As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo"

Transcrição

1 . A FÓRMULA INTERNACIONAL DA GRAVIDADE NORMAL As fórmulas para a determinação da gravidade teórica (ou normal) sobre a terra normal são do tipo γ = γ e β sin 2 φ + termos de ordem superior [.] Com precisão de primeira ordem (α 2 = 0), por exemplo, temos γ = γ e + β sin 2 φ [.2] Com precisão de segunda ordem (α 3 = 0) γ = γ e + β sin 2 φ + β sin 2 2φ [.3] Onde γ e γ e são respectivamente a gravidade normal no paralelo φ e no equador; os coeficientes β e β dependem das dimensões do elipsóide de referência e da velocidade angular. Vários autores propuseram valores numéricos para os três parâmetros que aparecem na fórmula [.3] resultando diversas fórmulas da gravidade normal, cujo nome é o do autor proponente. Não é difícil perceber o inconveniente da multiplicidade de tais fórmulas. Por isso, na Assembléia Geral da U.G.G.I., reunida em Praga em 927, foi debatido, mas sem que houvesse uma solução, o problema da adoção de uma fórmula internacional da gravidade normal visando uma uniformização nas aplicações da fórmula. Na Assembléia seguinte, realizada em Estocolmo, 930, foi adotada oficialmente a fórmula sugerida por Cassinis, fundamentada nos trabalhos de Pizzitti, Somigliana, Silva, Heiskanen etc e aplicável ao elipsóide internacional de Hayford (924), onde a = m α = 297 Para γ e foi escolhido o valor calculado por Heiskanen em 928 com base em anomalias isostáticas da gravidade, resultando γ 30 = 978, , sin 2 φ sin 2 2φ [.4] onde γ vem expresso na mesma unidade que γ e, no caso o Gal. Os valores extremos equador γ e = 978,049 pólos γ p = 983,22 revelam uma discrepância de 572 mgal. Em 967, decorrido quase meio século, após a adoção da fórmula internacional da gravidade, a U.G.G.I. recomendou o Sistema Geodésico de Referência 967 cujas constantes básicas já foram apresentadas e cujos valores derivados são as seguintes: α = 298,247

2 α = 0, ω = rad/s m = 0, γ e = ,846 mgal γ p = ,739 mgal β = 0, β = 0, do que resultou, para a fórmula internacional da gravidade 967 γ 67 = 97803,8 + 0, sin 2 φ 0, sin 2 2φ [.5] Muitas vezes é usada a fórmula que não utiliza o dobro da latitude e é mais precisa γ = 97803, , sin 2 φ + 0, sin 4 φ [.6] 2. CÁLCULO DOS PARÂMETROS DE UMA FÓRMULA DA GRAVIDADE NORMAL Conforme foi visto na seção anterior, a fórmula da gravidade normal é do tipo γ = γ e + β sin 2 φ + β sin 2 2φ [2.] A obtenção de uma fórmula da gravidade normal consiste na determinação dos parâmetros γ e, β e β. Isto pode ser feito com a utilização de valores observados da gravidade em pontos distintos. Em princípio, para uma terra ideal, esses parâmetros podem ser obtidos a partir de três pontos. Entretanto, devido à irregular distribuição de massas, essa fórmula, conforme já sabemos, é apenas uma aproximação. Assim, são necessárias observações abundantes para a resolução de um sistema de equações de condição pelo método dos mínimos quadrados. Encontrados os valores numéricos desses coeficientes, teremos uma fórmula da gravidade normal, que representa uma lei de distribuição da gravidade que mais se aproxima da real. Vamos admitir que com base em um grande número de dados gravimétricos, geograficamente bem distribuídos, pretendemos introduzir correções para melhor ajustar os valores de γ e e β na fórmula [2.]. A fórmula que procuramos é do tipo γ = γ e + x + β + y sin 2 φ + β sin 2 2φ [2.2] Subtraindo desta a antiga [2.], resulta dγ = γ γ = γ e + x + β + y sin 2 φ + β sin 2 2φ +

