Perda de Carga e Comprimento Equivalente

Tamanho: px
Começar a partir da página:

Download "Perda de Carga e Comprimento Equivalente"

Transcrição

1 Perda de Carga e Comprimento Equivalente Objetivo Este resumo tem a finalidade de informar os conceitos básicos para mecânicos e técnicos refrigeristas sobre Perda de Carga e Comprimento Equivalente, para que os mesmos possam utilizá-los, futuramente, para especificar bombas hidráulicas e tubulações para instalação de condicionadores de ar do tipo Split. Tubulação O perfeito dimensionamento de uma instalação hidráulica e seus componentes, tais como válvulas e principalmente de bombas hidráulicas depende em muito das dimensões e da correta disposição da tubulação a serem utilizadas. Abordaremos a perda de pressão, conhecida como perda de carga de uma rede hidráulica. Dimensionamento da Tubulação Ao se dimensionar as linhas de sucção e recalque, as considerações relativas ao custo tendem a favorecer as linhas de diâmetro tão pequeno quanto possível. Entretanto, quedas de pressão, ou perda de carga, na linhas de recarga e sucção causam perda de capacidade da bomba e compressor e aumentam a potência necessária. Perdas excessivas nas linhas de sucção, no caso de bombas hidráulicas, podem causar o aparecimento de cavitação, no rotor, e conseqüentemente a perda desta bomba. Perda de Carga em Instalações Hidráulicas 1

2 Perda de Carga ( P) Sempre que um fluido se desloca no interior de uma tubulação ocorre atrito deste fluido com as paredes internas desta tubulação, ocorre também uma turbulência do fluido com ele mesmo, este fenômeno faz com que a pressão que existe no interior da tubulação vá diminuindo gradativamente à medida com que o fluido se desloque, esta diminuição da pressão é conhecida como Perda de Carga ( P). Desta forma a perda de carga seria uma restrição à passagem do fluxo do fluido dentro da tubulação, esta resistência influenciará diretamente na altura manométrica de uma bomba (H) e sua vazão volumétrica (Q), e em caso de sistemas frigoríficos, a diminuição de sua eficiência frigorífica. Em resumo, em ambos os casos um aumento de potência consumida. Velocidade Da mecânica dos fluidos sabemos que quanto maior a velocidade de um fluido dentro de uma tubulação maior será a perda de carga deste fluido. Desta forma podemos concluir que para diminuirmos a perda de carga basta diminuirmos a velocidade do fluido. Mas velocidade menor para mantermos uma mesma vazão volumétrica (Q) será necessário utilizar tubulações de maior diâmetro, o que acarreta em uma instalação de custo mais elevado. A relação entre a vazão volumétrica e a velocidade pode ser escrita como: Vazão Volumétrica = Velocidade x Área interna da tubulação Onde:.. Q = v. A Q = Vazão volumétrica (m 3 / s) V = Velocidade do fluido dentro da tubulação (m / s) A = Área interna do Tubo (m 2 ) Resumindo com velocidades muito grande ocorrerá um aumento da perda de carga ( P) do sistema, o que acarretará um maior consumo de energia nas bombas e compressores, desta forma quando estivermos dimensionado as tubulações da rede hidráulica ou sistema frigorífico devemos pensar em um projeto que garanta ao mesmo tempo que se possa ter velocidade, para garantir 2 Perda de Carga em Instalações Hidráulicas

3 a necessária vazão de fluido com uma mínima perda de carga, com o menor custo da instalação. Para facilitar o projeto, a ABNT estabelece alguns valores de vazão de água e sua respectiva velocidade máxima dentro de uma tubulação. A Tabela 1 apresenta alguns valores de velocidade recomendados para água dentro de tubulação. A Tabela 2 e a Tabela 4 apresentam detalhes, como a área interna (A) de alguns tipos de tubulações utilizadas em instalações hidráulicas e tubos de cobre para sistemas de refrigeração. Cálculo da Perda de Carga ( P) Existem diversas equações que podem ser utilizadas para o calculo da perda de carga no interior de uma tubulação, que são estudados em cursos de Mecânica dos Fluidos, em nosso caso adotaremos a equação de Darcy- Weissbach; A perda de Pressão ou perda de carga ( P) provocada pelo atrito no interior de um tubo cilíndrico, para diversos fluidos homogêneos, como no caso da água, pode ser expresso pela equação de Darcy-Weissbach; P = f. L. V 2 D 2.g Onde: P = Perda de Pressão (m) L = Comprimento Equivalente da Tubulação (m) D = Interno da Tubulação (m) V = Velocidade media do Refrigerante (m/s) g = Aceleração da gravidade (9,8 m/s 2 ) f = Fator de Fricção (adimensional) Fator de Fricção (f) O Fator de Fricção (f), também é algumas vezes conhecido como Fator de Fricção de MoodY ou também Coeficiente de Perda de Carga Distribuída. O Fator de Fricção (f), pode ser determinado através de equações matemáticas, as quais são função do Número de Reynolds (Re) e da Perda de Carga em Instalações Hidráulicas 3

4 Rugosidade Relativa forma de tabela para alguns tipos de tubulação, para facilitar os cálculos apresentamos os valores em As Tabelas 5 e 8 apresentam alguns valores de Fator de Fricção (f), para alguns tipos de tubulações em função do diâmetro da tubulação e da velocidade da água no seu interior. Comprimento Equivalente (L EQU ) Todos os tubos tem um comprimento que medimos em seus trechos retos, este comprimento podemos definir como o comprimento real da instalação, as curvas, válvulas e demais singularidades existentes no sistema também representam uma grande parcela da perda de carga, e representaremos como se ela fosse um tubo reto, e qual seria a perda de carga que ela causaria se ela fosse um tubo reto. Esta representação de uma singularidade como se fosse um tubo reto é conhecida como Comprimento Equivalente Existem diversas tabelas, como a Tabela 9 e Tabela 10 que apresentam o comprimento equivalente para diversas singularidades em função de seu diâmetro nominal, para tubos de aço e cobre. Comprimento Equivalente (L EQU ) Tubulação de cobre Vamos fazer um exemplo de uma tubulação de cobre, conforme o desenho a seguir: 5 m Curva de Raio Pequeno Tubo de Cobre ½ 2 m Repare que temos um tubo de cobre de diâmetro de ½ polegada (No Sistema Internacional D N = 12 ) com trechos retos de 5 metros e 2 metros, que estão interligados por uma cura de raio pequeno, para sabermos qual o comprimento equivalente desta instalação basta sabermos quantos metros a curva de raio pequeno representa. Na tabela 10 de comprimento equivalente, para um tubo de ½ polegada de raio pequeno, encontramos um comprimento equivalente para 4 Perda de Carga em Instalações Hidráulicas

5 esta cura de 1,4 metros. Esta cura gerará a mesma perda de carga, mesmo que seja um tubo reto de 1,4 metros. Podemos montar uma tabela para esta instalação, a qual pode ser muito útil quando se tratar de instalações com muitas curvas e diversos trechos retos. Tipo Quantidade Comprimento (m) L EQU (m) Trecho Reto Horizontal ,0 5,0 Trecho Reto Vertical ,0 2,0 Cura Raio Pequeno 1 1,0 1,4 Comprimento Equivalente Total (m) 8,4 Apesar dos tubos retos terem um comprimento real de 7,0 m ( 5,0 m + 2,0 m), o comprimento equivalente da tubulação é de 8,4 m. Comprimento Equivalente (L EQU ) Tubulação de aço Em tubulações de água de grandes instalações hidráulicas utilizamos normalmente tubos de aço e os valores de seus respectivos comprimentos equivalentes de diversas singularidades podem ser obtidos na Tabela 9. Exemplo 1 Vamos calcular o comprimento equivalente de uma instalação hidráulica, de um sistema aberto, construída com tubo de aço galvanizado novo, conforme desenho a seguir, que deve transportar uma vazão de água de Q = 30 m 3 /h. Nota: Sistema aberto pode ser exemplificado como aquele em que uma bomba de água transporta água até um outro ponto a outro, como no caso de um reservatório inferior, de um prédio, até outra caixa no topo do prédio. Perda de Carga em Instalações Hidráulicas 5

