PROF. DR. JACQUES FACON

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROF. DR. JACQUES FACON"

Transcrição

1 PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO DUPLA DE ISTVÁN CSEKE PROJETO DE UMA RÁPIDA SEGMENTAÇÃO PARA IMAGENS DE CÉLULAS Resumo: Este artigo descreve não só a teoria, mas também as ferramentas utilizadas para a implementação do algoritmo de Limiarização Dupla de Istvan Cseke. Palavras Chave: Limiarização Dupla, Segmentação, Algoritmo de Istvan Cseke 1. Introdução O artigo estudado escrito por István Cseke, demostra e apresenta uma técnica de limiarização é uma rápida segmentação de imagens de amostras sangüíneas, para serem utilizadas na automatização da contagem diferencial (classificação) de células branca. A contagem diferencial de células brancas do sangue, possui importante papel em diagnósticos de diferentes doenças. A contagem automática utilizando o computador, possibilitou uma melhor performance neste teste, fornecendo ao médico, um método seguro, rápido, preciso e econômico. O processo feito anteriormente, baseava-se em amostras de sangue, onde precisavam ser encontradas e classificadas as células brancas, de acordo com o seu tipo. Em média 100 imagens coloridas deveriam ser processadas. O sucesso da classificação dependia principalmente da correta segmentação da imagem, o que era considerado um procedimento muito crítico. Basicamente, o processo apresentado consiste em três fases para ser totalmente realizado, a primeira esta em utiliza um algoritmo com o propósito de localizar e determinar a posição aproimada das células brancas na imagem da amostra de sangue; este algoritmo está baseado em informações sobre imagens de manchas que podem surgir no sangue; o segundo passo é a separação dos diferentes componente eistentes em uma amostra de sangue, tais como núcleo, citoplasma, background e células vermelhas, com o uso de um método recursivo de limiarização. Método este derivado da máima variação entre as regiões claras, cinzas e escuras, baseado no método descrito e proposto pelo autor Otsu. Finalmente, a terceira parte consiste na segmentação de áreas que são homogêneas mas de operações morfológicas diferentes. Pois estas regiões possuem características morfológicas fortemente dependentes da rugosidade de suas bordas. O projeto de segmentação apresentado, possui ecelentes índices eperimentais de acertos na classificação de células brancas do sangue.. Localização Se as células brancas não forem encontradas na imagem a ser analisada, e esta pode ser descartada e tomada uma nova imagem para ser analisada. A posição aproimada pode ser determinadas porque para este caso afastado as técnicas de segmentação são aplicadas em pequenas sub imagens o que reduz o número de piels a serem processados. Usando um procedimento padrão para a preparação da amostra de sangue para uma melhor definição das características do espectro e diferentes estruturas celulares. Uma imagem típica de célula branca, (ampliada 1000 X) obtidas de diferentes amostras de sangue. Os piels de tonalidade verde da

2 imagem em RGB, permanecem na região do núcleo e são visivelmente mais escuros que os outros piels, logo, a rápida decisão sobre a eistência de células brancas pode ser feita baseando-se em histogramas. Faça TN ser o limiar rugoso do núcleo, os piels dentro deste limiar TN certamente faz parte do núcleo. SN e WN denotam a mínima área do núcleo e o tamanho limiar máimo do núcleo, respectivamente. Este meio do núcleo pode ser envolvido por uma janela de tamanho WN * WN (quadrada) e esta janela possui piels com baio tom de cinza que representa SN. Desta maneira o processo de localização pode ser feito. Imagens eaminadas ou obtidas sem superposição de janelas, uma ao lado da outra, de tamanho WN*WN e um histograma local, que é calculado pelas janelas obtidas. Conforme a figura abaio. Localização da célula branca com janelas sem sobreposição Se no centro da janela centrada no piels (, o histograma local H y [, satisfaz a condição abaio. SN TN f(, = 1 H y [ ou (1) 0 4 f(, = H y [0] + H y [1] + H y [] H y [TN-1] SN / 4 A região demarcada por duas linhas provavelmente compreende uma célula branca do sangue. No pior dos casos, somente ¼ da célula branca cairá dentro das janelas sem sobreposição. Para calcular a posição aproimada do núcleo não pode-se procurar a sub imagem na região demarcada pelas linhas duplas, onde a função f(, obtém o valor máimo. Portanto a região marcada pode ser scaniada com uma janela de tamanho WN*WN. Conforme mostrado na figura abaio. Procurando a posição do núcleo com sobreposição de janelas.