3 γ e + β sin 2 φ + β sin 2 2φ Com precisão de primeira ordem, temos dγ = x + yγ e sin 2 φ [2.3] A anomalia da gravidade antes da correção proposta seria Δg = g 0 γ [2.4] e após Δg = g 0 γ + dγ que com [2.3] toma a forma Δg = x yγ e sin 2 φ + Δg [2.5] Assimilando a anomalia Δg a um resíduo v = x + yγ e sin 2 φ Δg [2.6] Obtemos as equações de observação nas quais as anomalias medidas Δg representam os termos independentes. As correções x e y são obtidas minimizando as somas dos quadrados dos resíduos. Em princípio, a cada estação gravimétrica onde se processou a determinação de uma anomalia da gravidade corresponde uma equação de observação do tipo [2.6]. A aplicação do método dos mínimos quadrados conduz a duas equações normais a a x + a b y + a = 0 b b y + b = 0 [2.7] Foi este, em linhas gerais, o método utilizado por Heiskanen em 938 para deduzir correções aos parâmetros da fórmula internacional. Isto foi feito considerando a superfície terrestre dividida em quadrados de e substituindo as estações gravimétricas de cada um por uma única estação hipotética, central, de anomalia igual à média das anomalias isostáticas do quadrado. Por razões de ordem prática, Heiskanen incorporou a contaste γ e = à incógnita y ficando com equações de observação da forma x + y sin 2 φ i + Δg i = v i às quais correspondem às equações normais nx + y sin 2 φ i + Δg i = 0 y sin 4 φ i + Δg i sin 2 φ i = 0 Valendo-se de 59 quadrados e de anomalias isostáticas, Heiskanen chegou às seguintes equações normais

4 59x + 496y 676,6 = 0 239y 394 = 0 e das quais obteve x = 3.92 mgal y = 3,94 mgal Introduzindo essas correções na fórmula internacional 930 resulta γ = 978, , sin 2 φ 0, sin 2 2φ 3. GRADIENTE NORMAL DA GRAVIDADE NORMAL O gradiente normal da gravidade normal / exprime a taxa de variação de γ ao longo da normal. Admitindo em primeira aproximação a terra normal como esférica, homogênea e ainda destituída de movimento de rotação, podemos escrever γ GM R 2 [3.] A derivada normal será = = 2GM = 2γ R R 3 R [3.2] Adotando os valores médios γ = 98 Gal e R = cm, resulta R = 0,3080 mgal/m [3.3] Uma expressão mais rigorosa pode ser obtida da fórmula de Bruns aplicada a pontos exteriores a terra normal, o que nos dá = 2γC 2ω2 [3.4] A forma da terra normal é a de um elipsóide de revolução o que nos permite escrever C = 2 M + N [3.5] onde M e N são os raios de curvatura de duas seções normais, perpendiculares entre si, que são respectivamente a seção meridiana M = a e 2 q 3/2 [3.6] E a seção primeiro vertical

5 N = aq /2 [3.7] com q = e 2 sin 2 φ De modo que 3 + = q M N 2+q 2 e 2 a e 2 = 3 2 e 2 sin 2 φ+ + 2 e 2 sin 2 φ+ e 2 a( e 2 ) = 2 e 2 2e 2 sin 2 φ a( e 2 ) [3.8] Levando esta expressão em [3.5] e a expressão aí obtida em [3.4] e fazendo m = aω 2 /γ e, obtemos = 2γ 2 e 2 2e 2 sin 2 φ 2a( e 2 ) 2mγ e a [3.9] Com precisão de primeira ordem (α 2 = 0), chega-se a = 2γ e 2 ( + a 2 e2 sin 2 φ + m) Ou em função do achatamento α = e 2 = 2γ a + α 2α sin 2 φ + m [3.0] Para o elipsóide de referência 967 a = m α = 0, m = 0, resulta: a) no equador γ = 97803,846 = 0,30877 mgal/m b) no paralelo 45 γ = 98069,047 = 0,30856 mgal/m c) nos pólos γ = 98327,720 = 0,30834 mgal/m De modo que o valor médio será = 0,3086 mgal/m [3.] sobre a superfície da terra normal.

