DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

Tamanho: px
Começar a partir da página:

Download "DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES"

Transcrição

1 LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração de Empresas da Escola Superior de Engenharia e Gestão - ESEG. Prof. Alexandre Borges SÃO PAULO 2008

2 AGRADECIMENTOS - A Deus pela vida, saúde e pelas oportunidades. ii

3 SUMÁRIO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS...5 PRINCIPAIS EXPRESSÕES MATEMÁTICAS...5 Probabilidade de falhas de um item, num dado intervalo de tempo "t" de operação Probabilidade a qual o equipamento não irá falhar para um dado período de tempo "t"de operação (Confiabilidade) Tempo Médio Entre falhas (MTTF)... 5 Desvio Padrão... 6 Significado dos parâmetros da Distribuição de Weibull... 6 Observações relativas ao Fator de Forma " β "... 7 WEIBULL - CÁLCULO MATEMÁTICO...8 MODELO HIPOTÉTICO BOMBAS EM OPERAÇÃO...8 I- Cálculos:... 8 II Traço o gráfico da confiabilidade III O custo de manutenção corretiva por intervenção (CCM) é de $600,00 e o custo de manutenção preventiva por intervenção (CPM) é de $250,00. Há um período ótimo para executar a manutenção preventiva? Em caso afirmativo, que período é este?... 8 I-1 Para determinar t 0, há três métodos:... 9 Para os itens I-2 e I I-4 Determinação do coeficiente de correlação (r): I-5 Probabilidade de falha para um intervalo de funcionamento de 1350 horas em operação (t=1350 horas): I-6 A confiabilidade em um intervalo do funcionamento de 1400 horas (t=1400 horas): I-7 MTTF (tempo médio sem falha): I-8 Desvio Padrão: I-9 Coeficiente de variação: Item II Representação gráfica: III - Intervalo de manutenção preventiva iii

4 INTRODUÇÃO O objetivo do presente trabalho é apresentar as principais características da Distribuição de Weibull, seus parâmetros e aplicações. Também são desenvolvidos os cálculos relativos a um exemplo hipotético de testes de falhas em equipamentos de bombeamento. Devido ao reduzido material para consulta, ou pela sua pouca profundidade, tomamos por base o excelente material Weibull Passo a Passo, disponível em (em inglês) 1.

5 5 DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS Expressão semi-empírica desenvolvida por Ernest Hjalmar Wallodi Weibull ( ), físico sueco, que em 1939 apresentou o modelo de planejamento estatístico sobre fadiga de material. Sua utilidade decorre do fato de permitir: representar falhas típicas de partida (mortalidade infantil), falhas aleatórias e falhas devido ao desgaste. obter parâmetros significativos da configuração das falhas. representação gráfica simples. Um outro fato importante relacionado a distribuição de Weibull é que na presença de co-variáveis, tem-se um modelo de riscos proporcionais e de falha acelerada. A distribuição de Weibull é a única distribuição de probabilidade que pode ser escrita na forma de um modelo de riscos proporcionais 3. PRINCIPAIS EXPRESSÕES MATEMÁTICAS Probabilidade de falhas de um item, num dado intervalo de tempo "t" de operação. β t t0 η β t t0 F( t) = 1 e = 1 exp β F(t) Função Distribuição cumulativa Probabilidade a qual o equipamento não irá falhar para um dado período de tempo "t"de operação (Confiabilidade). t t0 R( t) = 1 F( t) = exp η β Tempo Médio Entre falhas (MTTF) TMEF = t + η Γ + β 1 0. (1 )

6 6 Desvio Padrão σ = η Γ (1 + 2 β ) Γ (1 β ) " Γ " => Símbolo da Função Gama Significado dos parâmetros da Distribuição de Weibull " t 0 " => Vida Mínima ou Confiabilidade Intrínseca (tempo de operação a partir do qual o equipamento passa a apresentar falhas, ou seja, intervalo de tempo que o equipamento não apresenta falhas). "η " => Vida Característica ou Parâmetro de Escala (intervalo de tempo entre " t 0 " e "t" no qual ocorrem 63,2% das falhas, restando, portanto, 36,8% de itens sem falhar). " β " => Fator de Forma (indica a forma da curva e a característica das falhas). " β < 1" mortalidade infantil " β = 1" falhas aleatórias (função exponencial negativa) " β > 1" falhas por desgaste O parâmetro β é adimensional, enquanto η está na mesma escala dos dados 3.

