Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura"

Transcrição

1 Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Emílio Augusto Coelho-Barros 1,2 Jorge Alberto Achcar 2 Josmar Mazucheli 3 1 Introdução Em análise de sobrevivência, um modelo de mistura de longa duração, também conhecido como modelo de fração de cura, assume que a população em estudo é uma mistura de indivíduos suscetíveis, em que é observado o evento de interesse, e não suscetíveis, em que nunca foi observado o evento de interesse. Esses indivíduos não estão em risco com respeito ao evento de interesse e são considerados imunes, não suscetíveis ou curados (MALLER; ZHOU, 1996). 2 Material e métodos Considerando a distribuição exponencial exponenciada, será comparado a performance dos modelos de mistura e não-mistura de longa duração quando a fração de cura p e os outros parâmetros do modelo sofrem interferência de covariáveis. Gupta e Kundu (2010) introduziram a distribuição exponencial generalizada (EG), também conhecida como distribuição exponencial exponenciada, sua função densidade de probabilidade é definida por, f 0 (t α,λ) = αλexp( λt)[1 exp( λt)] α 1, (1) em que α > 0 e λ > 0 são os parâmetros de forma e escala respectivamente. Para α = 1 tem-se a distribuição exponencial como caso particular. Recentemente, Kannan et al. (2010) introduziu o modelo exponencial exponenciado na presença de fração de cura (MALLER; ZHOU, 1996) no qual tem função densidade de 1 COMAT - UTFPR/CP. 2 DMS - FMRP/USP. 3 DES - UEM. 1

2 probabilidade, função distribuição e função de sobrevivência dadas, respectivamente, por, f (t θ) = (1 p)αλexp( λt)[1 exp( λt)] α 1, (2) F (t θ) = (1 p)[1 exp( λt)] α e (3) S(t θ) = p + (1 p) { 1 [1 exp( λt)] α} (4) em que θ = (α,λ, p), p é a proporção de indivíduos imunes ou não suscetíveis, λ e α são, respectivamente, os parâmetros de escala e forma. Supor os dados na forma (t i,δ i ), i = 1,...,n, em que δ i = 1 se t i não é censurado e δ i = 0 caso contrario e que f (t i ) é dado por (2). Considerando o modelo de não-mistura tem-se que a função densidade de probabilidade, a função distribuição e a função de sobrevivência são dadas, respectivamente, por, f (t θ) = log(p)αλe λt ( 1 e λt) α 1 p (1 e λt ) α (5) F (t θ) = 1 p (1 e λt ) α, (6) S(t θ) = p (1 e λt ) α (7) Foi considerada uma analise Bayesiana, baseadas em aproximações de Cadeias de Markov e Monte Carlos (MCMC), para encontrar as distribuições a posteriori aproximadas para as quantidades aleatórias de interesse considerando os modelos de mistura e não mistura de longa duração para a distribuição exponencial exponenciada. A distribuição a priori conjunta para θ = (α,λ, p) é dada por, π(θ) = π(λ)π(α)π(p), (8) em que λ Γ(a,b), α Γ(c,d) e p Beta(e, f ). A expressão Γ(a,b) denota uma distribuição gama com média a/b e variância a/b 2 e Beta(e, f ) denota uma distribuição beta com média e/(e + b) e variância (e f )/[(e + f + 1)(e + f ) 2 ]. Os hiperparâmetros a, b, c, d, e e f são especificados e não negativos. Assume-se independência a priori entre p, λ e γ. As distribuições condicionais a posteriori para os modelos de mistura e não mistura de longa duração, mostram que o esquema padrão de amostragem não é possível ser executado, pois as distribuições condicionais não têm forma conhecida. Porém uma inferência Bayesiana pode ser conduzida para os parâmetros θ = (α,λ, p) utilizando o algorítimo de Metropolis-Hastings (CHIB; GREENBERG, 1995) considerando as distribuições condicionais como alvo para as densidades. 2