3 As demonstrações da figura é uma técnica de procura hierárquica. A primeira função f é calculada no centro da janela de piels marcados com o que coincide com WN/. Os piels são provenientes dos valores máimos selecionados, o piels (+WN/,. O processo se repete na vizinhança do piel coincidindo com WN/4 e finalmente coincidindo com WN/8. A sub imagem selecionada centrada com o piel marcado em azul na figura acima, compreende uma célula branca e ecluindo o afastamento neste procedimento de localização. Os valores TN, SN e WN podem ser derivados de uma fase de aprendizado. 3. Limiarização As sub-imagens WN*WN possuem uma grande quantidade de tipos diferentes de células brancas, somente após obtermos sua localização e que ela pode se ser processada. O objetivo da limiarização possui três classes de separação para diferenciar os vários componentes encontrados na estrutura celular. As regiões escuras e claras da imagem correspondem respectivamente ao núcleo e ao background, e uma região intermediária que representam o região do citoplasma e das células vermelhas. Estas duas estruturas podem ser separadas uma da outra com a presença de uma componente azul (blue) na imagem RGB, que aparece nos pieis que pertencem as células vermelhas, deste modo esta tonalidade terá níveis cinza na sua limiarização. O método de limiarização automática proposto do Otsu, descreve limiares ótimos T1 e T, selecionados pela maimização da variância interclasses entre as regiões escuras, cinzas e claras. A maimização da variância interclasses pode ser reduzida ao máimo com a aplicação da função abaio: m (0, m ( m ( E ( = + + 0, onde L representa o número de níveis cinza, a as equações ) e ), estão representadas a seguir:, = i H[, = H[ y > onde H[] e o histograma da subimagem a ser limiarizada. Isto pode provar que a função E pega valores máimos onde as relações abaio são satisfeitas: 0, + = T1 0, + = T Estas equações podem ser facilmente resolvidas com a utilização de um simples algoritmo recursivo. Com o valor limiar das subimagens determinando através dos limiares T1 e T, tem-se paramentos para suavizar e determinar onde termina e começa os elementos morfológicos da imagem das células brancas. 4. Complemento da Parte Escrita Um breve estudo da equação do algoritmo para a implementação das técnicas de limiarização de imagens de István Cseke, tem-se: Dadas as seguintes equações:

4 0, + = T1 0, + = T Igualando as equações pelo termo comum nas duas equações, tem-se 0, + T1 = + T 0, separando... temos: 0, T,56) f 1 = T1 e f = T 0, T,56) logo, temos que ƒ1 é igual a ƒ. Mas, com as funções, e,, podemos calcular os valores de T1 e T, sendo, = i H[, = H[ y >, que satisfazem a igualdade, porém, não encontraremos dois valores eatos, então fazemos uma diferença entre as funções ƒ1 e ƒ, para encontrar os valores mais próimos. Estes valores são calculados através das funções, e, e guardados em vetores. Após ter calculados todos os valores e guardados os mesmos no respectivo vetor. Quando encontramos a menor diferença, temos os valores de T1 e T. Porém, na implementação do cálculo da função n, notou-se que este valor que fica no denominador, e quando gera um valor zero para n tem-se que o segundo fator fica na forma 0? o que gera um valor infinito, logo, para que não fosse perdido este segundo fator, inicializou-se a variável de retorno com o valor 1 evitando desta forma o zero no denominador. Com os valores de T1 e T definidos, conforme especificações propostas pelo professor foi aplicado o processo de limiarização para os seguintes valores:. Imagem limiarizada para valores menores que T1; ( < T1 );. Imagem limiarizada para valores maiores que T; (> T );. Imagem limiarizada para valores entre T1 e T; ( T1 < < T ). Os valores e resultados obtidos na limiarização foram bem próimos aos encontrados pelo algoritmo de OTSU. Sendo que esta técnica de limiarização implementada tem sua aplicação em imagens específicas, no caso do artigo, imagens do sangue. 5. Conclusão A técnica de limiarização proposta por István Cseke, aqui apresentada, está baseada nos conceitos e métodos desenvolvidos pelo autor Otsu, o qual apresenta um método de seleção de imagens fundamentado nos histogramas das imagens trabalhadas. Os método e algoritmos trabalhados são simples e geralmente usados de forma recursiva, o que leva a um refinamento e uma precisão nos valores envolvidos. Os resultados obtidos eperimentalmente, segundo o autor, localizaram e classificaram células brancas com uma precisão de aproimadamente 9%. Após a implementação, não conseguimos encontrar imagens específicas para que possamos fazer uma comparação com o algoritmo aqui implementado. Para os valores de T1 e T encontrados, gerou-se três imagens limiarizadas, sendo elas uma para os valores menores que outra para os valores entre T1 e T e uma terceira para os valores maiores que T. O critério adotado, foi que as imagens limiarizadas ficariam com as mesmas tonalidades de cinza. Para a primeira imagem, ( <, tudo o que for maior que permanece com o seu tom de cinza e o que é menor que fica branco