7 7 Observações relativas ao Fator de Forma " β " A escolha apropriada de " t 0 ", " β " e "η " na Distribuição de Weibull podem ser usadas para representar uma larga faixa de distribuições, incluindo tanto distribuições randômicas (exponencial negativa) quanto distribuições aproximadamente normal. Embora a experiência tenha mostrado que a distribuição de Weibull possa ser usada para representar a grande maioria de modelos de falha, é essencial notar que é uma função semi-empírica, e pode não ser capaz de representar algumas distribuições particulares encontradas na prática. Com relação ao Fator de Forma " β ", temos que: Se " β = 1" (taxa de falha constante), pode ser uma indicação que modos de falhas múltiplos estão presentes ou que os dados coletados dos tempos para falhar são suspeitos. Este é freqüentemente o caso dos sistemas nos quais diferentes componentes têm diferentes idades, e o tempo individual de operação dos componentes não estão disponíveis. Uma taxa de falhas constante pode também indicar que as falhas são provocadas por agentes externos, tais como: uso inadequado do equipamento ou técnicas inadequadas de manutenção. O modo de falhas por desgaste é caracterizado por " β > 1", mas podem ocorrer situações nas quais as falhas por desgaste ocorram depois de um tempo finito livre de falhas, e um valor de " β = 1" é obtido. Isto pode ocorrer quando uma amostragem contém uma proporção de itens imperfeitos, acarretando falhas antes de um tempo finito livre de falhas. Os parâmetros da Distribuição de Weibull dos modos de falhas por desgaste podem ser deduzidos se forem eliminados os itens imperfeitos e analisados os seus dados separadamente.

8 WEIBULL - CÁLCULO MATEMÁTICO MODELO HIPOTÉTICO BOMBAS EM OPERAÇÃO Cem bombas idênticas estão em operação continuamente até falharem. Anotados os tempos de falha de cada uma, obtemos a seguinte tabela: Tempo até falhar (horas) Frequência observada 1000 => => => => => => => => => I- Cálculos: 1. O tempo livre de vida mínima ou da falha intrínseca " t 0 "=> da confiabilidade " t 0 ". 2. O parâmetro característico da vida ou da escala (η ). 3. O parâmetro da forma ( β ) e falha característica. 4. O coeficiente de correlação ( r ). 5. A probabilidade de falha para um intervalo de funcionamento de 1350 horas. 6. A confiabilidade em um intervalo de funcionamento de 1400 horas. 7. MTTF (tempo médio sem falha). 8. O desvio padrão (σ ). 9. O coeficiente de variação ( σ / µ ). II Traço o gráfico da confiabilidade. III O custo de manutenção corretiva por intervenção (CCM) é de $600,00 e o custo de manutenção preventiva por intervenção (CPM) é de $250,00. Há um período ótimo para executar a manutenção preventiva? Em caso afirmativo, que período é este?

9 9 Solução: Tempo até falhar (horas) Frequência observada Freq. Relativa Freq. Rel. Acumulada 1000 => ,02 0, => ,06 0, => ,16 0, => ,14 0, => ,26 0, => ,22 0, => ,07 0, => ,06 0, => ,01 1,00 Total 100 1,00 I-1 Para determinar t 0, há três métodos: Pela experimentação; Gráfico; Simulação computacional; Experimentação: consiste em selecionar valores arbitrários a t 0. O valor que obtiver o melhor coeficiente de correlação, será o mais adequado. Gráfico: através da utilização do gráfico que representa a Freqüência acumulada e do uso da fórmula abaixo.