3 3 Resultados e discussões Para verificar o desempenho dos modelos propostos será analisado um conjunto de dados da University of Massachusetts AIDS Research Unit (UMARU) IMPACT Study (UIS) composto por 575 observações e disponível em statdata/data/uissurv.txt. De acordo com Kannan et al. (2010), os dados são resultados de um experimento aleatorizado que consiste em observar dois diferentes programas de tratamento para a redução do abuso de droga e, consequentemente, do risco de adquirir AIDS. Existem duas situações distintas considerando os dois programas de tratamento; na situação 1, os participantes são aleatorizados em grupos de curto (3 meses) e longo (6 meses) prazo que incluiu educação em saúde e prevenção de recaídas; na situação 2 os participantes são aleatorizados em grupos de curto (6 meses) e longo (12 meses) considerando um estilo de vida em um ambiente estruturado. O tempo de sobrevivência é representado pelo número de dias a partir da admissão do paciente ao programa até o mesmo retornar ao uso de drogas (auto-relato). Portanto quatro grupos foram criados baseados nas situações e nos prazos, como segue: Situação Prazo Um Dois Curto I II Longo III IV Existem evidencias que sugerem que uma grande proporção de participantes dos programas de tratamento contra drogas são curados, ou seja, a partir do momento em que o paciente entra no programa ele nunca mais volta a utilizar drogas. Nas Tabelas 1 e 2, tem-se as inferências considerando a análise Bayesiana para os modelos de mistura e não mistura, respectivamente. Para obter as estimativas Bayesianas foi utilizado o método MCMC (Markov Chain Monte Carlo) disponível no software SAS 9.2 na procedure MCMC (SAS, 2010). Uma única cadeia foi utilizada par ambos os modelos considerando simulações para cada parâmetro com um burn-in de tamanho para eliminar os possíveis efeitos dos valores iniciais da simulação. Os valores simulados foram pegos de 100 em 100, para se ter valores aproximadamente não correlacionados, no que resulta em uma amostra final de tamanho Diagnósticos usuais de convergência observados na literatura estão avaliados na procedure MCMC do software SAS, nesse caso a convergência de todos os parâmetros foram observadas. Para todos os parâmetros foram consideradas priores não informativas, ou seja, µ Γ(0.001, 0.001), α Γ(0.001,0.001) e p Beta(1,1). Para resolver possíveis problemas de convergência a seguinte parametrização µ = λ 1 foi considerada. 3

4 Tabela 1: Médias a posteriori (desvio padrão) para µ, al pha e p em cada grupo modelo de mistura. Grupo ˆµ = ˆλ 1 ˆα ˆp DIC I ( ) (0.1907) (0.0264) II ( ) (0.2754) (0.0457) III ( ) (0.1795) (0.0334) IV ( ) (0.2257) (0.0629) n 1 = 198,n 2 = 91,n 3 = 202 e n 4 = 84 participantes. Tabela 2: Médias a posteriori (desvio padrão) para µ, al pha e p em cada grupo modelo de não mistura. Grupo ˆµ = ˆλ 1 ˆα ˆp DIC I ( ) (0.1852) (0.0274) II ( ) (0.2597) (0.0519) III ( ) (0.1710) (0.0398) IV (217.0) (0.2050) (0.0613) n 1 = 198,n 2 = 91,n 3 = 202 e n 4 = 84 participantes. A partir de curvas de sobrevivência ajustadas, conclui-se que os modelos de mistura e não mistura se ajustam bem aos tempos de sobrevivência. 4 Conclusões Usualmente na análise de dados de sobrevivência pode-se ter a presença de fração de cura, quando uma grande proporção de indivíduos não experimentou o evento de interesse. Para a análise desse tipo de dados, pode-se utilizar diferentes formulações paramétricas, como, por exemplo, os modelos de mistura e de não mistura. Essas formulações usualmente assumem uma distribuição paramétrica, como por exemplo, Weibull, log-normal ou exponencial para os indivíduos susceptíveis. Computacionalmente, especialmente considerando o método Bayesiano, os resultados obtidos foram muito similares, como foi possível observar na aplicação introduzida na Seção 3. A grande vantagem do modelo de mistura esta relacionado a simples interpretação, especialmente em pesquisa médica, em que se 4

5 tem a proporção de indivíduos curados e não curados dada diretamente pela expressão da função de sobrevivência. Referências CHIB, S.; GREENBERG, E. Undestanding the metropolis-hastings algorithm. The American Statistician, v. 49, n. 4, p , GUPTA, R. D.; KUNDU, D. Exponentiated exponential family: an alternative to gamma and weibull distributions. Biometrical Journal, v. 43, p. 117â 130, KANNAN, N. et al. The generalized exponential cure rate model with covariates. Journal of Applied Statistics, v. 37, n. 9-10, p , ISSN MALLER, R. A.; ZHOU, X. Survival analysis with long-term survivors. Chichester: John Wiley & Sons Ltd., SAS. The MCMC Procedure, SAS/STAT R User s Guide, Version Cary, NC: SAS Institute Inc.: [s.n.], p. 5