6 3,0 m 5 m 2,5m Solução 1. Determinar o diâmetro da tubulação. Na Tabela 01 podemos encontrar o diâmetro de tubulação em função da vazão de água transportada em um sistema aberto Tabela 01 Parâmetro máximos para seleção da tubulação de água do Tubo Sistema Fechado Sistema Aberto () (in) Vazão (m³/h) Velocidade (m/s) Perda (%) Vazão (m³/h) Velocidade (m/s) Perda (%) 19 3/4" 1,5 1,2 10 1,0 0, ,5 10 2,2 1, /4 6 1, , /2 9 1, , , , /2 28 2, , , , , , , , ,2 5, ,1 9 Vazão Q = 30 m 3 / h é necessário um tubo de Nominal D N = 3 2. Determinar o cumprimento equivalente da Tubulação (L EQ ) Com o auxilio da tabela de singularidades para tubo de aço, Tabela 9, encontramos os seguintes valores para a instalação, que utiliza tubo de D N = 3 6 Perda de Carga em Instalações Hidráulicas

7 Tipo Quantidade Comprimento (m) L EQU (m) Trecho Reto Horizontal ,0 5,0 Trecho Reto Vertical ,5 5,5 Válvula de Pé 1 20,0 20,0 Válvula Gaveta 1 0,5 0,5 Válvula de Retenção (Pesada) 1 9,7 9,7 Cotovelo ,6 3,2 Comprimento Equivalente Total (m) 43,9 O comprimento equivalente da instalação hidráulica é de L EQU = 43,9 m poderia ser resumido da seguinte maneira 10,5 m 9,7 m 0,5 m 20,0 m 1,6 m 1,6m 43,9 m Exemplo 2 Calcular a Perda de Carga P da instalação hidráulica, de um sistema aberto, construída com tubo de aço galvanizado novo, do esquema anterior, conforme esquema abaixo que deve transportar uma vazão de água de Q = 30 m 3 /h Perda de Carga em Instalações Hidráulicas 7

8 Solução 1. Determinar a vazão em m 3 / s Q = 30 m 3 /h = 8,33 x 10-3 m 3 / s 2. Determinar a área interna da tubulação de D N = 3 A área pode ser determinada na tabela 1 A = = 4796 x 10-6 m 3 D I = 77,93 = 0,07793 m Tabela 2 Nominal in 3 40 s Sd externo Dimensionamento de tubos de Aço interno Espessura da parede do tubo Peso por metro de tubo Kg/m Área interna do tubo Área superficial por metro de comprimento Externa m 2 Internam Calcular a velocidade da água dentro da tubulação (V) V = Q / A V = 8,33 x 10-3 m 3 / s / 4796 x 10-6 m 3 V = 1,73 m/s 4. Determinar o Fator de Fricção (f) O fator de fricção (f), para tubo de aço galvanizado com D N = 3, para uma velocidade V = 1,73 m/s pode ser obtido na Tabela 6 Tabela 6 Valores de Coeficiente de atrito (f) para tubos conduzindo água a 25 0 C Tubos de Aço Galvanizado Novo (Sd 40) Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3,00 2 ½ 62,71 0,033 0,030 0,029 0,028 0,028 0,027 0,027 0,027 0, ,93 0,031 0,028 0,027 0,027 0,026 0,026 0,025 0,025 0, ,26 0,029 0,026 0,025 0,025 0,024 0,024 0,024 0,023 0,023 Por aproximação V = 1,73 m/s = 2,0 m/s Fator de Fricção (f) = 0,025 Fator de Fricção (f) 8 Perda de Carga em Instalações Hidráulicas

9 5. Calcular a Perda de Carga P Utilizando-se a expressão pela equação de Darcy-Weissbach; P = f. L. V 2 D 2.g Onde: P = Perda de Pressão (m) L = Comprimento Equivalente da Tubulação (43,9 m) D = Interno da Tubulação (0,07793 m) V = Velocidade media do Refrigerante (1,73 m/s) g = Aceleração da gravidade (9,8 m/s 2 ) f = Fator de Fricção (0,025) P = 0,025 x 43,9 x 1,73 2 0, x9,8 P = 2,15 m ******* Conclusão Devemos prever uma linha hidráulica, sempre que possível, com o menor número de singularidades, e com a velocidade mais baixa possível, desde que isto seja economicamente viável, pois estes dois fatores influem diretamente no resultado da perda de carga da instalação, abaixo algumas tabelas que poderão auxiliar no cálculo da perda de carga em uma rede hidráulica. ******** Atenção Futuramente com estes conceitos, determinaremos o diâmetro necessário para uma instalação de condicionamento de ar Split-System Prof. Valter Rubens Gerner é engenheiro mecânico formado pela Faculdade de Engenharia Industrial, em 1981, na modalida RAC - Refrigeração e Ar Condicionado atua como professor do SENAI na escola Oscar Rodrigues Alves. Perda de Carga em Instalações Hidráulicas 9

10 Tabelas Tabela 1 Parâmetros máximos para seleção da tubulação de água do Tubo Sistema Fechado Sistema Aberto () (in) Vazão (m³/h) Velocidade (m/s) Perda (%) Vazão (m³/h) Velocidade (m/s) Perda (%) 19 3/4" 1,5 1,2 10 1,0 0, ,5 10 2,2 1, /4 6 1, , /2 9 1, , , , /2 28 2, , , , , , , , ,2 5, ,1 9 Tabela 2 Nominal in 1/ / / / / / / s Sd externo Dimensionamento de tubos de Aço interno Espessura da parede do tubo Fonte: ASHRAE HANDBOOK HVAC System Ref.: ASTM B36.10 Peso por metro de tubo Kg/m , Área interna do tubo Área superficial por metro de comprimento Externa m 2 Internam ` Perda de Carga em Instalações Hidráulicas

11 Tabela 3 in Nominal s Exterior Interior Dimensões de tubos de Cobre Espessura da parede do tubo Peso por metro de tubo Kg/m Área interna do tubo 2 Área superficial por metro de comprimento Exterior m 2 Interior m 2 ¼ 6 6,35 4,77 0,79 0, ,02 0,0149 3/8 10 9,52 7,94 0,79 0, ,03 0,0249 ½ 12 12,7 10,92 0,89 0, ,04 0,0343 5/ ,58 13,84 1,02 0, ,05 0,0435 ¾ 19 19,05 16,92 1,07 0, ,06 0,0531 7/ ,23 19,94 1,14 0, ,07 0, / ,58 26,04 1,27 0, ,09 0, / ,93 32,13 1,40 1, ,11 0, / ,28 38,23 1,52 1, ,13 0, ½ 54 53,98 50,42 1,78 2, ,17 0, / ,68 62,61 2,03 3, ,209 0, / ,38 74, 2,29 4, ,249 0, / ,08 87,00 2,54 6, ,289 0, / ,78 99,19 2,79 8, ,329 0, / , ,83 3,18 11, ,409 0, / ,58 148,46 3,56 Fonte: ASHRAE HANDBOOK HVAC System , ,489 0,4664 Tabela 4 Tabela de tubos de PVC rígidos para solda (cola) nominal D I D E Espessura Área interna in / ,5 132,73 20 ½ ,5 226,98 25 ¾ 21,6 25 1,7 366, ,8 32 2,1 606, ¼ 35,2 40 2,4 973, ½ ,0 1520, ,4 60 3,3 2239, ½ 66,6 75 4,2 3483, ,6 85 4,7 4488, /8 97, ,1 7512,21 Fonte: instalação hidráulica Archibald J. Mancityre Perda de Carga em Instalações Hidráulicas 11