10 10 Simulação computacional: diversos valores candidatos a t 0 são testados, escolhese o que apresenta o melhor coeficiente de correlação. Em nosso caso, a melhor opção é t 0 = 900 horas. dada por: Para os itens I-2 e I-3 Sabemos que a freqüência cumulativa de falha em uma distribuição de Weibull, é Transformando a função para a forma Y=aX + b, obtemos: Conseqüentemente, nós podemos construir a seguinte tabela: t F(t) Y=Ln{-Ln[1- F(t)]} X=ln(t-to) to=900h ,02-3,9019 5, ,08-2,4843 5, ,24-1,2930 5, ,38-0,7381 6, ,64 0,0214 6, ,86 0,6761 6, ,93 0,9780 6, ,99 1,5272 6, , ,9078

11 11 Agora, nós podemos aplicar a regressão linear para determinar o β e o η : Ord. Y i Tabela para facilitar os cálculos X i 2 Y i 2 X i X iy i 1-3,9019 5, , , , ,4843 5,7038 6, , , ,2930 5,9915 1, ,8976-7, ,7381 6,2146 0, ,6214-4, ,0214 6,3969 0, ,9207 0, ,6761 6,5511 0, ,9167 4, ,9780 6,6846 0, ,6840 6, ,5272 6,8024 2, , ,38848 Σ -5, , , , ,6855 Determinação do coeficiente angular ( β ): n n n n. X. Y X. Y a = = i i i i i= 1 i= 1 i= 1 β n n 2 2 n. X i X i i= 1 i= 1 8( 25, 6855) 49, 6432( ) β = 2 8(309, 9183) (49, 6432) 205, , ,3854 β = = = 3, , , ,8991 β =3,5831

12 12 Determinação do coeficiente angular (- β.lnη ): Yi X i i 1 i 1 5, , 6432 b = β. Ln η = = a. = = 3,5831. n n 8 8 = 0, , 2347 = 22,8865 n n Conseqüentemente: β. Lnη = 22,8865 3, Lnη = 22, ,8865 Lnη = = 6, ,5831 η = e 6,3873 n = 594, 28 horas - Vida Característica ou Parâmetro de Escala (intervalo de tempo entre " t 0 " e "t" no qual ocorrem 63,2% das falhas, restando, portanto, 36,8% de itens sem falhar). I-4 Determinação do coeficiente de correlação (r):

13 13 I-5 Probabilidade de falha para um intervalo de funcionamento de 1350 horas em operação (t=1350 horas): Assim, com t=1350, temos: horas): I-6 A confiabilidade em um intervalo do funcionamento de 1400 horas (t=1400 Assim, com t=1400, temos: I-7 MTTF (tempo médio sem falha): MTTF = 1435,35 HORAS

14 14 I-8 Desvio Padrão: I-9 Coeficiente de variação: Item II Representação gráfica:

15 15 III - Intervalo de manutenção preventiva Valores: quando: As seguintes equações serão usadas: # Existe um tempo finito para executar manutenção preventiva sistematicamente, Nós igualmente podemos usar o gráfico abaixo: # Se a equação acima é verdadeira, o intervalo de tempo ótimo para executar a manutenção preventiva, é dado por:

16 16 Entrando com os valores, nós obtemos: Condição: Intervalo ótimo: T=1.257,12 horas

17 17 CONCLUSÃO A Distribuição de Weibull tem sido usada extensivamente na engenharia de confiabilidade como modelo de tempo de falha para componentes e sistema elétricos e mecânicos 4, e também para estimar a sobrevivência humana e de outros mamíferos, pássaros, rotíferos até insetos 5. Com a escolha apropriada dos parâmetros " t 0 ", " β " e "η " da Distribuição de Weibull, pode-se representar uma larga faixa de distribuições de modelos de falhas, podendo explicar a sua grande aplicação em vários campos, da engenharia às ciências biológicas.