4/12/2013 ELEMENTOS DE GEODÉSIA E CARTOGRAFIA SISTEMAS DE REFERÊNCIA. Geóide -Gauss 1828. Modelo esférico Astronomia

4/12/2013 ELEMENTOS DE GEODÉSIA E CARTOGRAFIA SISTEMAS DE REFERÊNCIA. Geóide -Gauss 1828. Modelo esférico Astronomia FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL ELEMENTOS DE GEODÉSIA E CARTOGRAFIA Curso: Agronomia 6º Semestre / Eng. Florestal 7º Semestre Prof. responsável: Lorena Stolle Pitágoras(580-500 ac)

Leia mais

VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ

VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ VIII CONGRESSO BRASILEIRO DE CARTOGRAFIA FORTALEZA 24 a 31 DE JULHO DE 1977 O DATUM GEODÉSICO DE CHUÁ ENGENHEIRO LYSANDRO VIANA RODRIGUEZ O DATUM GEODÉSICO DE CHUÁ I GENERALIDADES: O ideal de unificação

Leia mais

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS)

Hoje adota novas tecnologias no posicionamento geodésico, como por exemplo o Sistema de Posicionamento Global (GPS) Geodésia A Geodésia é uma ciência que se ocupa do estudo da forma e tamanho da Terra no aspecto geométrico e com o estudo de certos fenômenos físicos relativos ao campo gravitacional terrestre, visando

Leia mais

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA

Engenharia Civil Topografia e Geodésia. Curso Técnico em Edificações Topografia GEODÉSIA e Geodésia GEODÉSIA e Geodésia GEODÉSIA O termo Geodésia, em grego Geo = terra, désia = 'divisões' ou 'eu divido', foi usado, pela primeira vez, por Aristóteles (384-322 a.c.), e pode significar tanto

Leia mais

4 Navegação Inercial (INS)

4 Navegação Inercial (INS) 4 Navegação Inercial (INS) A fusão de sensores só pode ser realizada quando os mesmos medem a mesma variável, logo primeiramente é necessário a escolha do modelo sobre o qual irá se representar as medidas

Leia mais

Laboratório de Cartografia Digital - CTUFES

Laboratório de Cartografia Digital - CTUFES Geotecnologias Planejamento e Gestão AULA 05 Fundamentos de Geodésia Geodésia - Definição: Geodésia é a ciência de medida e mapeamento das variações temporais da superfície da Terra, considerando seu campo

Leia mais

Introdução à Geodésia

Introdução à Geodésia UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE GEOCIÊNCIAS Disciplina: Leitura e Interpretação de Cartas Introdução à Geodésia Prof. Dr. Richarde Marques richarde@geociencias.ufpb.br

Leia mais

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs

I Seminário SIGCidades: Cadastro Territorial Multifinalitário. Fundamentos de Cartografia aplicados aos SIGs I Seminário SIGCidades: Cadastro Territorial Multifinalitário Fundamentos de Cartografia aplicados aos SIGs 1. FORMA DA TERRA Geóide Elipsóide Esfera Modelos de representação da Terra O modelo que mais

Leia mais

Capítulo I GENERALIDADES

Capítulo I GENERALIDADES Topografia I Profa. Andréa Ritter Jelinek 1 Capítulo I GENERALIDADES 1. Conceitos Fundamentais Definição: a palavra Topografia deriva das palavras gregas topos (lugar) e graphen (descrever), que significa

Leia mais

CONCEITO DE GEODÉSIA A FORMA DA TERRA SUPERFÍCIES DE REFERÊNCIA MARCOS GEODÉSICOS REFERÊNCIAS BIBLIOGRÁFICAS SISTEMA GEODÉSICO DE REFERÊNCIA

CONCEITO DE GEODÉSIA A FORMA DA TERRA SUPERFÍCIES DE REFERÊNCIA MARCOS GEODÉSICOS REFERÊNCIAS BIBLIOGRÁFICAS SISTEMA GEODÉSICO DE REFERÊNCIA Sumário P r o f. Ti a g o B a d r e M a r i n o G e o p r o c e s s a m e n t o D e p a r t a m e n t o d e G e o c i ê n c i a s I n s t i t u t o d e A g r o n o m i a U F R R J 2 Conceito de Geodésia

Leia mais

Semana 13. Gravimetria GRAVIMETRIA

Semana 13. Gravimetria GRAVIMETRIA Semana 13 Gravimetria 13.1 FUNDAMENTOS DO CAMPO GRAVÍTICO 13.1.1 O Campo Gravítico 13.1. Potencial Gravítico 13.1.3 Potencial do Elipsóide de Nível 13.1.4 Gravidade Normal 13.1.5 Anomalia da Gravidade