5 (55). Para o segundo caso ( T1 < < T ), o que fica abaio de T1 e acima de T, fica branco e entre permanece com a tonalidade original de cinza. Para o último caso, ( > T ) os valores maiores que T ficam brancos e os demais ficam com a cor original. 6. Referências Cseke, István, A fast Segmentation Scheme for White Blood Cell Images, IEEE, 199,, pp Facon, Jacques, Processamento e análise de Imagens Fevereiro 1998.

6 IMPLEMENTAÇÃO: // Algoritmo de Limiarizacao Dupla de Istvan-Cseke BOOL CLimiar::LimiarDuplaIstvanCseke() double F1[56], F[56]; // Vetores com os valores de F1 e F double Diff_Atual=0; // Variavel para encontrar o Minimo double Ult_Diff=1.7E+308; // Variavel para encontrar o Minimo unsigned long Soma1,Soma,Soma3,Soma4; // Valores auiliares BYTE v vt; // Valores finais de T1 e T unsigned int t,g; if (!(VerifyConsistentI) && VerifyConsistentOut()) ) return FALSE; CopyImageInOut(); ClockStart(); Histograma(); for(t=0;t<56;t++) F1[t] = 0; F[t] = 0; /* inicio do algoritimo para encontrar os provaveis valores para F1 e F */ for (t = 0; t < 56; t++) Soma1=0; Soma=0; for(g=0;g<t;g++) Soma1+= m_histo[g]*g; Soma+= m_histo[g]; Soma3=0; Soma4=0; for(g=t;g<56;g++) Soma3+= m_histo[g]*g; Soma4+= m_histo[g]; if ( (Soma!= 0) ) F1[t] = ( * t) - (double)soma1/soma; // parte de 0 -> t-1 if ( (Soma4!= 0) ) F[t] = ( * t) - (double)soma3/soma4; // parte de t -> L-1 /* Encontrando os T1 e T com a minima diferenca entre os valores de F1 e F */ for (t = 0; t < 56; t++ ) if ( (F1[t] == 0) ) continue; for (g = 0; g < 56; g++) if ( (F[g] == 0) ) continue;

7 Diff_Atual = fabs(f1[t]-f[g]); if ( Diff_Atual < Ult_Diff ) vt1 = t; vt = g; Ult_Diff = Diff_Atual; SetLimiarT1(v; SetLimiarT(vT); AplicarLimiarT1T_DuplaIstvanCseke(); ClockFinish("Limiarizacao Dupla de Istvan-Cseke"); return TRUE;

PROF. DR. JACQUES FACON ESTUDO DA TÉCNICA DE LIMIARIZAÇÃO DE EIKVIL

PROF. DR. JACQUES FACON ESTUDO DA TÉCNICA DE LIMIARIZAÇÃO DE EIKVIL PUCPR- PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ PPGIA- PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA APLICADA PROF. DR. JACQUES FACON ESTUDO DA TÉCNICA DE LIMIARIZAÇÃO DE EIKVIL Resumo: Este trabalho tem

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto.