18 REFERÊNCIAS 1 Acesso em 08/11/ Acesso em 10/11/ SILVA, WALDIR S. J. Probabilidade de Cobertura dos Intervalos de Confiança Assintótico, p-bootstrap e t-bootstrap, Para Alguns Parâmetros da Distribui cão Weibull. Monografia de Conclusão de Curso Centro de Ciências Exatas Universidade Estadual de Maringá. Maringá PR, MONTGOMERY, DOUGLAS C. Introdução ao Controle Estatístico da Qualidade. 4. ed. Rio de Janeiro: LTC Editora, Acesso em 08/11/2008.

MÓDULO 5 DISTRIBUIÇÃO DE WEIBULL. Curso de Especialização em Transporte Ferroviário de Carga

MÓDULO 5 DISTRIBUIÇÃO DE WEIBULL. Curso de Especialização em Transporte Ferroviário de Carga MÓDULO 5 DISTRIBUIÇÃO DE WEIBULL O físico Ernest Hjalmar Wallodi Weibull nasceu no dia 18 de junho de 1887 na Suécia. Ele publicou vários trabalhos na área de engenharia dos materiais, inclusive estudos

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GSE 28 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE MODELAGEM

Leia mais

MANUTENÇÃO CENTRADA EM CONFIABILIDADE

MANUTENÇÃO CENTRADA EM CONFIABILIDADE MANUTENÇÃO CENTRADA EM CONFIABILIDADE PREFÁCIO Dado o elevado padrão da tecnologia atual, medidas que asseguram a confiabilidade são indispensáveis. Devido à problemática da confiabilidade ainda ser pouco

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

DETERMINAÇÃO DO INTERVALO ÓTIMO PARA MANUTENÇÃO: PREVENTIVA, PREDITIVA e DETECTIVA

DETERMINAÇÃO DO INTERVALO ÓTIMO PARA MANUTENÇÃO: PREVENTIVA, PREDITIVA e DETECTIVA DETERMINAÇÃO DO INTERVALO ÓTIMO PARA MANUTENÇÃO: PREVENTIVA, PREDITIVA e DETECTIVA Eduardo de Santana Seixas Engenheiro Consultor Reliasoft Brasil Resumo Um dos pontos críticos na determinação do intervalo

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

AEP FISCAL CURSO DE ESTATÍSTICA

AEP FISCAL CURSO DE ESTATÍSTICA AEP FISCAL CURSO DE ESTATÍSTICA Auditor Fiscal da Receita Federal do Brasil, Analista Tributário da Receita Federal do Brasil e Auditor Fiscal do Trabalho. Prof. Weber Campos webercampos@gmail.com AUDITOR-FISCAL

Leia mais

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia

EXCEL 2013. Público Alvo: Arquitetos Engenheiros Civis Técnicos em Edificações Projetistas Estudantes das áreas de Arquitetura, Decoração e Engenharia EXCEL 2013 Este curso traz a vocês o que há de melhor na versão 2013 do Excel, apresentando seu ambiente de trabalho, formas de formatação de planilhas, utilização de fórmulas e funções e a criação e formatação

Leia mais

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios...

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios... Conteúdo Prefácio xiii 1 Conceitos Básicos e Exemplos 1 1.1 Introdução... 1 1.2 Objetivo e Planejamento dos Estudos 3 1.3 Caracterizando Dados de Sobrevivência 6 1.3.1 Tempo de Falha 7 1.3.2 Censura e

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

PROBLEMAS E SOLUÇÕES NA MANUTENÇÃO DE MOTORES DIESEL DE ALTA ROTAÇÃO CAPITÃO-DE-FRAGATA (ENGENHEIRO NAVAL) ANDRÉ LUIZ BRAUCKS VIANNA