Leia mais

Prof. George Sand L. A. De França

Prof. George Sand L. A. De França GRAVIDADE DA TERRA: Introdução à teoria do potencial; Campo de gravidade da Terra; Medidas de Gravidade; Redução de observações gravimétricas; Marés terrestres; Anomalias gravimétricas e o Interior da

Leia mais

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA 1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide)

A figura da Terra. Da esfera ao Geóide (passando pelo elipsóide) A figura da Terra Da esfera ao Geóide (passando pelo elipsóide) Uma primeira aproximação: a Terra esférica Esfera: Superfície curva fechada cujos pontos se encontram todos a igual distância, R, de um ponto

Leia mais

Escola Politécnica da Universidade de São Paulo. PTR 2202 Informações Espaciais

Escola Politécnica da Universidade de São Paulo. PTR 2202 Informações Espaciais Escola Politécnica da Universidade de São Paulo Departamento de Engenharia de Transportes PTR Laboratório de Topografia e Geodésia LTG PTR 2202 Informações Espaciais 1/34 Denizar Blitzkow Edvaldo Simões

Leia mais

Disciplina: Topografia I

Disciplina: Topografia I Curso de Graduação em Engenharia Civil Prof. Guilherme Dantas Fevereiro/2014 Disciplina: Topografia I Indrodução atopografia definição Definição: a palavra "Topografia" deriva das palavras gregas "topos"

Leia mais

Altera a caracterização do Sistema Geodésico Brasileiro

Altera a caracterização do Sistema Geodésico Brasileiro Altera a caracterização do Sistema Geodésico Brasileiro R.PR 1/2005 FOLHA 1/1 Competência: Artigo 24 do Estatuto aprovado pelo Decreto nº 4.740, de 13 de junho de 2003. O PRESIDENTE da FUNDAÇÃO INSTITUTO

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

elipsoide de revolução

elipsoide de revolução 19.(TRT-8/CESPE/2013) Para a obtenção de mapas, é necessário que haja a projeção da superfície real ou física em formas geométricas, sendo que alguns ajustes prévios são necessários para que se possa fazer

Leia mais

A EQUAÇÃO FUNDAMENTAL DA GEODÉSIA FÍSICA

A EQUAÇÃO FUNDAMENTAL DA GEODÉSIA FÍSICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL DE MINAS GERAIS Câmpus Inconfidentes A Aula 09 POTENCIAL PERTURBADOR A diferença, num mesmo ponto, entre o potencial da Terra real (geopotencial

Leia mais

GPS (Global Positioning System) Sistema de Posicionamento Global

GPS (Global Positioning System) Sistema de Posicionamento Global GPS (Global Positioning System) Sistema de Posicionamento Global 1 Sistema de Posicionamento Global é um sistema de posicionamento por satélite que permite posicionar um corpo que se encontre à superfície

Leia mais

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t Conservação de Massa Em um fluido real, massa deve ser conservada não podendo ser destruída nem criada. Se a massa se conserva, o que entrou e não saiu ficou acumulado. Matematicamente nós formulamos este

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

DETERMINAÇÃO DE EPICENTROS E HIPOCENTROS

DETERMINAÇÃO DE EPICENTROS E HIPOCENTROS DETERMINAÇÃO DE EPICENTROS E HIPOCENTROS TREINAMENTO TÉCNICO: DA TEORIA A PRÁTICA Apostila de Treinamento (IAG-SISMO-042010) Elaborado por: Afonso Emidio de Vasconcelos Lopes Marcelo Assumpção SÃO PAULO

Leia mais

Aceleração Constante

Aceleração Constante Objetivos: Aceleração Constante Encontrar as equações do movimento a aceleração constante e traçar uma metodologia para resolução destes problemas; Detalhar o movimento de Queda Livre para um corpo próximo

Leia mais

Apontamentos de aula: Tópicos Básicos de Cartografia e Sistema Universal Transversal Mercator (UTM)

Apontamentos de aula: Tópicos Básicos de Cartografia e Sistema Universal Transversal Mercator (UTM) Apontamentos de aula: Tópicos Básicos de Cartografia e Sistema Universal Transversal Mercator (UTM) Colaboradores: Emanoel Jr da S. Nunes Érica S. Nakai Pedro Paulo da S. Barros Coordenador: Prof. Peterson

Leia mais

AULA 4 SISTEMAS DE REFERÊNCIA

AULA 4 SISTEMAS DE REFERÊNCIA AULA 4 SISTEMAS DE REFERÊNCIA Objetivos TOPOGRAFIA Gerais Visão geral de Sistemas de Referência Específicos Sistemas de Coordenadas; Sistema de Referência; Datum Geodésico; Sistemas de Referência De acordo

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

Por Gravimetria (grave= peso, metria= medição) entendese medição da gravidade, i.e., a medição da magnitude do vector da aceleração da gravidade g.