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto. Respostas Estudo Dirigido do Capítulo 12 Image Segmentation" 1 Com suas palavras explique quais os problemas que podem ocorrer em uma segmentação global baseada em níveis de cinza da imagem. Que técnicas

Leia mais

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação.

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. Limiarização A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. O princípio da limiarização consiste em separar as regiões

Leia mais

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS André Zuconelli 1 ; Manassés Ribeiro 2 1. Aluno do Curso Técnico em Informática, turma 2010, Instituto Federal Catarinense, Câmpus Videira, andre_zuconelli@hotmail.com

Leia mais

Manual Processamento de Imagem. João L. Vilaça

Manual Processamento de Imagem. João L. Vilaça Manual Processamento de Imagem João L. Vilaça Versão 1.0 31/1/2014 Índice 1. Sistema de eixo e movimentos possíveis do Drone... 3 2. Imagem... 3 3. Espaços de cor... 4 4.1 RGB... 5 4.2HSV... 5 4.3 GRAY...

Leia mais

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço FILTRAGEM ESPACIAL Filtros Digitais no domínio do espaço Definição Também conhecidos como operadores locais ou filtros locais Combinam a intensidade de um certo número de piels, para gerar a intensidade

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP Caio Augusto de Queiroz Souza caioaugusto@msn.com Éric Fleming Bonilha eric@digifort.com.br Gilson Torres Dias gilson@maempec.com.br Luciano

Leia mais

Figura 01: Aplicações do Filtro Espacial Passa-Baixa.

Figura 01: Aplicações do Filtro Espacial Passa-Baixa. 791 IMPLEMENTAÇÃO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PROCESSAMENTO DE IMAGENS PARA RADIOGRAFIAS CARPAIS Rafael Lima Alves 1 ; Michele Fúlvia Angelo 2 Bolsista PROBIC, Graduando em Engenharia de Computação,

Leia mais

Implementando plugins para o ImageJ

Implementando plugins para o ImageJ UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO NÚCLEO DE PROCESSAMENTO DIGITAL DE IMAGENS (NPDI) Tutorial Implementando plugins para o ImageJ Flávio

Leia mais

2 Classificação de Imagens de Sensoriamento Remoto

2 Classificação de Imagens de Sensoriamento Remoto 2 Classificação de Imagens de Sensoriamento Remoto 2.1. Processamento Digital de Imagens Processamento Digital de Imagens entende-se como a manipulação de uma imagem por computador de modo que a entrada

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Potifícia Uiversidade Católica Do Paraá PPGIA- Programa de Pós-Graduação Em Iformática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ATRAVÉS DA PROJEÇÃO DO DISCRIMINANTE LINEAR DE FISHER SOBRE O

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis Transformada de Hough Cleber Pivetta Gustavo Mantovani Felipe Zottis A Transformada de Hough foi desenvolvida por Paul Hough em 1962 e patenteada pela IBM. Originalmente, foi elaborada para detectar características

Leia mais

O Software Face Match

O Software Face Match Apêndice A O Software Face Match A.1 - Desenvolvimento do software para a extração de características de imagens de faces humanas: Face Match. Para dar suporte à proposta do trabalho de mestrado iniciou-se

Leia mais

Segmentação de Imagens

Segmentação de Imagens Segmentação de Imagens (Processamento Digital de Imagens) 1 / 36 Fundamentos A segmentação subdivide uma imagem em regiões ou objetos que a compõem; nível de detalhe depende do problema segmentação para

Leia mais

Trabalho 2 Fundamentos de computação Gráfica

Trabalho 2 Fundamentos de computação Gráfica Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho

Leia mais

Atividade: matrizes e imagens digitais

Atividade: matrizes e imagens digitais Atividade: matrizes e imagens digitais Aluno(a): Turma: Professor(a): Parte 01 MÓDULO: MATRIZES E IMAGENS BINÁRIAS 1 2 3 4 5 6 7 8 Indique, na tabela abaixo, as respostas dos 8 desafios do Jogo dos Índices

Leia mais

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno SEGEMENTAÇÃO DE IMAGENS Nielsen Castelo Damasceno Segmentação Segmentação Representação e descrição Préprocessamento Problema Aquisição de imagem Base do conhecimento Reconhecimento e interpretação Resultado

