IV - Fractais. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)

Tamanho: px
Começar a partir da página:

Download "IV - Fractais. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)"

Transcrição

1 IV - Fractais Referêcia Pricipal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Spriger (1997)

2 Geometria Fractal Geometria euclideaa descreve órbitas regulares (periódicas e quase-periódicas) Geometria fractal descreve órbitas caóticas Características dos fractais: Estrutura complexa em várias escalas Repetição da estrutura em escalas diferetes Dimesão fractal (ão iteira)

3 1- Cojutos de Cator

4 Cojuto de Cator Extremos de cada itervalo pertecem ao cojuto de Cator K. Outros potos também, como ¼.

5 Cojuto de Cator K K K 1 3 : : : 3 itervalos de comprimeto 1/3 itervalos de comprimeto itervalos de comprimeto (1/3) (1/3) 3 K : itervalos de comprimeto (1/3) O comprimeto do itervalo O cojuto de Cator K é o cojuto dos potos lim K K O comprimeto de K é ulo : K é lim (/3) ( / 3) 0 que restam o

6 Para os úmeros etre 0 e 1, a base 3 r a a 3 + a a a k 0 ou 1 ou a k : dígito terário de r r 0. a 1 a 1 a 1...a (Poto fora de K ) 1/3 r a 1 [1/3 3] 1 a [0 x 3] 0 a 3 [0 x 3] 0 (Poto fora de K ) 1/ r _ a 1 [1/ 3] [1,5] 1 a [0.5 3] 1 a 3 [0.5 3] [1.5] 1

7 Potos em K 1 [0, 1/ 3] [ / 3, 1] possuem a 1 0 ou Potos em K [0, 1/ 9] [ / 9, 3 / 9] [6 / 9, 7 / 9] [8 / 9, 1] possuem a 1 0 ou e a 0 ou

8 Teorema: O cojuto de Cator, K, cosiste dos úmeros em [0, 1] que podem ser represetados, a base 3, apeas pelos dígitos 0 e.

9 Exemplo: r 0.0 K r 0x3-1 + x3 + 0x3-3 + x ( ) / 9 1/ 4 ( Soma a / (1 q) )

10 Cojuto ifiitamete cotável: seus elemetos podem ser colocados em correspodêcia com os úmeros aturais. Cojuto cotável: cojuto fiito ou cojuto ifiitamete cotável. Cojuto icotável: ão cotável. Subcojuto de um cojuto cotável é um cojuto cotável. Uião de dois cojutos cotáveis é um cojuto cotável.

11 Cojuto dos racioais 0 < m/ < 1 (m, iteiros) é cotável O cojuto de potos da figura é cotável (ele está ordeado). O cojuto dos racioais é um subcojuto do cojuto da figura esse cojuto é ordeado.

12 Cojuto dos úmeros do cojuto de Cator K, com um úmero fiito uma base 3, é cotável. /3 /9 8/9 Números correspodetes à extrema direita dos itervalos retirados.

13 Lista de úmeros o cojuto de cator K Esse cojuto é icotável a ij 0 ou Número r K, r b b 1 0.b 0 ou (cotrário de 0 ou (cotrário de 1 b a a 11 b ) ) 3...b j... b 0 ou (cotrário de a ) r ão está a Portato, K, lista ao lado. é um cojuto icotável

14 - Fractais em Sistemas Determiísticos

15 Mapa do Padeiro B (x, y) ( ( x 3 x 3, + y ) 3, para y -1) 0 y para 1/ 1/ < y 1 Mapa descotíuo. Dois potos próximos, após a iteração se afastam bastate! y1 < 1/ e y > 1/, Atrator : cojuto de Cator ( subtraido o terço do meio, i.e. a região braca)

16 Atrator fractal: cojuto de Cator ( ) Cotração em x Expação em y Alligood Chaos

17 Atrator Fractal Atrator para Alligood Chaos

18 Atrator Fractal Atrator para Alligood Chaos

19 Fractal o Mapa da Teda 3 x para T3 3(1 - x ) x ( -, 0 ) x 1/ para x (1, ) > 1/ lim x - x (1/3, /3 ) lim x - pois T 3 (1, ) x (1/9, /9 ) (7 / 9, 8 / 9) lim x - pois T 3 (1, ) Alligood Chaos

20 Atrator Fractal Mapa de Héo f (x, y) (1.4 - x y, x) Alligood Chaos

21 Mapa de Héo f (x, y) ( x 0.3 y, x) Atratores: e órbita {(1, 0.3), (0.3, 1)} periódica Froteira etre bacias é fractal Alligood Chaos

22 Cojuto de Cator Fractal Alligood Chaos

23 4- Dimesão Fractal

24 5- Cálculo da Dimesão de Cotagem de Caixas Objetivo: Itroduzir algorítmo para quatificar a dimesão de um atrator caótico