Por Gravimetria (grave= peso, metria= medição) entendese medição da gravidade, i.e., a medição da magnitude do vector da aceleração da gravidade g. GRAVIMETRIA Por Gravimetria (grave= peso, metria= medição) entendese medição da gravidade, i.e., a medição da magnitude do vector da aceleração da gravidade g. No sistema de unidades SI, o valor de g é

Leia mais

Problemas de Mecânica e Ondas 5

Problemas de Mecânica e Ondas 5 Problemas de Mecânica e Ondas 5 P 5.1. Um automóvel com uma massa total de 1000kg (incluindo ocupantes) desloca-se com uma velocidade (módulo) de 90km/h. a) Suponha que o carro sofre uma travagem que reduz

Leia mais

DEPARTAMENTO DE GEOFÍSICA INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIA ATMOSFÉRICAS UNIVERSIDADE DE SÃO PAULO ELEMENTOS DE GEODÉSIA

DEPARTAMENTO DE GEOFÍSICA INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIA ATMOSFÉRICAS UNIVERSIDADE DE SÃO PAULO ELEMENTOS DE GEODÉSIA DEPARTAMENTO DE GEOFÍSICA INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIA ATMOSFÉRICAS UNIVERSIDADE DE SÃO PAULO ELEMENTOS DE GEODÉSIA NELSI COGÔ DE SÁ SUMÁRIO 1. ESBOÇO HISTÓRICO... 4 1.1 AS PRIMEIRAS IDÉIAS

Leia mais

Sistemas Altimétrcos Modernos: Tema 2 Geopotencial e Gravimetria. Métodos Físicos em Geodésia e Sistemas Altimétricos Modernos

Sistemas Altimétrcos Modernos: Tema 2 Geopotencial e Gravimetria. Métodos Físicos em Geodésia e Sistemas Altimétricos Modernos Universidade Federal do Paraná Setor de Ciências da Terra Departamento de Geomática Curso de Engenharia Cartográfica e de Agrimensura Laboratório de Referenciais e Altimetria por Satélites Métodos Físicos

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

EAC-082: Geodésia Física. Aula 11 Campo de Gravidade

EAC-082: Geodésia Física. Aula 11 Campo de Gravidade EAC-082: Geodésia Física Prof. Paulo Augusto Ferreira Borges Aula 11 Campo de Gravidade https://intranet.ifs.ifsuldeminas.edu.br/~paulo.borges/ 1 1/16 1. Definição A denominação de Terra Normal refere-se

Leia mais

Geodesia Física e Espacial. ******* Sistemas e Tecnologias de Georeferenciação. Ano lectivo 2011/2012

Geodesia Física e Espacial. ******* Sistemas e Tecnologias de Georeferenciação. Ano lectivo 2011/2012 Geodesia Física e Espacial ******* Sistemas e Tecnologias de Georeferenciação Ano lectivo 2011/2012 Definição A geodesia é uma palavra de origem grega (γεωδαιζία ) que literalmente quer dizer divisão da

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK

LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK LEVANTAMENTOS TOPOGRÁFICOS ESTAÇÃO TOTAL x GPS RTK Douglas Luiz Grando 1 ; Valdemir Land 2, Anderson Clayton Rhoden 3 Palavras-chave: Topografia; Geodésia; GPS de Precisão. INTRODUÇÃO Com a evolução das

Leia mais

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais:

MÓDULO 9. A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: A COR DE UM CORPO MÓDULO 9 A luz branca, que é a luz emitida pelo Sol, pode ser decomposta em sete cores principais: luz branca vermelho alaranjado amarelo verde azul anil violeta A cor que um corpo iluminado