PROBLEMAS E SOLUÇÕES NA MANUTENÇÃO DE MOTORES DIESEL DE ALTA ROTAÇÃO CAPITÃO-DE-FRAGATA (ENGENHEIRO NAVAL) ANDRÉ LUIZ BRAUCKS VIANNA PROBLEMAS E SOLUÇÕES NA MANUTENÇÃO DE MOTORES DIESEL DE ALTA ROTAÇÃO CAPITÃO-DE-FRAGATA (ENGENHEIRO NAVAL) ANDRÉ LUIZ BRAUCKS VIANNA ARSENAL DE MARINHA DO RIO DE JANEIRO OFICINA DE MOTORES DIESEL CORRETIVA

Leia mais

Soluções Práticas para uma Boa Análise de Custos do Ciclo de Vida de Ativos

Soluções Práticas para uma Boa Análise de Custos do Ciclo de Vida de Ativos Soluções Práticas para uma Boa Análise de Custos do Ciclo de Vida de Ativos Autores: Rodolfo Weber Silva Xavier, CMRP, CRE, CQE Vale S.A. Maurício Cunha Fiock da Silva, CMRP, CRP Harsco Metals & Minerals

Leia mais

2. Otimização de Portfolio

2. Otimização de Portfolio 2. Otimização de Portfolio 2.1. Análise de Média-Variância Portfolio (carteira, em português) é uma combinação de ativos, tais como investimentos, ações, obrigações, commodities, imóveis, entre outros.

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

Módulo 4 DISPONIBILIDADE E CONFIABILIDADE DE ATIVOS DE TRANSPORTES

Módulo 4 DISPONIBILIDADE E CONFIABILIDADE DE ATIVOS DE TRANSPORTES Módulo 4 DISPONIBILIDADE E CONFIABILIDADE DE ATIVOS DE TRANSPORTES Análise da Vida Útil do Ativo MAXIMIZAR o Tempo de Operação dos equipamentos pela contenção das causas fundamentais das falhas. Qualificar

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties

Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties Método Monte Carlo e a ferramenta do Crystal Ball utilizados na indústria do petróleo: projeções de royalties JOSÉ OTAVIO DA SILVA, HERNANI A. FERNANDES CHAVES, CLEVELAND M. JONES, FABIANA ADÃO DA SILVA

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Mestrado em Gestão Econômica do Meio Ambiente

Mestrado em Gestão Econômica do Meio Ambiente Mestrado em Gestão Econômica do Meio Ambiente Programa de Pós-graduação em Economia Sub-Programa Mestrado Profissional CEEMA/ECO/UnB Disciplina: ECO 333051 Métodos Estatísticos e Econométricos Instrutores:

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO

ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO ESCOLA SECUNDÁRIA/3 da RAINHA SANTA ISABEL 402643 ESTREMOZ PLANIFICAÇÃO ANUAL DA DISCIPLINA DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (MACS) 10º ANO ANO LETIVO DE 2015/2016 PROFESSORES: Inácio Véstia

Leia mais

Importância da análise holística de um plano de manutenção por meio de simulação: Uma abordagem de RCM voltada a custo e disponibilidade

Importância da análise holística de um plano de manutenção por meio de simulação: Uma abordagem de RCM voltada a custo e disponibilidade Importância da análise holística de um plano de manutenção por meio de simulação: Uma abordagem de RCM voltada a custo e disponibilidade Celso Luiz Santiago Figueiroa Filho, MSc Eng Alberto Magno Teodoro

Leia mais

Exercícios Resolvidos da Distribuição de Poisson

Exercícios Resolvidos da Distribuição de Poisson . a. Qual é a diferença entre as distribuições de Poisson e inomial? b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson. c. Dê a fórmula da distribuição de Poisson e o significado

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

6 MARCO TEÓRICO. 6.1 Engenharia de confiabilidade. 6.1.1 Introdução

6 MARCO TEÓRICO. 6.1 Engenharia de confiabilidade. 6.1.1 Introdução 4 6 MARCO TEÓRICO 6.1 Engenharia de confiabilidade 6.1.1 Introdução Até bem pouco tempo, a manutenção era definida como o departamento responsável pela lubrificação e conserto das máquinas, bem como pela