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Leandro Alves Pereira - FAMAT, UFU Rogerio de Melo Costa Pinto - FAMAT, UFU 2 Resumo: Os insetos-pragas

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência TEMA Tend. Mat. Apl. Comput., 7, No. 1 (2006), 91-100. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Predição em Modelos de Tempo de Falha Acelerado com Efeito Aleatório para Avaliação de Riscos de Falha em Poços Petrolíferos

Predição em Modelos de Tempo de Falha Acelerado com Efeito Aleatório para Avaliação de Riscos de Falha em Poços Petrolíferos 1 Predição em Modelos de Tempo de Falha Acelerado com Efeito Aleatório para Avaliação de Riscos de Falha em Poços Petrolíferos João Batista Carvalho Programa de Pós-Graduação em Matemática Aplicada e Estatística,

Leia mais

Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise

Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise Carolina Ferreira Barroso 1 Graziela Dutra Rocha Gouvêa 2 1. Introdução A análise de sobrevivência

Leia mais

Distribuição hipergeométrica confluente Pareto com uma

Distribuição hipergeométrica confluente Pareto com uma Distribuição hipergeométrica confluente Pareto com uma aplicação em Análise de Sobrevivência Jailson de Araujo Rodrigues 3 Ana Paula Coelho Madeira Silva 2 Jaime dos Santos Filho 3 Introdução Nos últimos

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA

Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Estimação bayesiana em modelos lineares generalizados mistos: MCMC versus INLA Everton Batista da Rocha 1 2 3 Roseli Aparecida Leandro 2 Paulo Justiniano Ribeiro Jr 4 1 Introdução Na experimentação agronômica

Leia mais

Modelos bayesianos sem MCMC com aplicações na epidemiologia

Modelos bayesianos sem MCMC com aplicações na epidemiologia Modelos bayesianos sem MCMC com aplicações na epidemiologia Leo Bastos, PROCC/Fiocruz lsbastos@fiocruz.br Outline Introdução à inferência bayesiana Estimando uma proporção Ajustando uma regressão Métodos

Leia mais

Occurrence and quantity of precipitation can be modelled simultaneously. Peter K. Dunn Autor Braga Junior e Eduardo Gomes Apresentação

Occurrence and quantity of precipitation can be modelled simultaneously. Peter K. Dunn Autor Braga Junior e Eduardo Gomes Apresentação Occurrence and quantity of precipitation can be modelled simultaneously Peter K. Dunn Autor Apresentação Introdução Introdução Estudos sobre modelagem da precipitação de chuvas são importantes, pois permitem

Leia mais

METODOLOGIA BAYESIANA PARA A ACTUALIZAÇÃO DO MÓDULO DE DEFORMABILIDADE NUMA ESTRUTURA SUBTERRÂNEA

METODOLOGIA BAYESIANA PARA A ACTUALIZAÇÃO DO MÓDULO DE DEFORMABILIDADE NUMA ESTRUTURA SUBTERRÂNEA METODOLOGIA BAYESIANA PARA A ACTUALIZAÇÃO DO MÓDULO DE DEFORMABILIDADE NUMA ESTRUTURA SUBTERRÂNEA BAYESIAN METHODOLOGY FOR THE DEFORMABILITY MODULUS UPDATING IN AN UNDERGROUND STRUCUTRE Miranda, Tiago,

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios...

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios... Conteúdo Prefácio xiii 1 Conceitos Básicos e Exemplos 1 1.1 Introdução... 1 1.2 Objetivo e Planejamento dos Estudos 3 1.3 Caracterizando Dados de Sobrevivência 6 1.3.1 Tempo de Falha 7 1.3.2 Censura e

Leia mais

A distribuição Weibull exponenciada geométrica

A distribuição Weibull exponenciada geométrica A distribuição Weibull exponenciada geométrica Josiane Rodrigues 1 Elizabeth M. Hashimoto 1 Edwin M. M. Ortega 1 Gauss M. Cordeiro 2 Sônia M. De S. Piedade 1 1 Introdução A distribuição Weibull tem sido

Leia mais

Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos com Dois Fatores Cruzados e Dados Desbalanceados

Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos com Dois Fatores Cruzados e Dados Desbalanceados TEMA Tend. Mat. Apl. Comput., 5, No. 1 (24), 117-124. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Hipóteses Estatísticas Testadas por Diversos Softwares em Modelos