Leia mais

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA Escrever a equação do movimento corresponde a escrever a 2ª Lei de Newton (F = ma) numa forma que possa ser aplicada à oceanografia. Esta Lei diz-nos que como resultado

Leia mais

2 Descrição do movimento de um ponto material no espaço e no tempo

2 Descrição do movimento de um ponto material no espaço e no tempo 2 Descrição do movimento de um ponto material no espaço e no tempo 2.1. Num instante t i um corpo parte de um ponto x i num movimento de translação a uma dimensão, com módulo da velocidade v i e aceleração

Leia mais

Introdução à Geodesia

Introdução à Geodesia à Geodesia 1. Objectivos.. Programa a) História da Geodesia. Estrutura da Geodesia e sua interligação b) Movimentos da Terra. Sistemas de referência. c) Camo Gravítico da Terra d) A forma e dimensão da

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br

Telecomunicações. Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Telecomunicações Prof. André Y. Kusumoto andre_unip@kusumoto.com.br Satélites Satélite é o elemento comum de interligação das estações terrenas, atuando como estação repetidora. Devido a sua altitude,

Leia mais

Conceitos de Geodésia

Conceitos de Geodésia Sumário P r o f. Ti a g o B a d r e M a r i n o G e o p r o c e s s a m e n t o D e p a r t a m e n t o d e G e o c i ê n c i a s I n s t i t u t o d e A g r o n o m i a U F R R J SISTEMAS DE COORDENADAS

Leia mais

Processamento Sísmico:

Processamento Sísmico: Processamento Sísmico: Até aqui vimos que um pulso sísmico artificial atravessa as camadas e parte de sua energia é refletida em cada superfície de contraste de impedância acústica. A fração da amplitude

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

1. INTRODUÇÃO 3. SISTEMAS DE REFERÊNCIA CLÁSSICOS 4. SISTEMAS DE REFERÊNCIA MODERNOS 5. MATERIALIZAÇÃO DE UM SISTEMA DE REFERÊNCIA

1. INTRODUÇÃO 3. SISTEMAS DE REFERÊNCIA CLÁSSICOS 4. SISTEMAS DE REFERÊNCIA MODERNOS 5. MATERIALIZAÇÃO DE UM SISTEMA DE REFERÊNCIA SISTEMAS DE REFERÊNCIA 1. INTRODUÇÃO 2. SISTEMAS COORDENADOS E SUPERFÍCIES UTILIZADOS EM GEODÉSIA 2.1 Sistema de Coordenadas Cartesianas 2.2 Sistema de Coordenadas Geodésicas 2.3 Sistema de Coordenadas

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 3 ESTAÇÕES DO ANO E INSOLAÇÃO SOLAR. Movimento Anual do Sol e as Estações do Ano. Estação em diferentes latitudes. Insolação Solar. Recapitulando a aula anterior: Capítulo 2 Trigonometria Esférica

Leia mais

22 SÉCULOS A MEDIR ÁREA

22 SÉCULOS A MEDIR ÁREA SÉCULOS A MEDIR ÁREA MIGUEL ABREU E ANA CANNAS DA SILVA. O teorema favorito de Arquimedes Das geniais descobertas e invenções de Arquimedes (87- AC), conta-se que a sua favorita terá sido a de que a superfície

Leia mais

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves)

RADIAÇÃO SOLAR E TERRESTRE. Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) RADIAÇÃO SOLAR E TERRESTRE Capítulo 3 Meteorologia Básica e Aplicações (Vianello e Alves) INTRODUÇÃO A Radiação Solar é a maior fonte de energia para a Terra, sendo o principal elemento meteorológico,

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXXI Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase Nível Alfa 1 Questão 1 0 pontos Na Tabela 1 temos a progressão mensal para o Imposto de Renda Pessoa Física 014 01. Tabela 1: Imposto de Renda Pessoa Física 014 01. Base

Leia mais

LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTIC

LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTIC LABORATÓRIO DE GEOPROCESSAMENTO DIDÁTICO Professora: Selma Regina Aranha Ribeiro Estagiários: Ricardo Kwiatkowski Silva / Carlos André Batista de Mello Forma da Terra Superfície Topográfica Forma verdadeira

Leia mais

O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais.