Leia mais

29/08/2011. Radiologia Digital. Princípios Físicos da Imagem Digital 1. Mapeamento não-linear. Unidade de Aprendizagem Radiológica

29/08/2011. Radiologia Digital. Princípios Físicos da Imagem Digital 1. Mapeamento não-linear. Unidade de Aprendizagem Radiológica Mapeamento não-linear Radiologia Digital Unidade de Aprendizagem Radiológica Princípios Físicos da Imagem Digital 1 Professor Paulo Christakis 1 2 Sistema CAD Diagnóstico auxiliado por computador ( computer-aided

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO Ao incidir em uma lente convergente, um feixe paralelo de luz, depois de passar pela lente, é concentrado em um ponto denominado foco (representado por

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

SOFTWARE PARA IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CÉLULAS DO ENDOTÉLIO CORNEANO DESENVOLVIDO PARA DISPOSITIVOS MÓVEIS

SOFTWARE PARA IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CÉLULAS DO ENDOTÉLIO CORNEANO DESENVOLVIDO PARA DISPOSITIVOS MÓVEIS 221 SOFTWARE PARA IDENTIFICAÇÃO E CLASSIFICAÇÃO DE CÉLULAS DO ENDOTÉLIO CORNEANO DESENVOLVIDO PARA DISPOSITIVOS MÓVEIS Jean-Jacques S. De Groote - Prof. Dr. do Centro Universitário Uniseb de Ribeirão Preto.

Leia mais

3 Materiais e Métodos

3 Materiais e Métodos 3 Materiais e Métodos Este capítulo apresenta as etapas experimentais e os materiais usados neste trabalho, assim como os equipamentos e as técnicas envolvidas no mesmo. 3.1. Materiais e Preparação de

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação

Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação Pontifícia Universidade Católica de São Paulo Departamento de Ciência da Computação LP: Laboratório de Programação Apontamento 3 Prof. ISVega Fevereiro de 2004 Estilo de Codificação CONTEÚDO 3.1 Regras

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor.

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor. Colégio Ténio Antônio Teieira Fernandes Disiplina ICG Computação Gráfia - 3º Anos (Informátia) (Lista de Eeríios I - Bimestre) Data: 10/03/2015 Eeríios 1) Elabore um proedimento em C++ que passe os pares

Leia mais

Cálculo do conjunto paralelo

Cálculo do conjunto paralelo Cálculo do conjunto paralelo Vamos usar letras maiúsculas A; B, etc para representar conjuntos e letras minusculas x, y, etc para descrever seus pontos. Vamos usar a notação x para descrever a norma de

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS Executar as principais técnicas utilizadas em processamento de imagens, como contraste, leitura de pixels, transformação IHS, operações aritméticas

Leia mais

Processamento digital de imagens. introdução

Processamento digital de imagens. introdução Processamento digital de imagens introdução Imagem digital Imagem digital pode ser descrita como uma matriz bidimensional de números inteiros que corresponde a medidas discretas da energia eletromagnética

Leia mais

Capítulo 1. Introdução. 1.1 Sistemas numéricos

Capítulo 1. Introdução. 1.1 Sistemas numéricos EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 1 Introdução O objetivo desta disciplina é discutir e aplicar técnicas e métodos numéricos para a resolução de problemas

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Visão Artificial Para a Indústria. Manual do Utilizador

Visão Artificial Para a Indústria. Manual do Utilizador Visão Artificial Para a Indústria Manual do Utilizador Luis Fonseca Carvalho de Matos ( luis.matos@ua.pt ) Julho de 2007 Índice de conteúdos 1. Apresentação......1 1.Conceito de Funcionamento......1 2.