12 Tabela 5 Valores de coeficiente de atrito f para tubos conduzindo água Tubos de Aço Forjado Novo (Sd 40) Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3,00 1/4 9,25 0,055 0,046 0,042 0,040 0,039 0,037 0,035 0,035 0,034 3/8 12,52 0,050 0,042 0,038 0,036 0,035 0,033 0,032 0,032 0,031 1/2 15,8 0,046 0,039 0,036 0,034 0,033 0,031 0,030 0,030 0,029 3/4 20,93 0,042 0,035 0,033 0,031 0,030 0,029 0,028 0,027 0, ,64 0,038 0,033 0,030 0,029 0,028 0,027 0,026 0,026 0,025 1 ¼ 35,05 0,035 0,030 0,028 0,027 0,026 0,025 0,024 0,024 0,023 1 ½ 40,89 0,034 0,029 0,027 0,026 0,025 0,024 0,023 0,023 0, ,51 0,031 0,027 0,025 0,024 0,024 0,022 0,022 0,021 0,021 2 ½ 62,71 0,030 0,026 0,024 0,023 0,023 0,022 0,021 0,021 0, ,93 0,028 0,025 0,023 0,022 0,021 0,020 0,020 0,020 0, ,26 0,026 0,023 0,022 0,021 0,020 0,019 0,019 0,018 0, ,05 0,024 0,021 0,020 0,019 0,018 0,017 0,017 0,017 0, ,7 0,022 0,020 0,018 0,018 0,017 0,016 0,016 0,016 0, ,5 0,021 0,019 0,018 0,017 0,016 0,016 0,015 0,015 0, ,2 0,020 0,018 0,017 0,016 0,016 0,015 0,015 0,015 0, ,4 0,020 0,018 0,017 0,016 0,016 0,015 0,015 0,014 0,014 Tubos de Aço Forjado Usado (Sd 40) Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3,00 1/4 9,25 0,301 0,295 0,293 0,292 0,291 0,290 0,289 0,289 0,289 3/8 12,52 0,230 0,226 0,224 0,224 0,223 0,222 0,222 0,222 0,222 1/2 15,8 0,192 0,188 0,187 0,186 0,186 0,185 0,185 0,185 0,185 3/4 20,93 0,157 0,154 0,153 0,153 0,152 0,152 0,152 0,151 0, ,64 0,134 0,132 0,131 0,130 0,130 0,130 0,130 0,130 0,129 1 ¼ 35,05 0,113 0,111 0,111 0,111 0,110 0,110 0,110 0,110 0,110 1 ½ 40,89 0,104 0,102 0,102 0,101 0,101 0,101 0,101 0,101 0, ,51 0,091 0,089 0,089 0,089 0,089 0,088 0,088 0,088 0,088 2 ½ 62,71 0,083 0,082 0,081 0,081 0,081 0,081 0,081 0,081 0, ,93 0,075 0,074 0,073 0,073 0,073 0,073 0,073 0,073 0, ,26 0,066 0,065 0,065 0,065 0,064 0,064 0,064 0,064 0, ,05 0,055 0,055 0,054 0,054 0,054 0,054 0,054 0,054 0, ,7 0,050 0,049 0,049 0,049 0,049 0,049 0,049 0,049 0, ,5 0,046 0,045 0,045 0,045 0,045 0,045 0,045 0,045 0, ,2 0,043 0,042 0,042 0,042 0,042 0,042 0,042 0,042 0, ,4 0,041 0,041 0,041 0,041 0,041 0,041 0,040 0,040 0,040 Fonte : Valter Rubens Gerner Termofluidomecânica 12 Perda de Carga em Instalações Hidráulicas

13 Tabela 6 Valores de Coeficiente de atrito (f) para tubos conduzindo água a 25 0 C Tubos de Aço Galvanizado Novo (Sd 40) Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3,00 1/4 9,25 0,065 0,058 0,055 0,053 0,052 0,051 0,050 0,050 0,049 3/8 12,52 0,058 0,051 0,049 0,048 0,047 0,045 0,045 0,044 0,044 1/2 15,8 0,053 0,047 0,045 0,044 0,043 0,042 0,041 0,041 0,041 3/4 20,93 0,048 0,043 0,041 0,040 0,039 0,038 0,038 0,037 0, ,64 0,044 0,039 0,038 0,037 0,036 0,035 0,035 0,034 0,034 1 ¼ 35,05 0,040 0,036 0,034 0,034 0,033 0,032 0,032 0,032 0,031 1 ½ 40,89 0,038 0,034 0,033 0,032 0,032 0,031 0,030 0,030 0, ,51 0,035 0,032 0,030 0,030 0,029 0,029 0,028 0,028 0,028 2 ½ 62,71 0,033 0,030 0,029 0,028 0,028 0,027 0,027 0,027 0, ,93 0,031 0,028 0,027 0,027 0,026 0,026 0,025 0,025 0, ,26 0,029 0,026 0,025 0,025 0,024 0,024 0,024 0,023 0, ,05 0,026 0,024 0,023 0,022 0,022 0,021 0,021 0,021 0, ,7 0,024 0,022 0,021 0,021 0,020 0,020 0,020 0,020 0, ,5 0,023 0,021 0,020 0,020 0,019 0,019 0,019 0,019 0, ,2 0,022 0,020 0,019 0,019 0,019 0,018 0,018 0,018 0, ,4 0,021 0,020 0,019 0,018 0,018 0,018 0,018 0,018 0,017 Tubos de Aço Galvanizado Usado (Sd 40) Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3,00 1/4 9,25 0,344 0,337 0,334 0,333 0,332 0,331 0,331 0,330 0,330 3/8 12,52 0,258 0,254 0,252 0,251 0,251 0,250 0,250 0,249 0,249 1/2 15,8 0,213 0,209 0,208 0,207 0,207 0,206 0,206 0,206 0,206 3/4 20,93 0,172 0,169 0,168 0,168 0,168 0,167 0,167 0,167 0, ,64 0,146 0,144 0,143 0,142 0,142 0,142 0,142 0,142 0,141 1 ¼ 35,05 0,122 0,121 0,120 0,120 0,120 0,119 0,119 0,119 0,119 1 ½ 40,89 0,112 0,110 0,110 0,110 0,109 0,109 0,109 0,109 0, ,51 0,097 0,096 0,096 0,095 0,095 0,095 0,095 0,095 0,095 2 ½ 62,71 0,089 0,087 0,087 0,087 0,087 0,087 0,086 0,086 0, ,93 0,079 0,078 0,078 0,078 0,078 0,078 0,078 0,078 0, ,26 0,070 0,069 0,069 0,069 0,069 0,068 0,068 0,068 0, ,05 0,058 0,058 0,058 0,057 0,057 0,057 0,057 0,057 0, ,7 0,052 0,052 0,052 0,051 0,051 0,051 0,051 0,051 0, ,5 0,048 0,047 0,047 0,047 0,047 0,047 0,047 0,047 0, ,2 0,045 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0, ,4 0,043 0,043 0,043 0,043 0,043 0,043 0,043 0,042 0,042 Fonte : Valter Rubens Gerner Termofluidomecânica Perda de Carga em Instalações Hidráulicas 13

14 Tabela 8 Valores de coeficiente de atrito f para tubos conduzindo água Tubos de Cobre Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3, ,92 0,048 0,038 0,034 0,032 0,030 0,027 0,025 0,024 0, ,84 0,044 0,036 0,032 0,030 0,028 0,025 0,024 0,022 0, ,92 0,042 0,034 0,030 0,028 0,026 0,024 0,022 0,021 0, ,94 0,039 0,032 0,029 0,027 0,025 0,023 0,022 0,021 0, ,04 0,036 0,030 0,027 0,025 0,024 0,022 0,020 0,019 0, ,13 0,034 0,028 0,026 0,024 0,023 0,021 0,019 0,019 0, ,23 0,033 0,027 0,024 0,023 0,022 0,020 0,019 0,018 0, ,42 0,030 0,025 0,023 0,021 0,020 0,019 0,018 0,017 0, ,61 0,028 0,024 0,022 0,020 0,019 0,018 0,017 0,016 0, , 0,027 0,023 0,021 0,020 0,019 0,017 0,016 0,016 0, ,00 0,026 0,022 0,020 0,019 0,018 0,017 0,016 0,015 0, ,19 0,025 0,021 0,020 0,018 0,018 0,016 0,015 0,015 0, ,83 0,024 0,020 0,019 0,018 0,017 0,016 0,015 0,014 0, ,46 0,023 0,020 0,018 0,017 0,016 0,015 0,014 0,014 0,013 Tubos de PVC - Soldado () Velocidade média (m/s) D N D I () 0,20 0,40 0,60 0, 1,00 1,50 2,00 2,50 3, ,045 0,037 0,033 0,030 0,028 0,026 0,024 0,023 0, ,041 0,034 0,030 0,028 0,027 0,024 0,023 0,022 0, ,6 0,039 0,032 0,028 0,026 0,025 0,023 0,021 0,020 0, ,8 0,036 0,029 0,027 0,025 0,023 0,021 0,020 0,019 0, ,2 0,033 0,028 0,025 0,023 0,022 0,020 0,019 0,018 0, ,031 0,026 0,024 0,022 0,021 0,019 0,018 0,017 0, ,4 0,030 0,025 0,023 0,021 0,020 0,019 0,018 0,017 0, ,6 0,028 0,024 0,021 0,020 0,019 0,018 0,017 0,016 0, ,6 0,027 0,023 0,021 0,020 0,019 0,017 0,016 0,016 0, ,8 0,025 0,022 0,020 0,019 0,018 0,016 0,016 0,015 0,014 Tubos de PVC - Rosca (in) 3/8 12,7 0,046 0,037 0,033 0,030 0,029 0,026 0,024 0,023 0,022 1/2 16,2 0,042 0,034 0,031 0,028 0,027 0,024 0,023 0,022 0,021 3/4 21,2 0,039 0,032 0,028 0,026 0,025 0,023 0,021 0,020 0, ,8 0,036 0,030 0,027 0,025 0,024 0,022 0,020 0,019 0,019 1 ¼ 35 0,033 0,028 0,025 0,023 0,022 0,020 0,019 0,018 0,018 1 ½ 39,8 0,032 0,027 0,024 0,023 0,022 0,020 0,019 0,018 0, ,4 0,030 0,025 0,023 0,021 0,020 0,019 0,018 0,017 0,016 2 ½ 64,1 0,028 0,024 0,022 0,020 0,019 0,018 0,017 0,016 0, ,5 0,027 0,023 0,021 0,020 0,019 0,017 0,016 0,016 0, ,3 0,025 0,022 0,020 0,019 0,018 0,016 0,015 0,015 0,014 Fonte : Valter Rubens Gerner Termofluidomecânica Di 2.g γ Di 2 Di = diâmetro interno da tubulação (m) V = velocidade do fluido no interior do tubo (m/s) g = aceleração da gravidade (9,8 m/s 2 ) f = coeficiente de atrito (adimensional) Di = diâmetro interno da tubulação (m) V = velocidade do fluido no interior do tubo (m/s) g = aceleração da gravidade (9,8 m/s 2 ) f = coeficiente de atrito (adimensional) γ! " 14 Perda de Carga em Instalações Hidráulicas