Leia mais

Módulo 4 PREVISÃO DE DEMANDA

Módulo 4 PREVISÃO DE DEMANDA Módulo 4 PREVISÃO DE DEMANDA Conceitos Iniciais Prever é a arte e a ciência de predizer eventos futuros, utilizando-se de dados históricos e sua projeção para o futuro, de fatores subjetivos ou intuitivos,

Leia mais

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Emílio Augusto Coelho-Barros 1,2 Jorge Alberto Achcar 2 Josmar Mazucheli 3 1 Introdução Em análise

Leia mais

Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33

Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33 Sumário Apresentação... 19 Prefácio da primeira edição... 21 Prefácio da segunda edição... 27 Introdução... 33 Capítulo I CIÊNCIA, CONHECIMENTOS E PESQUISA CIENTÍFICA... 37 1. Conceito de ciência e tipos

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática - IST(TP) Secção de Estatística e Aplicações Probabilidades e Estatística 1 o Exame/1 o Teste/2 o Teste 2 o Semestre/1 a Época 2008/09 Duração: 3 horas/1 hora e 30 minutos 16/01/09

Leia mais

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo)

Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Modelagens e Gerenciamento de riscos (Simulação Monte Carlo) Prof. Esp. João Carlos Hipólito e-mail: jchbn@hotmail.com Sobre o professor: Contador; Professor da Faculdade de Ciências Aplicadas e Sociais

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 7 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem

Leia mais

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRO-REITORIA DE GRADUAÇÃO PROGRAMA GERAL DE DISCIPLINA IDENTIFICAÇÃO (20140195) CURSOS A QUE ATENDE ADMINISTRACAO,

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 1ªFASE.

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 1ªFASE. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 1500-236 Lisboa Tel.: +351 21 716 36 90 / 21 711 03 77 Fax: +351 21 716 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

'DGRVGH(QWUDGD SDUD D6LPXODomR

'DGRVGH(QWUDGD SDUD D6LPXODomR 6LPXODomR GH6LVWHPDV 'DGRVGH(QWUDGD SDUD D6LPXODomR,1387 'DGRVGH(QWUDGD SDUD D6LPXODomR 3URSyVLWRReproduzir o comportamento aleatório / estocástico do sistema real dentro do modelo de simulação. *$5%$*(,1*$5%$*(287

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Leandro Alves Pereira - FAMAT, UFU Rogerio de Melo Costa Pinto - FAMAT, UFU 2 Resumo: Os insetos-pragas

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes

NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS. Mayara Condé Rocha Murça TRA-53 Logística e Transportes NECESSIDADES DE PREVISÃO DA CADEIA DE SUPRIMENTOS Mayara Condé Rocha Murça TRA-53 Logística e Transportes Setembro/2013 Introdução Estimativas acuradas do volume de produtos e serviços processados pela

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação

Regressão Logística. Daniel Araújo Melo - dam2@cin.ufpe.br. Graduação Regressão Logística Daniel Araújo Melo - dam2@cin.ufpe.br Graduação 1 Introdução Objetivo Encontrar o melhor modelo para descrever a relação entre variável de saída (variável dependente) e variáveis independentes

Leia mais

Disciplinas: Cálculo das Probabilidades e Estatística I

Disciplinas: Cálculo das Probabilidades e Estatística I Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Análise de Risco de Projetos Análise de Risco Prof. Luiz Brandão Métodos de Avaliação de Risco Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a pensar em diversos

Leia mais

Intervalos Estatísticos para uma Única Amostra

Intervalos Estatísticos para uma Única Amostra Roteiro Intervalos Estatísticos para uma Única Amostra 1. Introdução 2. Intervalo de Confiança para Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3.