Leia mais

Circuitos Elétricos Circuitos de Segunda Ordem Parte 1

Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Circuitos Elétricos Circuitos de Segunda Ordem Parte 1 Alessandro L. Koerich Engenharia de Computação Pontifícia Universidade Católica do Paraná (PUCPR) Introdução Circuitos que contem dois elementos armazenadores

Leia mais

Scale-Invariant Feature Transform

Scale-Invariant Feature Transform Scale-Invariant Feature Transform Renato Madureira de Farias renatomdf@gmail.com Prof. Ricardo Marroquim Relatório para Introdução ao Processamento de Imagens (COS756) Universidade Federal do Rio de Janeiro,

Leia mais

Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros

Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros Alessandra Bussador e Miguel D. Matrakas 63 Estudo da aplicabilidade das técnicas de morfologia matemática e redes neurais aplicadas ao problema de segmentação de placas de carros Alessandra Bussador (Mestre)

Leia mais

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial Filtragem espacial é uma das principais ferramentas usadas em uma grande variedade de aplicações; A palavra filtro foi emprestada

Leia mais

Modelagem Matemática Aplicada ao Ensino de Cálculo 1

Modelagem Matemática Aplicada ao Ensino de Cálculo 1 Modelagem Matemática Aplicada ao Ensino de Cálculo 1 Milton Kist 2, Ireno Antonio Berticelli 3 RESUMO: O presente trabalho visa contribuir para a melhoria do processo de ensino e aprendizagem de Matemática.

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Aula 5 - Classificação

Aula 5 - Classificação AULA 5 - Aula 5-1. por Pixel é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos. Os Classificadores "pixel a pixel" utilizam apenas a informação espectral isoladamente

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz).

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz). Mathcad COMANDOS BÁSICOS O software Mathcad é um ambiente de trabalho baseado em Álgebra Computacional, dirigido a profissionais técnicos, educadores e estudantes. Permite a escrita de epressões matemáticas

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Resultados Experimentais

Resultados Experimentais Capítulo 6 Resultados Experimentais Este capítulo é dedicado às avaliações experimentais do sistema CBIR. Os experimentos aqui realizados têm três objetivos principais: comparar os nossos resultados com

Leia mais

Gama do monitor. Michael v.ostheim Tradução: Marcus Gama Tradução: André Marcelo Alvarenga

Gama do monitor. Michael v.ostheim Tradução: Marcus Gama Tradução: André Marcelo Alvarenga Michael v.ostheim Tradução: Marcus Gama Tradução: André Marcelo Alvarenga 2 Conteúdo 1 Introdução 4 2 Usando as imagens de teste 4 2.1 Imagem de teste da escala de cinza............................ 4 2.2

Leia mais

No nosso exemplo, utilizámos apenas um braço e uma perna, que

No nosso exemplo, utilizámos apenas um braço e uma perna, que 1. Seleccione agora cada uma das camadas na janela Layers; 2. Escolha a Move Tool na barra de ferramentas e, com ela, posicione cada parte do alienígena, até ter algo como o visto na figura 4.56. Fig.

Leia mais

Algoritmos e Programação I

Algoritmos e Programação I Algoritmos e Programação I Introdução a Computação Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Computadores são dispositivos que só sabem fazer um tipo de

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Reconhecimento de marcas de carros utilizando Inteligência Artificial André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Motivação Análise estatística das marcas de carros em

Leia mais

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior Simulação Gráfica Morfologia Matemática Julio C. S. Jacques Junior Morfologia Palavra denota uma área da biologia que trata com a forma e a estrutura de animais e plantas. No contexto de Morfologia Matemática:

Leia mais

Medindo a Produtividade do Desenvolvimento de Aplicativos

Medindo a Produtividade do Desenvolvimento de Aplicativos Medindo a Produtividade do Desenvolvimento de Aplicativos Por Allan J. Albrecht Proc. Joint SHARE/GUIDE/IBM Application Development Symposium (October, 1979), 83-92 IBM Corporation, White Plains, New York

Leia mais

FOTOINTERPRETAÇÃO. Interpretação e medidas. Dado qualitativo: lago

FOTOINTERPRETAÇÃO. Interpretação e medidas. Dado qualitativo: lago FOTOINTERPRETAÇÃO a) conceito A fotointerpretação é a técnica de examinar as imagens dos objetos na fotografia e deduzir sua significação. A fotointerpretação é bastante importante à elaboração de mapas

Leia mais

Tratamento da Imagem Transformações (cont.)