15 Tabela 9 Comprimento equivalente de válvulas e conexões Tubo de Aço (m) Fonte: Manual Técnico Bombas KSB Tabela 10 Tamanho da linha Diam nom. Válvula globo e válvula solenóide Comprimento equivalente de válvulas e conexões (m) - Cobre Válvula de angulo Cotovelos de raio pequeno Cotovelos de raio grande T de linha de fluxo e visores de vidro Ramal de fluxo em T ,3 1,4 1,0 0,5 2, ,6 1,7 1,2 0,7 2, ,6 2,0 1,4 0,9 3, ,5 2,4 1,6 1,1 3, ,8 0,8 0,6 0,8 2, ,1 1,0 0,7 0,8 3, ,4 1,2 0,8 0,9 3, ,9 1,6 1,0 1,2 4, ,4 2,0 1,3 1,4 6, ,2 2,4 1,6 1,6 7, ,1 3,0 1,9 2,0 9, ,1 3,7 2,2 2,2 10, ,3 4,3 2,7 2,4 12, Fonte: Manual de Ar Condicionado - Trane 36,3 5,2 3,0 2,8 15,2!" # $ %& ' ()* # + Perda de Carga em Instalações Hidráulicas 15

V 2. 1.7 Perda de carga localizada (h L. Borda-Belanger formulou que

V 2. 1.7 Perda de carga localizada (h L. Borda-Belanger formulou que 1.7 Perda de carga localizada (h L ) Borda-Belanger formulou que h L K l V 2 2g onde k L é um coeficiente de perda de carga localizada que é função do número de Reynolds e da geometria da peça. É obtido

Leia mais

A Equação 5.1 pode ser escrita também em termos de vazão Q:

A Equação 5.1 pode ser escrita também em termos de vazão Q: Cálculo da Perda de Carga 5-1 5 CÁLCULO DA PEDA DE CAGA 5.1 Perda de Carga Distribuída 5.1.1 Fórmula Universal Aplicando-se a análise dimensional ao problema do movimento de fluidos em tubulações de seção

Leia mais

Forçados. Prof. Hugo Alexandre Soares Guedes, DEC-UFPel E-mail: hugo.guedes@ufpel.edu.br Website: wp.ufpel.edu.br/hugoguedes/

Forçados. Prof. Hugo Alexandre Soares Guedes, DEC-UFPel E-mail: hugo.guedes@ufpel.edu.br Website: wp.ufpel.edu.br/hugoguedes/ Escoamento em Condutos Forçados Prof. Hugo Alexandre Soares Guedes, DEC-UFPel E-mail: hugo.guedes@ufpel.edu.br Website: wp.ufpel.edu.br/hugoguedes/ CONCEITO São aqueles nos quais o fluido escoa com uma

Leia mais

PERDA DE CARGA EM SISTEMAS DE VENTILAÇÃO

PERDA DE CARGA EM SISTEMAS DE VENTILAÇÃO PERDA DE CARGA EM SISTEMAS DE VENTILAÇÃO Tal como nos sistemas de bombeamento de água, nos dutos de ventilação industrial carateriza-se o escoamento em função do número de Reynols. A queda de pressão em

Leia mais

Perda de Carga e Comprimento Equivalente

Perda de Carga e Comprimento Equivalente Perda de Carga e Comprimento Equivalente Objetivo da aula: Conceitos sobre Perda de Carga e Comprimento Equivalente, Para que os mesmos possam utilizá-los, futuramente, para especificar bombas hidráulicas

Leia mais

ε, sendo ε a rugosidade absoluta das

ε, sendo ε a rugosidade absoluta das DETERMINAÇÃO DAS PERDAS DE CARGA No projeto de uma instalação de bombeamento e da rede de distribuição de água de um prédio, é imprescindível calcular-se a energia que o líquido irá despender para escoar

Leia mais

LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PERDAS DE CARGA LOCALIZADAS

LABORATÓRIO DE MECÂNICA DOS FLUIDOS MEDIDAS DE PERDAS DE CARGA LOCALIZADAS Nome: n o MEDIDAS DE PERDAS DE CARGA LOCALIZADAS - OBJETIVO Consolidar o conceito de perda de carga a partir do cálculo das perdas localizadas em uma tubulação. - PERDA DE CARGA LOCALIZADA Na prática,

Leia mais

HIDRODINÂMICA CONDUTOS SOB PRESSÃO

HIDRODINÂMICA CONDUTOS SOB PRESSÃO HIDRODINÂMICA CONDUTOS SOB PRESSÃO CONDUTOS SOB PRESSÃO Denominam-se condutos sob pressão ou condutos forçados, as canalizações onde o líquido escoa sob uma pressão diferente da atmosférica. As seções

Leia mais

LATERAIS E ADUTORAS MATERIAIS EMPREGADOS EM TUBULAÇÕES

LATERAIS E ADUTORAS MATERIAIS EMPREGADOS EM TUBULAÇÕES LATERAIS E ADUTORAS Uma tubulação em irrigação pode, conforme a finalidade, ser designada como adutora, ramal ou lateral. A adutora é aquela tubulação que vai da bomba até a área a ser irrigada. Normalmente

Leia mais

DIMENSIONAMENTO. Versão 2014 Data: Março / 2014

DIMENSIONAMENTO. Versão 2014 Data: Março / 2014 5 DIMENSIONAMENTO Versão 2014 Data: Março / 2014 5.1. Parâmetros para o dimensionamento... 5.3 5.1.1. Escolha de parâmetros... 5.3 5.1.2. Tipologia construtiva da instalação predial... 5.3 5.1.3. Pressão

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

ESTADO DO MARANHÃO SECRETARIA DE SEGURANÇA PÚBLICA CORPO DE BOMBEIROS MILITAR COMANDO GERAL

ESTADO DO MARANHÃO SECRETARIA DE SEGURANÇA PÚBLICA CORPO DE BOMBEIROS MILITAR COMANDO GERAL 1 OBJETIVO: Padronizar os diversos tipos de sistemas de bomba de incêndio das edificações, seus requisitos técnicos, componentes, esquemas elétricos-hidráulicos e memória de cálculo, de acordo com os parâmetros

Leia mais

5. Cálculo da Perda de Carga (hf) e da Pressão dinâmica (Pd)

5. Cálculo da Perda de Carga (hf) e da Pressão dinâmica (Pd) AULA 4 para ter acesso às tabelas e ábacos de cálculo 5. Cálculo da Perda de Carga (hf) e da Pressão dinâmica (Pd) Cálculo da Perda de Carga - Exemplo Calcular a perda de carga do trecho

Leia mais

Climatização. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014

Climatização. Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014 Climatização Prof. Ramón Eduardo Pereira Silva Engenharia de Energia Universidade Federal da Grande Dourados Dourados MS 2014 Ventilação Local Exaustora Climatização- 2014 Prof. Ramón Eduardo Pereira Silva

Leia mais

2º Lista de Exercícios TA 631 (1º sem/2011)

2º Lista de Exercícios TA 631 (1º sem/2011) 2º Lista de Exercícios TA 631 (1º sem/2011) (1) Considerando o sistema mostrado na Figura 1: (a) Projete a tubulação através da abordagem da velocidade econômica; (b) Selecione uma bomba mostrando todos

Leia mais

3.12 Simulação de Experiência de Reynolds. Na execução desta experiência, evocamos os seguintes conceitos:

3.12 Simulação de Experiência de Reynolds. Na execução desta experiência, evocamos os seguintes conceitos: 196 Curso Básico de Mecânica dos Fluidos 3.12 Simulação de Experiência de Reynolds Além de simular a experiência de Reynolds, objetivamos mostrar uma das muitas possibilidades de construção de uma bancada

Leia mais

Solução em Ar Comprimido: Tubulações em Alumínio

Solução em Ar Comprimido: Tubulações em Alumínio Solução em Ar Comprimido: Tubulações em Alumínio Quais são os principais problemas encontrados em redes de Ar Comprimido? Quais são os principais problemas encontrados em redes de Ar Comprimido? ❶ Vazamentos

Leia mais

LUPATECH S.A Unidade Metalúrgica Ipê

LUPATECH S.A Unidade Metalúrgica Ipê CAVITAÇÃO 1. Descrição: Para melhor entendimeto iremos descrever o fenomeno Cavitação Cavitação é o nome que se dá ao fenômeno de vaporização de um líquido pela redução da pressão, durante seu movimento.