Leia mais

Análise Bayesiana do Sistema de Cotas da UFBA

Análise Bayesiana do Sistema de Cotas da UFBA Análise Bayesiana do Sistema de Cotas da UFBA Lilia Carolina C. da Costa Universidade Federal da Bahia Marina Silva Paez Universidade Federal do Rio de Janeiro Antonio Guimarães, Nadya Araujo Guimarães

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada

Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático

Leia mais

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento

Leia mais

ESTUDO SOBRE A EVASÃO E O TEMPO ATÉ A FORMATURA DOS ALUNOS DO CURSO DE ESTATÍSTICA DA UFPR

ESTUDO SOBRE A EVASÃO E O TEMPO ATÉ A FORMATURA DOS ALUNOS DO CURSO DE ESTATÍSTICA DA UFPR MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA Bruno Rosevics Estevão Batista do Prado ESTUDO SOBRE A EVASÃO E O TEMPO ATÉ A FORMATURA DOS ALUNOS

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência.

Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Professor: Leandro Zvirtes UDESC/CCT Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos de

Leia mais

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV SMIRNOV, ANDERSONDARLING, CRAMER VON MISES E SHAPIROWILK POR SIMULAÇÃO Vanessa Bielefeldt Leotti, Universidade Federal do Rio Grande do Sul,

Leia mais

Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura

Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura Juliana B. Fachini Universidade de São Paulo Edwin M. M. Ortega Universidade de São Paulo 1 Introdução Dados de sobrevivência

Leia mais

MODELOS DE REGRESSÃO NÃO-LINEARES CONSIDERANDO UMA MISTURA FINITA DE DISTRIBUIÇÕES NORMAIS PARA OS ERROS

MODELOS DE REGRESSÃO NÃO-LINEARES CONSIDERANDO UMA MISTURA FINITA DE DISTRIBUIÇÕES NORMAIS PARA OS ERROS MODELOS DE REGRESSÃO NÃO-LINEARES CONSIDERANDO UMA MISTURA FINITA DE DISTRIBUIÇÕES NORMAIS PARA OS ERROS Vicente Garibay CANCHO 1 Jorge Alberto ACHCAR 2 Edwin Moises Marcos ORTEGA 3 RESUMO: Neste artigo

Leia mais

Uma aplicação dos modelos de fronteira estocástica utilizando a abordagem Bayesiana

Uma aplicação dos modelos de fronteira estocástica utilizando a abordagem Bayesiana Uma aplicação dos modelos de fronteira estocástica utilizando a abordagem Bayesiana Bruna Cristina Braga 1 2 Juliana Garcia Cespedes 1 1 Introdução Os cursos de pós-graduação do Brasil são avaliados pela

Leia mais

PLANEJAMENTO EXPERIMENTAL

PLANEJAMENTO EXPERIMENTAL PLANEJAMENTO EXPERIMENTAL Técnicas de Pesquisas Experimentais LUIS HENRIQUE STOCCO MARCIO TENÓRIO SANDRA MARCHI Introdução O Planejamento de Experimentos (Design of Experiments, DoE), técnica utilizada

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

Seleção de variáveis para o modelo de fração de cura baseado no tempo de primeira passagem para um processo de Wiener

Seleção de variáveis para o modelo de fração de cura baseado no tempo de primeira passagem para um processo de Wiener Seleção de variáveis para o modelo de fração de cura baseado no tempo de primeira passagem para um processo de Wiener Jhon F.B. Gonzales 1 1 Mário de Castro A. Filho 1 2 Vera Lucia D. Tomazella 11 1 Introdução

Leia mais

de Piracicaba-SP: uma abordagem comparativa por meio de modelos probabilísticos

de Piracicaba-SP: uma abordagem comparativa por meio de modelos probabilísticos Descrição da precipitação pluviométrica no munícipio de Piracicaba-SP: uma abordagem comparativa por meio de modelos probabilísticos Idemauro Antonio Rodrigues de Lara 1 Renata Alcarde 2 Sônia Maria De

Leia mais

ESTUDO DO TEMPO ATÉ APOSENTADORIA DOS SERVIDORES TÉCNICO-ADMINISTRATIVOS DA UFLA VIA MODELO DE COX

ESTUDO DO TEMPO ATÉ APOSENTADORIA DOS SERVIDORES TÉCNICO-ADMINISTRATIVOS DA UFLA VIA MODELO DE COX ESTUDO DO TEMPO ATÉ APOSENTADORIA DOS SERVIDORES TÉCNICO-ADMINISTRATIVOS DA UFLA VIA MODELO DE COX Patrícia de Siqueira Ramos 1, Mário Javier Ferrua Vivanco 2 INTRODUÇÃO O servidor técnico-administrativo