Leia mais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais ANO: 11º ANO LECTIVO : 008/009 p.1/7 CONTEÚDOS MODELOS MATEMÁTICOS COMPETÊNCIAS A DESENVOLVER - Compreender a importância dos modelos matemáticos na resolução de problemas de problemas concretos. Nº. AULAS

Leia mais

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento

Leia mais

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A IMPORTÂNCIA DA MATEMÁTICA O desenvolvimento das sociedades tem sido também materializado por um progresso acentuado no plano científico e nos diversos domínios

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo

Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Plano Curricular de Matemática 9º ano - 2014 /2015-3º Ciclo Tema/Subtema Conteúdos Metas Nº de Aulas Previstas Org.Trat.Dados / Planeamento Estatístico Especificação do problema Recolha de dados População

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Conceitos de Telefonia Celular Trafego. Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília

Conceitos de Telefonia Celular Trafego. Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Conceitos de Telefonia Celular Trafego Depto. de Engenharia Elétrica Faculdade de Tecnologia Universidade de Brasília Objetivos Mostrar primeiros contatos com teoria de despacho e filas Aprender os rudimentos

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA Professor, nós, da Editora Moderna, temos como propósito uma educação de qualidade, que respeita as particularidades de todo o país. Desta maneira, o apoio ao

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Curso de Pós-Graduação lato Sensu em Matemática para Negócios. Faculdade Campo Limpo Paulista (FACCAMP)

Curso de Pós-Graduação lato Sensu em Matemática para Negócios. Faculdade Campo Limpo Paulista (FACCAMP) Curso de Pós-Graduação lato Sensu em Matemática para Negócios. Faculdade Campo Limpo Paulista (FACCAMP) 1. Apresentação Com os avanços tecnológicos inseridos no mundo informatizado e virtual e a forma

Leia mais

Seleção e Monitoramento de Fundos de Investimentos

Seleção e Monitoramento de Fundos de Investimentos 2010 Seleção e Monitoramento de Fundos de Investimentos Nota Técnica 02 Diretoria de Investimentos Previ-Rio 09/2010 NOTA TÉCNICA 02 1 - Introdução Esta nota técnica, desenvolvida pela Equipe da, tem por

Leia mais

Metodologia de Gerenciamento de Risco de Mercado

Metodologia de Gerenciamento de Risco de Mercado Metodologia de Gerenciamento de Risco de Mercado O Gerenciamento de Risco de Mercado das Carteiras geridas pela Rio Verde Investimentos é efetuado pela Administradora dos Fundos, no caso BNY Mellon Serviços

Leia mais

3 Metodologia de Gerenciamento de Riscos

3 Metodologia de Gerenciamento de Riscos 3 Metodologia de Gerenciamento de Riscos Este capítulo tem como objetivo a apresentação das principais ferramentas e metodologias de gerenciamento de riscos em projetos, as etapas do projeto onde o processo

Leia mais

SIC 2007. A Engenharia de Confiabilidade Quebrando Paradigmas de Manutenção. João Luis Reis e Silva. Votorantim Metais

SIC 2007. A Engenharia de Confiabilidade Quebrando Paradigmas de Manutenção. João Luis Reis e Silva. Votorantim Metais SIC 2007 A Engenharia de Confiabilidade Quebrando Paradigmas de Manutenção João Luis Reis e Silva Eng o. Confiabilidade Sênior Votorantim Metais Negócio Zinco, unidade Três Marias Agenda Grupo Votorantim

Leia mais

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática Aplicada às Ciências Sociais 10.º/11.º Anos ou 11.º/12.º Anos de Escolaridade Prova 835/1.ª Fase

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

A distribuição Weibull-Poisson

A distribuição Weibull-Poisson A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de

Leia mais

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis;

Introdução. Existem situações nas quais há interesse em estudar o comportamento conjunto de uma ou mais variáveis; UNIVERSIDADE FEDERAL DA PARAÍBA Correlação e Regressão Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Eistem situações nas quais há interesse em estudar o comportamento conjunto

Leia mais

Slides de Estatística Descritiva na HP-12C 01/10/2009 ESTATÍSTICAS. Na HP-12C. 01/10/2009 Bertolo 2. O que é Estatística?