Leia mais

Curso Básico. Mecânica dos Fluidos. Unidade 3

Curso Básico. Mecânica dos Fluidos. Unidade 3 164 Curso Básico de Mecânica dos Fluidos Curso Básico de Mecânica dos Fluidos Unidade 3 Raimundo Ferreira Ignácio 165 Curso Básico de Mecânica dos Fluidos Unidade 3 - Conceitos Básicos para o Estudo dos

Leia mais

E-mail: vendas@bratal.com.br

E-mail: vendas@bratal.com.br CENTRAL DE VENDAS Consulte-nos pelo fone/fax : (19) 341.0081 E-mail: vendas@bratal.com.br 603 - Tubos 01 ESCOLHA ADEQUADA DA TUBULAÇÃO.... 1 DIAGRAMA TEÓRICO PARA CÁLCULO DE TUBULAÇÕES...........................

Leia mais

Saneamento I Adutoras

Saneamento I Adutoras Saneamento I Adutoras Prof Eduardo Cohim ecohim@uefs.br 1 INTRODUÇÃO Adutoras são canalizações que conduzem água para as unidades que precedem a rede de distribuição Ramificações: subadutoras CLASSIFICAÇÃO

Leia mais

FIGURA 63 - a) TUBULAÇÕES DE RETORNO DIRETO b) TUBULAÇÕES DE RETORNO INVERSO

FIGURA 63 - a) TUBULAÇÕES DE RETORNO DIRETO b) TUBULAÇÕES DE RETORNO INVERSO 82 7 DISTRIBUIÇÃO DE ÁGUA Os sistemas de distribuição de água podem ser classificados como: - Sem Recirculação: A água flui através do sistema sem reaproveitamento. - Recirculação Aberta: A água é bombeada

Leia mais

Perda de carga. Manuel F. Barral

Perda de carga. Manuel F. Barral Perda de carga Manuel F. Barral 1. Escoamentos em Dutos Sob-Pressão 1.1. Perda de Carga 1.1. Perda de Carga 1.. Perda de Carga Distribuída 1.. Perda de Carga Distribuída Material Rugosidade absoluta ε(mm)

Leia mais

AULA PRÁTICA 11 INSTALAÇÃO DE BOMBEAMENTO

AULA PRÁTICA 11 INSTALAÇÃO DE BOMBEAMENTO !" AULA PRÁTICA 11 INSTALAÇÃO DE BOMBEAMENTO 1- INTRODUÇÃO O transporte de água (ADUÇÃO) pode ser realizado das seguintes formas: a) Por GRAVIDADE Utilizando Conduto Livre (Canal) b) Por GRAVIDADE Utilizando

Leia mais

Perda de carga linear em condutos forçados

Perda de carga linear em condutos forçados Universidade Regional do Cariri URCA Pró Reitoria de Ensino de Graduação Coordenação da Construção Civil Disciplina: Hidráulica Aplicada Perda de carga linear em condutos forçados Renato de Oliveira Fernandes

Leia mais

AULA PRÁTICA 9 CARNEIRO HIDRÁULICO

AULA PRÁTICA 9 CARNEIRO HIDRÁULICO 1!" AULA PRÁTICA 9 CARNEIRO HIDRÁULICO I - INTRODUÇÃO O carneiro hidráulico, também chamado bomba de aríete hidráulico, balão de ar, burrinho, etc., foi inventado em 1796 pelo cientista francês Jacques

Leia mais

Hidráulica de Linhas pressurizadas. FEAGRI/UNICAMP - 2014 Prof. Roberto Testezlaf

Hidráulica de Linhas pressurizadas. FEAGRI/UNICAMP - 2014 Prof. Roberto Testezlaf Hidráulica de Linhas pressurizadas Parte 1 - Tubulações FEAGRI/UNICAMP - 2014 Prof. Roberto Testezlaf Tubulações A qualidade e integridade de instalação depende: Escolha do material e do diâmetro adequado

Leia mais

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES

EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES EFICIÊNCIA ENERGÉTICA EM SISTEMAS E INSTALAÇÕES PROF. RAMÓN SILVA Engenharia de Energia Dourados MS - 2013 2 Áreas de oportunidade para melhorar a eficiência na distribuição de frio Isolamento das tubulações

Leia mais

MÓDULO 6 LINHAS ANTI INCÊNDIO. Conexões Mecânicas: NBR 15.803;ISO 14.236; UNI 9561; Módulo 1.3

MÓDULO 6 LINHAS ANTI INCÊNDIO. Conexões Mecânicas: NBR 15.803;ISO 14.236; UNI 9561; Módulo 1.3 MÓDULO 6 LINHAS ANTI INCÊNDIO 1 Normas Aplicáveis Tubos: NBR 15.561; EN 12.201-2; Módulo 1.2 Conexões Soldáveis: NBR 15.593;EN 12.201-3; Módulo 1.3 Diretrizes para Projetos: NBR 15.802; Conexões Mecânicas:

Leia mais

SISTEMAS URBANOS DE ÁGUA E ESGOTO PROJETO 1 DATA DE ENTREGA:

SISTEMAS URBANOS DE ÁGUA E ESGOTO PROJETO 1 DATA DE ENTREGA: MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DE ENGENHARIAS SISTEMAS URBANOS DE ÁGUA E ESGOTO PROJETO 1 DATA DE ENTREGA: 05/10/2015 1. Objetivo A expansão do sistema de abastecimento de

Leia mais

Condensação. Ciclo de refrigeração

Condensação. Ciclo de refrigeração Condensação Ciclo de refrigeração Condensação Três fases: Fase 1 Dessuperaquecimento Redução da temperatura até a temp. de condensação Fase 2 Condensação Mudança de fase Fase 3 - Subresfriamento Redução

Leia mais

Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina

Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina Módulo 8: Conteúdo programático Eq. da Energia com perda de carga e com máquina Bibliografia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Prentice Hall, 007. Equação da Energia em Regime Permanente com

Leia mais

5. Perdas de Carga Localizadas em Canalizações

5. Perdas de Carga Localizadas em Canalizações 5. Perdas de Carga Localizadas em Canalizações Na prática as canalizações não são constituídas exclusivamente de tubos retilíneos e de mesmo diâmetro. Usualmente, as canalizações apresentam peças especiais

Leia mais

FATOR C - RUGOSIDADE

FATOR C - RUGOSIDADE FATOR C - RUGOSIDADE Rugosidade é definida no caso particular das tubulações, aquela que tem uma anomalia interna, representada por protuberâncias, rugas ou ainda crateras em sua estrutura interna natural

Leia mais

COMO INSTALAR O AR REFRIGERADO SPLIT

COMO INSTALAR O AR REFRIGERADO SPLIT Como Instalar o Ar Refrigerado Split COMO INSTALAR O AR REFRIGERADO SPLIT INSTALAÇÃO DE SPLIT-SYSTEM 1- A instalação de um sistema de ar condicionado, com condicionadores individuais do tipo SPLIT-SYSTEM,

Leia mais

TUBOS EM AÇO CARBONO COM SOLDA HELICOIDAL CONFORME NORMA NBR 5622

TUBOS EM AÇO CARBONO COM SOLDA HELICOIDAL CONFORME NORMA NBR 5622 TUBOS EM AÇO CARBONO COM SOLDA HELICOIDAL CONFORME NORMA NBR 5622 APRESENTAÇÃO Atuando no mercado desde 1988, a DRAGTEC, empresa conceituada no mercado de tubos, apresenta sua linha de produtos para comercialização,