25 ) (1/ C ) N ( for d : dimesão a Se ) (1/ C ) N ( com coberto ser pode Retâgulo C 1/ ) N ( 1/ caixa da largura da depede N, caixas, de Número itervalo) do depede C costate ( largura de caixas ) C (1/ por coberto 1] [0, Itervalo 1/ largura de caixas 8 por coberto 8] [0, Itervalo 1/ largura de caixas por coberto 1] [0, Itervalo d ε ε ε ε ε ε ε ε ε

26 caixas ) C (1/ N arbitrário lado de Quadrado caixas 49 4 ) 1/7 1 ( 4 N e 1/7 1/ 7 1/ lados de caixas ) 4 (1/ N por coberto quadrado de lados Exemplo : ε ε ε ε

27 A dimesão de um cojuto é d se ele for coberto por N caixas de lados ε N ( ε ) C (1/ ε ) d d pode ão ser iteiro! Defiição : Dimesão ( de caixa ) lim ε 0 l N ( ε ) l (1/ ε )

28 Atrator de Héo f ( x, y ) (1.4 - x y, x ) Atrator ocupa 76 das 56 caixas. Alligood Chaos

29 Caixas de tamahos diferetes Alligood Chaos

30 Cálculo da Dimesão de Caixa para o Atrator de Héo d 1.7 Alligood Chaos

31 Dimesão de Correlação ( útil para dados experimetais ) Órbita S { v 0, v 1,...v N } do mapa f em R. Pr oporção de pares de potos da órbita cujas distâcias são maiores que r > 0 C ( r ) lim N { pares { v i, v j } : v i, v j S N, v i v j < r { pares { v i, v j } : v i, v j S N } 0 C 1 para 0 < r < Se C( r ) r d, d é a dimesão de correlação da órbita Defiição: d dim cor lim r logc (r ) log( r )

32 Cálculo da Dimesão para o Atrator de Héo Com a Dimesão de Correlação d 1.3 Alligood Chaos

33 Dimesão do itervalos cojuto de Cator de largura 1/3 K dim ( K ) lim l l 3 lim l l 3 l l < dim (K ) < 1

III- Caos. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997)

III- Caos. Referência Principal: Chaos K. Alligood, T. D. Sauer, J. A. Yorke Springer (1997) III- Caos Referêcia Pricipal: Chaos K. Alligood, T. D. Sauer, J. A. Yore Spriger (997 -Epoetes de Lyapuov Epoete de Lyapuov para Órbitas Periódicas Mapa uidimesioal + f ( Órbita de periodo (f ( f ( f (...

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere

AUTO AVALIAÇÃO CAPÍTULO I. 1. Assinale com V as proposições que considere verdadeiras e com F as que considere AUTO AVALIAÇÃO CAPÍTULO I. Assiale com V as proposições que cosidere verdadeiras e com F as que cosidere falsas : a. Sedo A e B cojutos disjutos, ambos majorados, os respectivos supremos ão podem coicidir

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

δ de L. Analogamente, sendo

δ de L. Analogamente, sendo Teoremas fudametais sobre sucessões Teorema das sucessões equadradas Sejam u, v e w sucessões tais que, a partir de certa ordem p, u w v lim u = lim v = L (fiito ou ão), a sucessão w também tem limite,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências buso Seual as escolas Não dá para aceitar Por uma escola livre do SI República de Moçambique Miistério da Educação oselho Nacioal de Eames, ertificação e Equivalêcias ESG / 0 Eame de Matemática ª Época

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL

Prof. Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena EEL Prof. Fabrício Maciel Gomes Departameto de Egeharia Química Escola de Egeharia de Lorea EEL Referêcias Bibliográficas Sistema de Avaliação Duas Provas teóricas Um Trabalho em Grupo MédiaFial 0,4 P 0,4

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uiversidade Federal de Alfeas Algoritmos em Grafos Aula 02 Coceitos Básicos Prof. Humberto César Bradão de Oliveira Última aula Histórico dos Grafos Abstração por Euller; Utilização em Química; Utilização

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário

Leia mais

Sequências Reais e Seus Limites

Sequências Reais e Seus Limites Sequêcias Reais e Seus Limites Sumário. Itrodução....................... 2.2 Sequêcias de Números Reais............ 3.3 Exercícios........................ 8.4 Limites de Sequêcias de Números Reais......