O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais. O que são satélites? Existem 2 tipos de satélite, são os satélites naturais e satélites artificiais. Satélites naturais são: a Lua que gravita em torno da Terra. Satélites artificiais são: dispositivos,

Leia mais

Encontrando o seu lugar na Terra

Encontrando o seu lugar na Terra Encontrando o seu lugar na Terra A UU L AL A Nesta aula vamos aprender que a Terra tem a forma de uma esfera, e que é possível indicar e localizar qualquer lugar em sua superfície utilizando suas coordenadas

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

A Topografia no Sistema CR - Campeiro 7.0

A Topografia no Sistema CR - Campeiro 7.0 A Topografia no Sistema CR - Campeiro 7.0 Introdução a Topografia Enio Giotto Professor Titular da UFSM Elódio Sebem Professor Associado da UFSM SUMÁRIO 1 A TOPOGRAFIA E SEU CAMPO DE ATUAÇÃO 2 DIVISÃO

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Horário solar aparente Horário solar aparente tempo solar aparente

Horário solar aparente Horário solar aparente tempo solar aparente Horário solar aparente Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/hor%c3%a1rio_solar_aparente Acesso em 15 de novembro de 2011 Horário solar aparente, ou tempo solar aparente,

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

Lista 1_Gravitação - F 228 2S2012

Lista 1_Gravitação - F 228 2S2012 Lista 1_Gravitação - F 228 2S2012 1) a) Na figura a abaixo quatro esferas formam os vértices de um quadrado cujo lado tem 2,0 cm de comprimento. Qual é a intensidade, a direção e o sentido da força gravitacional

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

VAGNER GONÇALVES FERREIRA LEVANTAMENTOS GRAVIMÉTRICOS

VAGNER GONÇALVES FERREIRA LEVANTAMENTOS GRAVIMÉTRICOS VAGNER GONÇALVES FERREIRA LEVANTAMENTOS GRAVIMÉTRICOS CURITIBA 007 SUMÁRIO 1. INTRODUÇÃO... 3 1.1. Considerações Gerais... 3 1.. Unidades... 4. DETERMINAÇÕES RELATIVAS DO VALOR DA GRAVIDADE... 5.1. Relativas

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se:

Questão 01) A linha imaginária que circula a Terra a 23 27 de latitude norte denomina-se: Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Anderson José Soares Série: 1º Disciplina: GEOGRAFIA Data da prova: 22/02/14 Questão 01) A linha imaginária que circula a Terra

Leia mais

COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011

COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011 COLÉGIO SÃO JOSÉ PROF. JOÃO PAULO PACHECO GEOGRAFIA 1 EM 2011 O Sol e a dinâmica da natureza. O Sol e a dinâmica da natureza. Cap. II - Os climas do planeta Tempo e Clima são a mesma coisa ou não? O que

Leia mais

No caso de existência no BDG, surgirá a seguinte mensagem: Visualize o resultado da pesquisa no final da página. Clicar sobre o botão OK.

No caso de existência no BDG, surgirá a seguinte mensagem: Visualize o resultado da pesquisa no final da página. Clicar sobre o botão OK. Sistema Geodésico Brasileiro Banco de Dados Geodésicos Opções de consulta: Para realizar este tipo de consulta, deve-se digitar o(s) código(s) da(s) estação(ões) a serem pesquisadas e clicar sobre o botão

Leia mais

Tenha isso muito claro na cabeça!

Tenha isso muito claro na cabeça! Tenha isso muito claro na cabeça! Existem duas formas de representar a Terra (existem mais, mas vamos tratar de duas): - modelo matemático = elipsóide - modelo quase real = geóide. O elipsóide é uma figura

Leia mais

PROJEÇÕES CARTOGRÁFICAS

PROJEÇÕES CARTOGRÁFICAS Uma projeção cartográfica consiste num conjunto de linhas (paralelos e meridianos), que formam uma rede, sobre a qual são representados os elementos do mapa. Todos os mapas e/ou cartas são representações

Leia mais

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre

RESUMO O trabalho apresenta resultados de um estudo sobre o texto A Geometria do Globo Terrestre Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 43 O ÂNGULO DE ELEVAÇÃO DO SOL E A ENERGIA SOLAR Antonio da Silva Gomes Júnior 1, José Paulo Rodrigues da Silveira,

Leia mais

MEC. Curso de Formação Continuada. em Georreferenciamento Aplicado ao Cadastro de Imóveis Rurais GEODÉSIA & CARTOGRAFIA MINISTÉRIO DA EDUCAÇÃO