Leia mais

Sistemas Prediais de Águas Pluviais (SPAP)

Sistemas Prediais de Águas Pluviais (SPAP) Escola de Engenharia Civil - UFG SISTEMAS PREDIAIS Sistemas Prediais de Águas Pluviais (SPAP) Concepção de projeto Métodos de dimensionamento dos componentes e sistemas Prof. Ricardo Prado Abreu Reis Goiânia

Leia mais

DEOP DIRETORIA DE ENGENHARIA E OPERAÇÕES EPE PLANEJAMENTO E ENGENHARIA MANUAL DE TUBULAÇÕES TELEFÔNICAS PREDIAIS

DEOP DIRETORIA DE ENGENHARIA E OPERAÇÕES EPE PLANEJAMENTO E ENGENHARIA MANUAL DE TUBULAÇÕES TELEFÔNICAS PREDIAIS CAPÍTULO 2: ESQUEMA GERAL DA TUBULAÇÃO TELEFÔNICA. RECOMENDAÇÕES A tubulação telefônica é dimensionada em função da quantidade de pontos telefônicos previsto para cada parte do edifício. Cada ponto telefônico

Leia mais

Kcr = número crítico de Reynolds Vcr = Velocidade crítica, m/s D = Diâmetro do tubo, m ʋ = Viscosidade cinemática, m²/s

Kcr = número crítico de Reynolds Vcr = Velocidade crítica, m/s D = Diâmetro do tubo, m ʋ = Viscosidade cinemática, m²/s 1/5 NÚMERO DE REYNOLDS O número de Reynolds, embora introduzido conceitualmente em l851 por um cientista da época, tornou-se popularizado na mecânica dos fluidos pelo engenheiro hidráulico e físico Irlandes,

Leia mais

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas

IFSC - Campus São José Área de Refrigeração e Ar Condicionado Prof. Gilson Desenvolvimento de Chapas DESENVOLVIMENTO DE CHAPAS É o processo empregado para transformar em superfície plana, peças, reservatórios, uniões de tubulações e de dutos, normalmente feitos em chapas, razão pela qual este processo

Leia mais

SISTEMA DE ABASTECIMENTO DE ÁGUA REDE DE ÁGUA CASAS DE BOMBAS RESERVATÓRIOS

SISTEMA DE ABASTECIMENTO DE ÁGUA REDE DE ÁGUA CASAS DE BOMBAS RESERVATÓRIOS SISTEMA DE ABASTECIMENTO DE ÁGUA REDE DE ÁGUA CASAS DE BOMBAS RESERVATÓRIOS NORMAS PARA ELABORAÇÃO DE PROJETO HIDRÁULICO E EXECUÇÃO DE REDE DE DISTRIBUIÇÃO DE ÁGUA POTÁVEL Deverão ser obedecidas as normas

Leia mais

Fundamentos de Engenharia Solar. Racine T. A. Prado

Fundamentos de Engenharia Solar. Racine T. A. Prado Fundamentos de Engenharia Solar Racine T. A. Prado Coletores Solares Um coletor solar é um tipo específico de trocador de calor que transforma energia solar radiante em calor. Duffie; Beckman Equação básica

Leia mais

MEMORIAL DESCRITIVO INSTALAÇÕES ELÉTRICAS

MEMORIAL DESCRITIVO INSTALAÇÕES ELÉTRICAS SITE: www.amm.org.br- E-mail: engenharia@amm.org.br AV. RUBENS DE MENDONÇA, N 3.920 CEP 78000-070 CUIABÁ MT FONE: (65) 2123-1200 FAX: (65) 2123-1251 MEMORIAL DESCRITIVO ELÉTRICO MEMORIAL DESCRITIVO INSTALAÇÕES

Leia mais

INSTALAÇÕES HIDRÁULICAS - II DIMENSIONAMENTO. Considera-se vazão hidráulica o volume de água a ser

INSTALAÇÕES HIDRÁULICAS - II DIMENSIONAMENTO. Considera-se vazão hidráulica o volume de água a ser INSTALAÇÕES HIDRÁULICAS - II DIMENSIONAMENTO Vazão Considera-se vazão hidráulica o volume de água a ser transportado que atravessa uma determinada seção (tubo, calha, etc) na unidade de tempo. No sistema

Leia mais

Dimensionamento. Dimensionamento. Área Coletora e Kit Instalação. Aquecimento Auxiliar. Tubulação. Bomba Hidráulica

Dimensionamento. Dimensionamento. Área Coletora e Kit Instalação. Aquecimento Auxiliar. Tubulação. Bomba Hidráulica Dimensionamento Dimensionamento Área Coletora e Kit Instalação Aquecimento Auxiliar Tubulação Objetivos: 1 - Dimensionar área coletora e kit instalação 2 - Dimensionar aquecimento auxiliar 3 - Dimensionar

Leia mais

ESCOLA DE ENSINO PROFISSIONAL

ESCOLA DE ENSINO PROFISSIONAL ESCOLA DE ENSINO PROFISSIONAL GOVERNO DO ESTADO DO CEARÁ MEMORIAL DESCRITIVO PROJETO DAS INSTALAÇÕES HIDRÁULICAS DATA: FEV/2011 1 de 10 ÍNDICE 1. INTRODUÇÃO... 3 2. NORMAS E ESPECIFICAÇÕES... 3 3. SISTEMAS

Leia mais

Tubos são condutos fechados, destinados ao transporte de fluidos.

Tubos são condutos fechados, destinados ao transporte de fluidos. Tubulações Tubos são condutos fechados, destinados ao transporte de fluidos. Tubulação é conjunto de tubos e seus diversos acessórios(curvas, tês, reduções, flanges, luvas, junta de expansão, válvulas,

Leia mais

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água

ANÁLISE DO ESCOAMENTO DE UM FLUIDO REAL: água UFF Universidade Federal Fluminense Escola de Engenharia Departamento de Engenharia Química e de Petróleo Integração I Prof.: Rogério Fernandes Lacerda Curso: Engenharia de Petróleo Alunos: Bárbara Vieira

Leia mais

Resolução do exercício proposto

Resolução do exercício proposto 1 Resolução do exercício proposto Parte-se da determinação da equação da Curva Característica da Instalação (CCI), para isto aplica-se a equação da energia da seção inicial a seção final da instalação

Leia mais

Décima segunda aula de teoria de ME5330. Maio de 2011

Décima segunda aula de teoria de ME5330. Maio de 2011 Décima segunda aula de teoria de ME5330 Maio de 011 Vamos iniciar o estudo do inversor de frequência. Conceito dispositivo eletrônico que transforma energia elétrica CA fixa ( tensão e frequência ) em

Leia mais

1ª Lista de exercícios de Física 2 ( Fluidos)

1ª Lista de exercícios de Física 2 ( Fluidos) Unesp UNIVERSIDADE ESTADUAL PAULISTA Campus de Sorocaba Engenharia Ambiental Profa. Maria Lúcia Antunes 1ª Lista de exercícios de Física 2 ( Fluidos) 1) Encontre o aumento de pressão de um fluido em uma

Leia mais

MANUAL DE INSTALAÇÃO. Este manual também pode ser visualizado através do site www.amanco.com.br > Produtos > Predial > Reservatórios

MANUAL DE INSTALAÇÃO. Este manual também pode ser visualizado através do site www.amanco.com.br > Produtos > Predial > Reservatórios Bomba d Água Amanco Modelos XKM60 110V XKM60 220V XKM80 110V XKM80 220V MANUAL DE INSTALAÇÃO M a n u a l d e I n s t a l a ç ã o B o m b a d Á g u a A m a n c o Este manual também pode ser visualizado

Leia mais

MEMORIAL DESCRITIVO DO SISTEMA DE SEGURANÇA CONTRA INCÊNDIO E PÂNICO

MEMORIAL DESCRITIVO DO SISTEMA DE SEGURANÇA CONTRA INCÊNDIO E PÂNICO MEMORIAL DESCRITIVO DO SISTEMA DE SEGURANÇA CONTRA INCÊNDIO E PÂNICO I - IDENTIFICAÇÃO DO PROJETO 1.1. OBRA: Regularização e Ampliação de um Complexo Esportivo. 1.2. ENDEREÇO: Conjunto Manuel Julião, Rio

Leia mais

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração.