Tratamento da Imagem Transformações (cont.) Universidade Federal do Rio de Janeiro - IM/DCC & NCE Tratamento da Imagem Transformações (cont.) Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Tratamento de Imagens - Sumário Detalhado Objetivos Alguns

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Aula 8 Circuitos Integrados

Aula 8 Circuitos Integrados INTRODUÇÃO À ENGENHRI DE COMPUTÇÃO PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI ula Circuitos Integrados Introdução Portas Lógicas em Circuitos Integrados Implementação de Funções

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

TONALIDADE X FREQUÊNICA

TONALIDADE X FREQUÊNICA Som, notas e tons TONALIDADE X FREQUÊNICA O violão é um instrumento musical e o seu objetivo é fazer música. Música é a organização de sons em padrões que o cérebro humano acha agradável (ou pelo menos

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

2 Texturas com Relevo e Equações de Pré Warping

2 Texturas com Relevo e Equações de Pré Warping 2 Texturas com Relevo e Equações de Pré Warping A noção de warping de imagens é fundamental para o entendimento da técnica abordada nesta dissertação. Este capítulo apresenta definições formais para vários

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

PROCESSAMENTO DE IMAGEM LRGB DO PLANETA JUPITER

PROCESSAMENTO DE IMAGEM LRGB DO PLANETA JUPITER PROCESSAMENTO DE IMAGEM LRGB DO PLANETA JUPITER Rose C. R. ELIAS 1 ; Gustavo S. ARAUJO 2 ; Mayler MARTINS 3 ¹ Aluna do Curso Técnico de Informática Integrado ao ensino médio do IFMG campus Bambuí e bolsista

Leia mais

4 Avaliação Experimental

4 Avaliação Experimental 4 Avaliação Experimental Este capítulo apresenta uma avaliação experimental dos métodos e técnicas aplicados neste trabalho. Base para esta avaliação foi o protótipo descrito no capítulo anterior. Dentre

Leia mais

6.9. Formado de arquivo. Formatos de arquivo em SilverFast. Salvar em diversos formatos de arquivo

6.9. Formado de arquivo. Formatos de arquivo em SilverFast. Salvar em diversos formatos de arquivo Formatos de arquivo em SilverFast Salvar em diversos formatos de arquivo Com os programas da família de produtos SilverFast, os seguintes formatos de arquivo podem ser produzidos: A seleção do formato

Leia mais

Tipos de Dados Simples

Tipos de Dados Simples Programação 11543: Engenharia Informática 6638: Tecnologias e Sistemas de Informação Cap. 3 Tipos de Dados Simples Tipos de Dados Simples Objectivos: Hierarquia de tipos de dados Tipos de dados simples

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Usando o Excel ESTATÍSTICA. Funções

Usando o Excel ESTATÍSTICA. Funções Funções Podemos usar no Excel fórmulas ou funções. Anteriormente já vimos algumas fórmulas. Vamos agora ver o exemplo de algumas funções que podem ser úteis para o trabalho de Excel. Para começar podemos

Leia mais

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira Universidade Federal de Alagoas Instituto de Matemática Imagem Prof. Thales Vieira 2014 O que é uma imagem digital? Imagem no universo físico Imagem no universo matemático Representação de uma imagem Codificação

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

(b) Domínio espacial Reescalamento dos níveis de cinza Integração Diferenciação

(b) Domínio espacial Reescalamento dos níveis de cinza Integração Diferenciação TÉCNICAS DE REALCE (IMAGE ENHANCEMENT) Objetivo São projetadas para manipular a imagem com base em características psico-físicas do SVH, podendo até distorcer a imagem através do processo de retirar informações

Leia mais

Gabarito da Prova de Oficinas dos Velhos Ano 2008

Gabarito da Prova de Oficinas dos Velhos Ano 2008 Gabarito da Prova de Oficinas dos Velhos Ano 2008 12 de maio de 2008 1 (a) O objetivo principal da oficina de espectroscopia é que os aprendizes aprendessem, rápido, a interpretar espectros e linhas espectrais,

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS LONDRINA PR 2014 GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO

Leia mais

Ferramentas Web, Web 2.0 e Software Livre em EVT

Ferramentas Web, Web 2.0 e Software Livre em EVT E s t u d o s o b r e a i n t e g r a ç ã o d e f e r r a m e n t a s d i g i t a i s n o c u r r í c u l o d a d i s c i p l i n a d e E d u c a ç ã o V i s u a l e T e c n o l ó g i c a Sketch2Photo