MEC. Curso de Formação Continuada. em Georreferenciamento Aplicado ao Cadastro de Imóveis Rurais GEODÉSIA & CARTOGRAFIA MINISTÉRIO DA EDUCAÇÃO MEC MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO MÉDIA E TECNOLÓGICA Centro Federal De Educação Tecnológica Do Espírito Santo Gerência De Apoio Ao Ensino Coordenadoria De Recursos Didáticos Curso de Formação

Leia mais

GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE

GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE GNSS: CONCEITOS, MODELAGEM E PERSPECTIVAS FUTURAS DO POSICIONAMENTO POR SATÉLITE Prof. Dra. Daniele Barroca Marra Alves Departamento de Cartografia SUMÁRIO Posicionamento Sistemas de Posicionamento GPS,

Leia mais

A NAVEGAÇÃO ASTRONÔMICA É SIMPLES?

A NAVEGAÇÃO ASTRONÔMICA É SIMPLES? A NAVEGAÇÃO ASTRONÔMICA É SIMPLES? 2005 Curso de Capitão o Amador: PROGRAMA E INSTRUÇÕES GERAIS PARA O EXAME DE CAPITÃO O exame para a categoria de Capitão Amador constará de uma prova escrita, com duração

Leia mais

A equação do 2º grau

A equação do 2º grau A UA UL LA A equação do 2º grau Introdução Freqüentemente, ao equacionarmos um problema, obtemos uma equação na qual a incógnita aparece elevada ao quadrado. Estas são as chamadas equações do 2º grau.

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Leis de Newton e Forças Gravitacionais

Leis de Newton e Forças Gravitacionais Introdução à Astronomia Leis de Newton e Forças Gravitacionais Rogério Riffel Leis de Newton http://www.astro.ufrgs.br/bib/newton.htm Newton era adepto das ideias de Galileo. Galileo: Um corpo que se move,

Leia mais

Coordenadas Geográficas

Coordenadas Geográficas Orientação A rosa-dos-ventos possibilita encontrar a direção de qualquer ponto da linha do horizonte. Por convenção internacional, a língua inglesa é utilizada como padrão, portanto o Leste muitas vezes

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação LENTES E ESPELHOS INTRODUÇÃO A luz é uma onda eletromagnética e interage com a matéria por meio de seus campos elétrico e magnético. Nessa interação, podem ocorrer alterações na velocidade, na direção

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

A Geometria no Globo Terrestre.

A Geometria no Globo Terrestre. A Geometria no Globo Terrestre. 1. Introdução. Neste trabalho pretendemos desenvolver o estudo da esfera e seus elementos explorando sua associação com o globo terrestre. O estudo da posição relativa de

Leia mais

Esquema: Representação da força de atração gravitacional entre dois corpos de massas M 1 e M 2

Esquema: Representação da força de atração gravitacional entre dois corpos de massas M 1 e M 2 As Forças de Marés As marés são conhecidas de todos, principalmente por aqueles que moram próximo ao mar e dele vivem. Muitos deles sabem prever a maré em função da Lua e do Sol, sem sequer saber qual

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp

Movimentos da Terra PPGCC FCT/UNESP. Aulas EGL 2016 João Francisco Galera Monico unesp Movimentos da Terra PPGCC FCT/UNESP Aulas EGL 2016 João Francisco Galera Monico Terra Movimentos da Terra Cientificamente falando, a Terra possui um único movimento. Dependendo de suas causas, pode ser

Leia mais

MATEMÁTICA APLICADA FIGURAS PLANAS

MATEMÁTICA APLICADA FIGURAS PLANAS MATEMÁTICA APLICADA FIGURAS PLANAS Áreas e Perímetros de Figuras Planas Quadrado A = L x L A = L² Onde: A = Área (m², cm², mm²,...) L = Lado (m, cm, mm,...) P = Perímetro P = L + L + L + L P =. L Retângulo

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

3.4 Movimento ao longo de uma curva no espaço (parte segunda)

3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4-17 3.4 Movimento ao longo de uma curva no espaço (parte segunda) 3.4.4 Mais exemplos sobre curvas no espaço. No parágrafo anterior discutimos os elementos que entram na descrição de uma trajetória

Leia mais