Centro de Seleção/UFGD Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração. Técnico em Refrigeração ==Questão 26==================== Assinale a alternativa que define refrigeração. (A) O movimento de energia de frio dentro de um espaço onde ele é necessário. (B) A remoção de calor

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

CÁLCULO DAS POTÊNCIAS DE BOMBAS E ELEVADORES

CÁLCULO DAS POTÊNCIAS DE BOMBAS E ELEVADORES UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA Disciplina: Materiais, Equip. e Instalações Prediais 2010.1 CÁLCULO DAS POTÊNCIAS DE

Leia mais

PROJETO DE INSTALAÇÕES PREDIAIS DE ÁGUA FRIA REGISTRO DE INSPEÇÃO DE PROJETOS

PROJETO DE INSTALAÇÕES PREDIAIS DE ÁGUA FRIA REGISTRO DE INSPEÇÃO DE PROJETOS Página 1 GRUPO RESPONSÁVEL PELA ELA- BORAÇÃO DO PROJETO: REGISTRO DE INSPEÇÃO DE PROJETOS PROJETO INSPECIONADO: DATA DA INSPEÇÃO: AUTOR DESTE CHECKLIST MARCOS LUÍS ALVES DA SILVA Sistema de instalações

Leia mais

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé

Conceitos gerais. A movimentação do ar e dos gases de combustão é garantida por: Ventiladores centrífugos Efeito de sucção da chaminé TIRAGEM Definição Tiragem é o processo que garante a introdução do ar na fornalha e a circulação dos gases de combustão através de todo gerador de vapor, até a saída para a atmosfera 00:43 2 Conceitos

Leia mais

13 TUBULAÇÕES DE REFRIGERANTE

13 TUBULAÇÕES DE REFRIGERANTE 167 13 TUBULAÇÕES DE REFRIGERANTE As tubulações de refrigerante representam uma parte essencial no sistema de refrigeração, pois requer as mesmas considerações gerais de projeto que qualquer sistema de

Leia mais

INSTALAÇÕES HIDRO-SANITÁRIAS

INSTALAÇÕES HIDRO-SANITÁRIAS INSTALAÇÕES HIDRO-SANITÁRIAS Prof. MSc. Eng. Eduardo Henrique da Cunha Engenharia Civil 8º Período Turma C01 Disc. Construção Civil II ÁGUA QUENTE 1 UTILIZAÇÃO Banho Especiais Cozinha Lavanderia INSTALAÇÕES

Leia mais

Equipamentos e sistemas para fertirrigação

Equipamentos e sistemas para fertirrigação Equipamentos e sistemas para fertirrigação FERTIRRIGAÇÃO é a aplicação de fertilizantes através da água de irrigação (EMBRAPA UVA E VINHO) Não só adubos são aplicados por meio da água de irrigação pois

Leia mais

VENTOSAS. UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa

VENTOSAS. UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa NIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁLICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa VENTOSAS 01. INTRODÇÃO: As ventosas são aparelhos automáticos destinados

Leia mais

Informações Gerais Trocadores de Calor / Chiller de Placas

Informações Gerais Trocadores de Calor / Chiller de Placas Informações Gerais Trocadores de Calor / Chiller de Placas Somos especializados em trocadores de calor e importamos desde 2009. Eles são fabricados sob a supervisão de um técnico nosso e foram adaptados

Leia mais

SISTEMA DE TRANSPORTE AÉREO DE ÁGUA E ESGOTO

SISTEMA DE TRANSPORTE AÉREO DE ÁGUA E ESGOTO SISTEMA DE TRANSPORTE AÉREO DE ÁGUA E ESGOTO Eng. Giuseppe Pellegrini Eng. Diego Scofano Histórico O sistema de transporte de água e esgoto por via aérea foi um conceito elaborado a partir da necessidade

Leia mais

HIDRÁULICA BÁSICA RESUMO

HIDRÁULICA BÁSICA RESUMO HIDRÁULICA BÁSICA RESUMO Antonio Marozzi Righetto 1. Hidráulica é o ramo da ciência que trata das condições físicas da água em condições de repouso e em movimento. 2. Um volume de água aprisionado em um

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

PROGRAMA DE CAPACITAÇÃO EM AQUECIMENTO SOLAR ABRAVA/DASOL 2011

PROGRAMA DE CAPACITAÇÃO EM AQUECIMENTO SOLAR ABRAVA/DASOL 2011 PROGRAMA DE CAPACITAÇÃO EM AQUECIMENTO SOLAR ABRAVA/DASOL 2011 MÓDULO 2 Projetista SAS Pequeno Porte Passo a Passo de Instalação ABRAVA -São Paulo,Maio de 2011 Luciano Torres Pereira Leonardo Chamone Cardoso

Leia mais

ENSAIO DE BOMBAS EM SÉRIE E PARALELO

ENSAIO DE BOMBAS EM SÉRIE E PARALELO ENSAIO DE BOMBAS EM SÉRIE E PARALELO I. ASSOCIAÇÃO DE BOMBAS As bombas podem ser associadas em série e em paralelo dependendo das características do sistema. A associação em série é útil quando se tem

Leia mais

Power Pipe Line. Redes de Ar Comprimido

Power Pipe Line. Redes de Ar Comprimido Power Pipe Line Redes de Ar Comprimido Power Pipe Line - PPL - é um novo sistema de tubulação de encaixe rápido projetado para todo tipo de planta de ar comprimido, bem como para outros fluidos, gases

Leia mais

AVALIAÇÃO DA CAPACIDADE DE VAZÃO DAS INSTALAÇÕES HIDRÁULICAS DAS ESCOLAS MUNICIPAIS DE GUARULHOS

AVALIAÇÃO DA CAPACIDADE DE VAZÃO DAS INSTALAÇÕES HIDRÁULICAS DAS ESCOLAS MUNICIPAIS DE GUARULHOS AVALIAÇÃO DA CAPACIDADE DE VAZÃO DAS INSTALAÇÕES HIDRÁULICAS DAS ESCOLAS MUNICIPAIS DE GUARULHOS Thiago Garcia da Silva Santim (1) Engenheiro Civil e Mestre em Recursos Hídricos e Tecnologias Ambientais

Leia mais

Escoamentos Internos

Escoamentos Internos Escoamentos Internos Escoamento Interno Perfil de velocidades e transição laminar/turbulenta Perfil de temperaturas Perda de carga em tubulações Determinação da perda de carga distribuída Determinação

Leia mais

CENTRO DE TREINAMENTO DANCOR MÓDULO I - BOMBAS

CENTRO DE TREINAMENTO DANCOR MÓDULO I - BOMBAS CENTRO DE TREINAMENTO DANCOR MÓDULO I - BOMBAS DANCOR S.A INDÚSTRIA MECÂNICA Professor: José Luiz Fev/2012 CENTRO DE TREINAMENTO DANCOR 1- BOMBAS D ÁGUA (MÁQUINAS DE FLUXO): 1.1 DEFINIÇÃO Máquinas de fluxo

Leia mais

P1 de ME5330 Primeiro semestre de 2010 Turma 17

P1 de ME5330 Primeiro semestre de 2010 Turma 17 P1 de ME5330 Primeiro semestre de 2010 Turma 17 1ª Questão (valor 2,0) - Em um pequeno edifício, uma bomba é utilizada para recalcar água de um reservatório subterrâneo para uma caixa de água situada no

Leia mais

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista

UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL. Prof. Adão Wagner Pêgo Evangelista UNIVERSIDADE FEDERAL DE GOIÁS ESCOLA DE AGRONOMIA E ENGENHARIA DE ALIMENTOS SETOR DE ENGENHARIA RURAL Prof. Adão Wagner Pêgo Evangelista 3 CONDUÇÃO DE ÁGUA 3.1 CONDUTOS LIVRES OU CANAIS Denominam-se condutos

Leia mais

NOÇÕES DE HIDRÁULICA E MECÂNICA DOS FLUÍDOS Fonte: Jacuzzi do Brasil

NOÇÕES DE HIDRÁULICA E MECÂNICA DOS FLUÍDOS Fonte: Jacuzzi do Brasil NOÇÕES DE HIDRÁULICA E MECÂNICA DOS FLUÍDOS Fonte: Jacuzzi do Brasil ÍNDICE 1. Introdução 2. Pressão 3. Pressão da água 4. Pressão atmosférica ou barométrica 5. Vazão 6. Velocidade 7. Trabalho 8. Potência

Leia mais

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos

VENTILADORES INTRODUÇÃO: Como outras turbomáquinas, os ventiladores são equipamentos essenciais a determinados processos Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: Como outras turbomáquinas, os ventiladores