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Numeração de funções computáveis. Nota

Numeração de funções computáveis. Nota Numeração de fuções computáveis 4.1 Nota Os presetes acetatos foram baseados quase a sua totalidade os acetatos realizados pela Professora Teresa Galvão da Uiversidade de Porto para a cadeira Teoria da

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

CRITÉRIOS DE AVALIAÇÃO

CRITÉRIOS DE AVALIAÇÃO AGRUPAMENTO DE ESCOLAS RUY BELO Escola EB1/JI de Mote Abraão Escola EB1/JI de Mote Abraão 2 CRITÉRIOS DE AVALIAÇÃO DISCIPLINA: MATEMÁTICA 1º CICLO - 4 º ANO ORGANIZADOR (Coteúdos/temas/domíios) Números

Leia mais

Aula 3 : Somatórios & PIF

Aula 3 : Somatórios & PIF Aula 3 : Somatórios & PIF Somatório: Somatório é um operador matemático que os permite represetar facilmete somas de um grade úmero de parcelas É represetado pela letra maiúscula do alfabeto grego sigma

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5 Escola ecudária com 3º ciclo D. Diis º Ao de Matemática A Tema I Probabilidades e Combiatória Tarefa º do plao de trabalho º 5. Um saco cotém bolas do mesmo tamaho e do mesmo material, mas de três cores

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes.

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes. ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis depedetes. - DISTRIBUIÇÃO DE FREQUÊNCIA a) Dados Brutos É um cojuto resultate

Leia mais

Planificação 1.ºperíodo

Planificação 1.ºperíodo PLANO CURRICULAR Plaificação 1.ºperíodo 7.º Ao Matemática 01/014 Uidade 1 Números racioais. Números primos e úmeros compostos.. Máximo divisor comum e míimo múltiplo comum.. Adição em Z.. Subtração em

Leia mais

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3 Exercício Item p Esboço do algoritmo. É o seguite:. Fatorar a maior potêcia do umerador e do deomiador 2. Rearrajar a expressão. 3. Cocluir. Implemetação. Vejamos a implemetação. x + 3 x lim x x 2 + 3

Leia mais

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS

ANÁLISE DE COMPLEXIDADE DE ALGORITMOS 1 FEUP/LEEC Algoritmos e Estruturas de Dados 2001/2002 ANÁLISE DE COMPLEXIDADE DE ALGORITMOS João Pascoal Faria http://www.fe.up.pt/~jpf 2 Itrodução Algoritmo: cojuto claramete especificado de istruções

Leia mais

Conteúdos Programáticos de Matemática A 12º ano 2017/2018

Conteúdos Programáticos de Matemática A 12º ano 2017/2018 Coteúdos Programáticos de Matemática A 12º ao 2017/2018 CONTEÚDOS PROGRAMÁTICOS CALENDARIZAÇÃO Cálculo Combiatório (CC12) Propriedades das operações sobre cojutos - Propriedades comutativa, associativa,

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

4 Teoria da Probabilidade

4 Teoria da Probabilidade 48 4 Teoria da Probabilidade Apresetam-se este capítulo coceitos de probabilidade e de estimação de fuções desidade de probabilidade ecessários ao desevolvimeto e compreesão do modelo proposto (capítulo

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

LIMITE DE UMA FUNÇÃO

LIMITE DE UMA FUNÇÃO LIMITE DE UMA FUNÇÃO Nice Maria Americao costa Pito UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INTRODUÇÃO Um pouco de história Cálculo Diferecial e Itegral; séculos XVI e XVII, Newto e Leibiz. iteresses de

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais.

Séries de Fourier. As séries de Fourier são séries cujos termos são funções sinusoidais. Séries de Fourier As séries de Fourier são séries cujos termos são fuções siusoidais. Importâcia prática: uma fução periódica (em codições bastate gerais) pode ser represetada por uma série de Fourier;

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2007. Ageda Aálise e Técicas de Algoritmos Motivação para aálise de de algoritmos Aálise assitótica Algus exemplos simples Jorge Figueiredo Aálise de de Algoritmos Dois aspectos importates: Um problema pode,

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES.

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. Aálise Matemática II- ao lectivo 6/7 CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. 1. Breves oções topológicas em 1.1 Distâcia etre dois potos R Dados dois potos x e y R, x = ( x1, x,...

Leia mais

Considerações finais

Considerações finais Cosiderações fiais Bases Matemáticas Defiições prelimiares Defiição 1 Dizemos que y é uma cota superior para um cojuto X se, para todo x X é, verdade que y x. Exemplo 1 os úmeros 2, 3, π e quaisquer outros

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

2. Revisões e definições de matrizes

2. Revisões e definições de matrizes Apotametos de Processameto Adaptativo de Siais 2. Revisões e defiições de matrizes Breve revisão de propriedades de matrizes 1. Valores próprios e vectores próprios A cada matriz quadrada A, de dimesões

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação 2011 Campus Pato Braco Prova Parcial Matemática Discreta para Computação 20 Aluo(a): Data: 08/04/20. (,5p) Explicar o Paradoxo de Cator. Use como base o seguite: Teorema de Cator: Para qualquer cojuto A, a

Leia mais

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012

Prova Parcial 1 Matemática Discreta para Computação Aluno(a): Data: 18/12/2012 Prova Parcial Aluo(a): Data: 8/2/202. (,5p) Use regras de iferêcia para provar que os argumetos são válidos. (usar os símbolos proposicioais idicados): A Rússia era uma potêcia superior, e ou a Fraça ão

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluo deve utilizar corretamete a desigação referida, sabedo defiir o coceito apresetado como se idica

Leia mais

Séries e Equações Diferenciais Lista 02 Séries Numéricas

Séries e Equações Diferenciais Lista 02 Séries Numéricas Séries e Equações Difereciais Lista 02 Séries Numéricas Professor: Daiel Herique Silva Defiições Iiciais ) Defia com suas palavras o coceito de série umérica, e explicite difereças etre sequêcia e série.