Leia mais

Morfologia Matemática Binária

Morfologia Matemática Binária Morfologia Matemática Binária Conceitos fundamentais: (Você precisa entender bem esses Pontos básicos para dominar a área! Esse será nosso game do dia!!! E nossa nota 2!!) Morfologia Matemática Binária

Leia mais

Ferramenta para detecção de fadiga em motoristas baseada no monitoramento dos olhos

Ferramenta para detecção de fadiga em motoristas baseada no monitoramento dos olhos Ferramenta para detecção de fadiga em motoristas baseada no monitoramento dos olhos Rafael Dattinger Acadêmico Dalton Solano dos Reis - Orientador Roteiro Introdução/Objetivos Fundamentação teórica Desenvolvimento

Leia mais

Capítulo 2. VARIÁVEIS DO TIPO INTEIRO

Capítulo 2. VARIÁVEIS DO TIPO INTEIRO Capítulo 2. VARIÁVEIS DO TIPO INTEIRO OBJETIVOS DO CAPÍTULO Conceitos de: variáveis do tipo inteiro, atribuição, avisos e erros de compilação, erros de execução, comentários dentro do programa-fonte Operadores

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

Exercício 1: Ajustes rápidos em retrato

Exercício 1: Ajustes rápidos em retrato UNIVERSIDADE COMUNITÁRIA DA REGIÃO DE CHAPECÓ - UNOCHAPECÓ CURSO SUPERIOR BACHARELADO EM DESIGN DE MODA ILUSTRAÇÃO I PROFESSORA GISELE DOS SANTOS Exercício 1: Ajustes rápidos em retrato Figura 01: Foto

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Localização de placas em imagens de veículos. Resumo

Localização de placas em imagens de veículos. Resumo Localização de placas em imagens de veículos Geovane Hilário Linzmeyer Curso de Inteligência Computacional Pontifícia Universidade Católica do Paraná Curitiba, dezembro de 2005 Resumo Um dos maiores problemas

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

Figura 1: Formato matricial de uma imagem retangular. Figura 2: Ampliação dos pixels de uma imagem

Figura 1: Formato matricial de uma imagem retangular. Figura 2: Ampliação dos pixels de uma imagem Universidade Federal de Santa Maria - UFSM Departamento de Eletrônica e Computação - DELC Introdução à Informática Prof. Cesar Tadeu Pozzer Julho de 2006 Imagens Uma imagem é representada por uma matriz

Leia mais

Processamento de histogramas

Processamento de histogramas REALCE DE IMAGENS BASEADO EM HISTOGRAMAS Processamento de histogramas O que é um histograma? É uma das ferramentas mais simples e úteis para o PDI; É uma função que mostra a frequência com que cada nível

Leia mais

OURO MODERNO www.ouromoderno.com.br. Designer Gráfico APOSTILA DE EXEMPLO. (Esta é só uma reprodução parcial do conteúdo)

OURO MODERNO www.ouromoderno.com.br. Designer Gráfico APOSTILA DE EXEMPLO. (Esta é só uma reprodução parcial do conteúdo) Designer Gráfico APOSTILA DE EXEMPLO (Esta é só uma reprodução parcial do conteúdo) 1 Índice Aula 1... 3 Apresentação do Photoshop... 3 Barra de Menus... 3 Barra de Opções... 3 Barra de Ferramentas...4

Leia mais

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL FERREIRA, Eliézer Pires Universidade Estadual de Goiás - UnU Iporá eliezer_3d@hotmail.com SOUZA, Uender Barbosa de Universidade Estadual

Leia mais

e à Linguagem de Programação Python

e à Linguagem de Programação Python Introdução a Algoritmos, Computação Algébrica e à Linguagem de Programação Python Curso de Números Inteiros e Criptografia Prof. Luis Menasché Schechter Departamento de Ciência da Computação UFRJ Agosto

Leia mais

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com Introdução ao processamento de imagens e OCTAVE Julio C. S. Jacques Junior juliojj@gmail.com Octave www.gnu.org/software/octave/ Linguagem Interpretada (similar ao MATLAB... portabilidade) Voltada para

Leia mais