Leia mais

TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO

TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO Anais do Conic-Semesp. Volume 1, 2013 - Faculdade Anhanguera de Campinas - Unidade 3. ISSN 2357-8904 TÍTULO: CURVA DA BOMBA E DO SISTEMA PARA O TRANSPORTE DE FLUIDO VISCOSO CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS

Leia mais

Professora Bruna. Caderno 13 Aula 28. Quem atinge o solo primeiro? Página 291

Professora Bruna. Caderno 13 Aula 28. Quem atinge o solo primeiro? Página 291 Caderno 13 Aula 28 Quem atinge o solo primeiro? Página 291 Quem atinge o solo primeiro? Vimos na aula anterior, que o tempo de queda para um corpo lançado horizontalmente não depende da sua velocidade

Leia mais

COLECTOR DE MÓDULOS PFM

COLECTOR DE MÓDULOS PFM DESCRIÇÃO DO PRODUTO Colector de módulos Plug & Flow (PFM) A montagem poderá ser efectuada tanto na horizontal como na vertical. Pode adquirir os respectivos sistemas de fixação para a elevação de diferentes

Leia mais

Geração de Energia Elétrica

Geração de Energia Elétrica Geração de Energia Elétrica Aspectos Dinâmicos da Geração Hidroelétrica Joinville, 21 de Março de 2012 Escopo dos Tópicos Abordados Controle de Carga-Frequência Regulação Primária Modelo do Sistema de

Leia mais

Projeto de Rede Telefônica

Projeto de Rede Telefônica Projeto de Rede Telefônica Prof. Manoel Henrique Sequencia Definições e materiais. Caixas de distribuição Blocos de terminais Caixas de passagem Tubulação Entrada Primária Secundária Cabos telefônicos

Leia mais

DESMONTE HIDRÁULICO. Monitor hidráulico. Boletim 2-150 1 INTRODUÇÃO

DESMONTE HIDRÁULICO. Monitor hidráulico. Boletim 2-150 1 INTRODUÇÃO 1 INTRODUÇÃO A água a alta pressão e alta velocidade, proveniente de um tanque elevado ou de uma bomba centrífuga,levada contra a base de um banco por meio de um monitor, constitui o sistema de desmonte

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

11 CENTRÍFUGAS. Sendo o trajeto de uma volta completa no tempo T, esse tempo é chamado de período.

11 CENTRÍFUGAS. Sendo o trajeto de uma volta completa no tempo T, esse tempo é chamado de período. 11 CENTRÍFUGAS 11.1 FUNDAMENTOS: Em algumas separações, principalmente com partículas muito pequenas, emprega-se a força centrífuga cuja ação pode chegar várias vezes a força da gravidade, ou seja, aceleração

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Petróleo e Meio Ambiente

Petróleo e Meio Ambiente Instituto Superior de Tecnologia de Paracambi Petróleo e Meio Ambiente Curso:Tecnólogo em Gestão Ambiental Professora: Raquel Simas Pereira Maio de 2012 Completação Objetivo da Completação Deixar o poço

Leia mais

Equívocos cometidos em tubulações de gás combustível. No dimensionamento das tubulações, são encontrados freqüentemente os seguintes equívocos:

Equívocos cometidos em tubulações de gás combustível. No dimensionamento das tubulações, são encontrados freqüentemente os seguintes equívocos: Equívocos cometidos em tubulações de gás combustível Houve, no Brasil, uma lacuna na normalização de Instalações Internas de Gás Combustível durante um grande período, pois a norma brasileira que tratava

Leia mais

MEIOS DE LIGAÇÃO DE TUBOS

MEIOS DE LIGAÇÃO DE TUBOS MEIOS DE LIGAÇÃO DE TUBOS Ligações rosqueadas; Ligações soldadas; Ligações flangeadas; Ligações de ponta e bolsa; Outras Ligações: - Ligações de compressão; - Ligações patenteadas. 1 Fatores que influenciam

Leia mais

MEMORIAL DE CÁLCULO PARA DIMENSIONAMENTO DE PASSAGEM VIÁRIA

MEMORIAL DE CÁLCULO PARA DIMENSIONAMENTO DE PASSAGEM VIÁRIA MEMORIAL DE CÁLCULO PARA DIMENSIONAMENTO DE PASSAGEM VIÁRIA Dispositivo: Bueiro simples tubular concreto (BSTC) Aterro: sim I - INTRODUÇÃO 1. Parâmetros de dimensionamento do BSTC Segundo o Manual de Drenagem

Leia mais

AMBIENTAL MS PROJETOS EQUIPAMENTOS E SISTEMAS

AMBIENTAL MS PROJETOS EQUIPAMENTOS E SISTEMAS AMBIENTAL MS PROJETOS EQUIPAMENTOS E SISTEMAS MANUAL DE OPERAÇÃO E MANUTENÇÃO SISTEMA DE APROVEITAMENTO DE ÁGUA PLUVIAL MS TAC 4000 REV.02 2 SUMÁRIO 1 INTRODUÇÃO AO SISTEMA DE TRATAMENTO PARA REUSO....

Leia mais

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe

Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU. Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Universidade do Vale do Paraíba Faculdade de Engenharias, Arquitetura e Urbanismo - FEAU Fundamentos Física Prof. Dra. Ângela Cristina Krabbe Lista de exercícios 1. Considerando as grandezas físicas A

Leia mais

Pneumática. Exercícios de dimensionamento de redes de ar comprimido. Automação. 3.ª Edição. Publindústria

Pneumática. Exercícios de dimensionamento de redes de ar comprimido. Automação. 3.ª Edição. Publindústria Exercícios de dimensionamento de redes de ar comprimido Automação Pneumática.ª Edição Adriano Almeida Santos. António Ferreira da Silva Publindústria metros 100 metros Dimensionamento de redes de ar comprimido

Leia mais

ECONOMIA DE ENERGIA ELETRICA COM USO RACIONAL DE AR COMPRIMIDO

ECONOMIA DE ENERGIA ELETRICA COM USO RACIONAL DE AR COMPRIMIDO ECONOMIA DE ENERGIA ELETRICA COM USO RACIONAL DE AR COMPRIMIDO CONSUMO DE ENERGIA E AR COMPRIMIDO NA INDÚSTRIA Consumo de Energia 20% 50% 30% Fornec.de ar Refrigeração Outros Consumo de Ar Comprimido 10%

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL INSTALAÇÃO PREDIAL DE ÁGUAS PLUVIAIS

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL INSTALAÇÃO PREDIAL DE ÁGUAS PLUVIAIS UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL INSTALAÇÃO PREDIAL DE ÁGUAS PLUVIAIS Prof. Adolar Ricardo Bohn - M. Sc. 1 A instalação predial de águas pluviais

Leia mais

Válvula de Governo e Alarme 2.1/2 e 3

Válvula de Governo e Alarme 2.1/2 e 3 DESCRIÇÃO: A Válvula de Alarme Modelo E atua como um dispositivo de alarme de fluxo de água em sistemas espargidores de tubo úmido. O projeto permite instalação sob condições de fornecimento de pressão

Leia mais

Válvula de Fluxo Anular. 1º Encontro Técnico da Baixada Santista

Válvula de Fluxo Anular. 1º Encontro Técnico da Baixada Santista Válvula de Fluxo Anular 1º Encontro Técnico da Baixada Santista André Marques Produtos Tradicionais - SGC aplicados a Controle de Perdas Peças de Manutenção Válvulas de Controle Tubos e Conexões e Intervenção

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

A Hidrodema oferece uma linha completa de tubos conexões e válvulas para condução e controle de água, gás, ar-comprimido, vapor e fluídos químico.

A Hidrodema oferece uma linha completa de tubos conexões e válvulas para condução e controle de água, gás, ar-comprimido, vapor e fluídos químico. PRODUTOS Produtos A Hidrodema oferece uma linha completa de tubos conexões e válvulas para condução e controle de água, gás, ar-comprimido, vapor e fluídos químico. Distribuidor autorizado - Linha CPVC

Leia mais

SISTEMA DE LUBRIFICAÇÃO CENTRALIZADA. Bomba Hidráulica Manual Bomba Hidráulica Automática Distribuidores

SISTEMA DE LUBRIFICAÇÃO CENTRALIZADA. Bomba Hidráulica Manual Bomba Hidráulica Automática Distribuidores SISTEMA DE UBRIFICAÇÃO CENTRAIZADA Bomba Hidráulica Manual Bomba Hidráulica Automática Distribuidores SISTEMA DE UBRIFICAÇÃO CENTRAIZADA 1 - OBJETIVO Este manual objetiva fornecer instruções técnicas para

Leia mais