Leia mais

TEOREMA DE BAIRE. 1. Conceitos Preliminares Exemplos de Aplicações do Teorema de Baire 5 Referências 8

TEOREMA DE BAIRE. 1. Conceitos Preliminares Exemplos de Aplicações do Teorema de Baire 5 Referências 8 TEOREMA DE BAIRE JONAS RENAN MOREIRA GOMES BOLSISTA SANTANDER-USP Sumário 1. Coceitos Prelimiares 1 2. Defiição de Espaço de Baire 2 3. Exemplos de Aplicações do Teorema de Baire 5 Referêcias 8 Esse texto

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR

7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluo deve utilizar corretamete a desigação referida, sabedo defiir o coceito apresetado como se idica

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

NOTAS DE AULA DO PICME EM COMBINATÓRIA. Anotado por: Henrique Stagni 1 o semestre de 2016

NOTAS DE AULA DO PICME EM COMBINATÓRIA.   Anotado por: Henrique Stagni 1 o semestre de 2016 NOTAS DE AULA DO PICME PROGRAMA DE INICIAÇÃO CIENTÍFICA E MESTRADO EM COMBINATÓRIA http://www.ime.usp.br/~tcco/picme Aotado por: Herique Stagi 1 o semestre de 2016 Coteúdo 1 Paradoxo de Baach-Tarski 1

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta:

MQI 2003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE Teste 2 07/07/2008 Nome: PROBLEMA 1 Sejam X e Y v.a. contínuas com densidade conjunta: MQI 003 ESTATÍSTICA PARA METROLOGIA - SEMESTRE 008.0 Teste 07/07/008 Nome: PROBLEMA Sejam X e Y v.a. cotíuas com desidade cojuta: f xy cy xy x y (, ) = + 3 ode 0 e 0 a) Ecotre a costate c que faz desta

Leia mais

Representação de Números em Ponto Flutuante

Representação de Números em Ponto Flutuante Represetação de Números em Poto Flutuate OBS: Esta aula é uma reprodução, sob a forma de slides, da aula em vídeo dispoibilizada pelo prof. Rex Medeiros, da UFRN/ECT, em https://youtu.be/ovuymcpkoc Notação

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Adréa Pruer de Oliveira CONJUNTOS INFINITOS Floriaópolis 2005 Adréa Pruer de Oliveira CONJUNTOS

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

Mineração de Dados em Biologia Molecular

Mineração de Dados em Biologia Molecular Mieração de Dados em Biologia Molecular Tópicos Adré C. P. L. F. de Carvalho Moitor: Valéria Carvalho Preparação de dados Dados Caracterização de dados Istâcias e Atributos Tipos de Dados Exploração de

Leia mais

Cálculo III - SMA 333. Notas de Aula

Cálculo III - SMA 333. Notas de Aula Cálculo III - SMA 333 Notas de Aula Sumário 1 Itrodução 2 2 Seqüêcias Numéricas 6 2.1 Defiição, Exemplos e Operações........................ 6 2.2 Seqüêcias Limitadas e Ilimitadas........................

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

II- Mapas Bidimensionais. Referência: Chaos, K. Alligood, T. D. Sauer, J. A. Yorke; Springer (1997).

II- Mapas Bidimensionais. Referência: Chaos, K. Alligood, T. D. Sauer, J. A. Yorke; Springer (1997). II- Mapas Bidimensionais Referência: Chaos, K. Alligood, T. D. Sauer, J. A. Yorke; Springer (997). - Novas CaracterísMcas Dinâmicas Além de pontos fixos, há pontos de selas. Ponto de sela: contração em

Leia mais

a) 1 hora c) 3 horas b) 2 horas d) 4 horas

a) 1 hora c) 3 horas b) 2 horas d) 4 horas MN RNÁUTI PRTMNT NSIN SL PRPRTÓRI TS R NURS MISSÃ o N PR 00 PRV MTMÁTI 9 de setembro de 000 NM: SSINTUR: Trascreva estes dados para sua folha de respostas. INSRIÇÃ: PRV: - MTÉRI: 0 GRIT 0 0 0 0 05 0 07

Leia mais