos Para a avaliação dos algorimos online/bach evolucionários proposos nese rabalho, foram desenvolvidas aplicações em problemas de filragem dos esados de um sisema não-linear unidimensional,

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

TÓPICOS DE CORRECÇÃO

TÓPICOS DE CORRECÇÃO Faculdade de Economia Universidade Nova de Lisboa EXAME E CÁLCULO I Ano Lectivo 007-08 - º Semestre Eame Final de ª Época em de Junho de 008 Duração: horas e 30 minutos É proibido usar máquinas de calcular

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

Exercícios 2.7. e (4, 1 2 ).

Exercícios 2.7. e (4, 1 2 ). LIMITES E DERIVADAS 137 2.7 Eercícios 1. Uma curva em por equação f. (a) Escreva uma epressão para a inclinação da rea secane pelos ponos P 3, f 3 e Q, f. (b) Escreva uma epressão para a inclinação da

Leia mais

(I)

(I) Duas parículas esão em movimeno uniforme descrevendo circunferências concênricas de raio diferenes e períodos de 80 s e 0 s. No insane inicial as parículas esão alinhadas com o cenro das circunferências.

Leia mais

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gestão Desportiva

Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gestão Desportiva Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Apoio à Gesão Desporiva Tarefa 3 Módulo 1 A 1. Na figura esá represenada uma função afim f. Sabe-se que: A imagem de -1 é 5; O zero

Leia mais

! " # $ % & ' # % ( # " # ) * # +

!  # $ % & ' # % ( #  # ) * # + / G 6 a Aula 2006.09.25 AMIV! # & ' # # # * # + 6. Equações de Cauchy Riemann em coordenadas polares. Analiicidade e derivada do logarimo Com objecivo de deduzir a analiicidade do logarimo complexo, vamos

Leia mais

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a,

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a, - SOLUÇÃO DE EQUAÇÕES NÃO LINEARES INTRODUÇÃO Um dos problemas que ocorrem mais reqüentemente em trabalhos cientíicos é calcular as raízes de equações da orma: () 0. A unção () pode ser um polinômio em

Leia mais

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7.

CAPÍTULO 7. Exercícios 7.3. Ft () Gt () (t 2 sen t 2t, 6 t 3, t 2 3 sen t). 2. Sejam r r r r r r r r. 3. Sejam r r r r. Exercícios 7. CAPTULO 7 Execícios 7 Sejam F () (, sen, ) e G () (,, ) a) F () G () (, sen, ) (,, ) sen d) i j F () G () sen ( sen ) i ( 6) j ( sen ) F () G () ( sen, 6, sen ) Sejam () ij e x () i j i j () x () ( ) i

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Só no ELITE você encontra: Simulados semanais/quinzenais; A maior carga horária. Os melhores professores!

Só no ELITE você encontra: Simulados semanais/quinzenais; A maior carga horária. Os melhores professores! CONCURSO ITA 9 O ELITE CURITIBA aprova mais porque em qualidade seriedade e profissionalismo como lemas Confira nossos resulados e comprove porque emos mais a oferecer IME 9: Do SUL ineiro foram 8 aprovados

Leia mais

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Disciplina Análi Matemática II Curso Engenharia do Ambiente º Semestre º Ficha nº : Funções de várias variáveis: derivadas parciais, dierenciais e regra da cadeia DERIVADAS PARCIAIS

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO % dos membros

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI, 998) (N) (HAYKIN; VEEN,, p 79) O pulso rapezoidal x( ) da figura a seguir é aplicado

Leia mais

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS. Apresentação

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS. Apresentação FUNÇÕES DE DUAS OU MAIS VARIÁVEIS Apreação Preado a aluno a Observamos no nosso dia a dia que as ecnologias aplicadas à área de ciências eaas como inormáica engenaria ec surgem com muia rapide ano que

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

MÉTODOS MATEMÁTICOS IC

MÉTODOS MATEMÁTICOS IC MÉODOS MAEMÁICOS IC Um dos resulados mais celebrados da eoria de Fourier é o eorema abaixo: EOREMA DE RIESZ-FISCHER 907 Dado um sisema oronormal { φ n } + Cn n inia, ie,, se {C n } consiui uma seqüência

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Comportamento Assimptótico dos Mínimos Quadrados. Questão: Será que a estimativa de mínimos quadrados converge para o valor verdadeiro dos parâmetros?

Comportamento Assimptótico dos Mínimos Quadrados. Questão: Será que a estimativa de mínimos quadrados converge para o valor verdadeiro dos parâmetros? Modelação, Idenificação e Conrolo Digial 4-Idenificação Paramérica 36 Comporameno Assimpóico dos Mínimos Quadrados Quesão: Será que a esimaiva de mínimos quadrados converge para o valor verdadeiro dos

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Cinemática unidimensional

Cinemática unidimensional 0.1 Problemas correspondenes ao Capíulo 2 1 0.1 Problemas correspondenes ao Capíulo 2 Cinemáica unidimensional 1. A conclusão de Zeca esá errada. Podemos verificar isso mesmo anes de fazer qualquer cálculo,

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

CÁLCULO II Prof. Jerônimo Monteiro

CÁLCULO II Prof. Jerônimo Monteiro CÁLCULO II Pro. Jerônimo Monteiro Gabarito - Lista Semanal 08 Questão 1. Calcule 2 para (x, y, onde x = r cos θ e y = r sen θ. 2 Solução: Primeiro, calculamos pela regra da cadeia, como segue: = + = (

Leia mais