Slides de Estatística Descritiva na HP-12C 01/10/2009 ESTATÍSTICAS. Na HP-12C. 01/10/2009 Bertolo 2. O que é Estatística? ESTATÍSTICAS Na HP-12C 01/10/2009 Bertolo 1 O que é Estatística? A estatística pode ser entendida como um conjunto de ferramentas envolvidas no estudo de métodos e procedimentos usados para 1. colecionar,

Leia mais

Universidade Federal do Pará Processo Seletivo Seriado Conteúdo de Matemática - (1ª série)

Universidade Federal do Pará Processo Seletivo Seriado Conteúdo de Matemática - (1ª série) Relacionar e resolver problemas que envolvem conjuntos; Reconhecer, operar e resolver problemas com conjuntos numéricos; Compreender os conceitos e propriedades aritméticas; Resolver problemas de porcentagem,

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO)

PLANIFICAÇÃO ANUAL. MACS Matemática Aplicada às Ciências Sociais. Curso de Línguas e Humanidades 2º ANO (11º ANO) PLANIFICAÇÃO ANUAL MACS Matemática Aplicada às Ciências Sociais Curso de Línguas e Humanidades º ANO (º ANO) Ano Lectivo 0/05 Planificação º Ano - MACS º Período Número de Aulas Previstas 0 Apresentação

Leia mais

Cálculo do Conceito Preliminar de Curso (CPC)

Cálculo do Conceito Preliminar de Curso (CPC) nstituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira NEP Ministério da Educação MEC Cálculo do Conceito Preliminar de Curso (CPC) O Conceito Preliminar de Curso (CPC) é calculado para

Leia mais

Vetores Aleatórios, correlação e conjuntas

Vetores Aleatórios, correlação e conjuntas Vetores Aleatórios, correlação e conjuntas Cláudio Tadeu Cristino 1 1 Universidade Federal Rural de Pernambuco, Recife, Brasil Segundo Semestre, 2013 C.T.Cristino (DEINFO-UFRPE) Vetores Aleatórios 2013.2

Leia mais

2 Referencial Teórico

2 Referencial Teórico 2 Referencial Teórico Para fundamentar o presente trabalho, serão apresentados três trabalhos que serviram de inspiração para o desenvolvimento desta dissertação: os estudos da LIMRA International e SOA,

Leia mais

A demanda pode ser entendida como a disposição dos clientes ao consumo de bens e serviços ofertados por uma organização.

A demanda pode ser entendida como a disposição dos clientes ao consumo de bens e serviços ofertados por uma organização. Previsão da Demanda As previsões têm uma função muito importante nos processos de planejamento dos sistemas logísticos, pois permite que os administradores destes sistemas antevejam o futuro e planejem

Leia mais

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação

BC-0005 Bases Computacionais da Ciência. Modelagem e simulação BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício:

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado,

PE-MEEC 1S 09/10 118. Capítulo 4 - Variáveis aleatórias e. 4.1 Variáveis. densidade de probabilidade 4.2 Valor esperado, Capítulo 4 - Variáveis aleatórias e distribuições contínuas 4.1 Variáveis aleatórias contínuas. Função densidade de probabilidade 4.2 Valor esperado, variância e algumas das suas propriedades. Moda e quantis

Leia mais

Universidade Federal Rural de Pernambuco

Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Departamento de Morfologia e Fisiologia Animal Área de Biofísica Traçando Gráficos Prof. Romildo Nogueira 1. Introduzindo o tema No trabalho experimental lida-se

Leia mais

UNI-FACEF - CONCURSO PÚBLICO EDITAL UNI-FACEF Nº 01/2005

UNI-FACEF - CONCURSO PÚBLICO EDITAL UNI-FACEF Nº 01/2005 UNI-FACEF - CONCURSO PÚBLICO EDITAL UNI-FACEF Nº 01/2005 A Reitora do Uni-FACEF Centro Universitário de Franca faz saber que fará realizar Concurso Público para formação de cadastro de reserva e preenchimento

Leia mais