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

1 Método de Monte Carlo Simples

1 Método de Monte Carlo Simples Método de Monte Carlo Simples Finalidade: obter uma estimativa para o valor esperado de uma função qualquer g da variável aleatória θ, ou seja, E[g(θ)]. Seja g(θ) uma função qualquer de θ. Suponha que

Leia mais

VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP. João Riboldi 1

VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP. João Riboldi 1 VALIDAÇÃO DE MODELOS DE REGRESSÃO POR BOOTSTRAP João Riboldi 1 1. Introdução Na construção de um modelo de regressão, de uma maneira geral segue-se três etapas: executa-se o ajuste do modelo, obtendo-se

Leia mais

Análises estatísticas da incidência de AIDS no Município de Rio Claro. 1 Resumo. 2 Abstract

Análises estatísticas da incidência de AIDS no Município de Rio Claro. 1 Resumo. 2 Abstract Análises estatísticas da incidência de AIDS no Município de Rio Claro Sophia Lanza de Andrade 1 Liciana Vaz de Arruda Silveira 2 Jorge Gustavo Falcão 3 José Sílvio Govone 3 1 Resumo O presente trabalho

Leia mais

Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER DO APARELHO DIGESTIVO

Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER DO APARELHO DIGESTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA CURSO DE ESTATÍSTICA Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Um modelo de TRI para dados do vestibular 2011.2 da Universidade Federal de Uberlândia

Um modelo de TRI para dados do vestibular 2011.2 da Universidade Federal de Uberlândia Um modelo de TRI para dados do vestibular 20.2 da Universidade Federal de Uberlândia Luana Amâncio Terra 2 José Waldemar da Silva 2 Lúcio Borges de Araújo 2 Maria Imaculada de Sousa Silva 2 Introdução

Leia mais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais ANO: 11º ANO LECTIVO : 008/009 p.1/7 CONTEÚDOS MODELOS MATEMÁTICOS COMPETÊNCIAS A DESENVOLVER - Compreender a importância dos modelos matemáticos na resolução de problemas de problemas concretos. Nº. AULAS

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Geração de variáveis aleatórias

Geração de variáveis aleatórias Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL. Cleber Giugioli Carrasco 1 ; Francisco Louzada-Neto 2 RESUMO

TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL. Cleber Giugioli Carrasco 1 ; Francisco Louzada-Neto 2 RESUMO TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL Cleber Giugioli Carrasco ; Francisco Louzada-Neto Curso de Matemática, Unidade Universitária de Ciências Exatas e Tecnológicas, UEG. Departamento

Leia mais

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística 1. IDENTIFICAÇÃO PLANO DE ENSINO Disciplina: Estatística Multivariada Código: PGMAT568 Pré-Requisito: No. de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: Semestre: 1º Ano: 2015 Turma(s): 01 Professor(a):

Leia mais

PLANIFICAÇÃO OPERACIONAL DA PESQUISA

PLANIFICAÇÃO OPERACIONAL DA PESQUISA Laboratório de Psicologia Experimental Departamento de Psicologia UFSJ Disciplina: Método de Pesquisa Quantitativa TEXTO 8: PLANIFICAÇÃO OPERACIONAL DA PESQUISA Autora: Prof. Marina Bandeira,Ph.D. 1. POPULAÇÃO-

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Uma Introdução à Análise de Sobrevivência com Fração de Cura Talita Viviane Siqueira de Barros

Uma Introdução à Análise de Sobrevivência com Fração de Cura Talita Viviane Siqueira de Barros UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE ESTATÍSTICA CURSO DE ESTATÍSTICA Uma Introdução à Análise de Sobrevivência com Fração de Cura Talita Viviane

Leia mais

Distribuições Contínuas de Probabilidade

Distribuições Contínuas de Probabilidade Distribuições Contínuas de Probabilidade Pedro Paulo Balestrassi www.pedro.unifei.edu.br ppbalestrassi@gmail.com 35-3691161 / 88776958 (cel) 1 Distribuições contínuas de probabilidade descrevem variáveis

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE i1 Introdução Uma distribuição de probabilidade é um modelo matemático que relaciona um certo valor da variável em estudo com a sua probabilidade de ocorrência. Há dois tipos

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

daniel.desouza@hotmail.com

daniel.desouza@hotmail.com VIII Congreso Regional de ENDE Campana Agosto 2011 Aplicação do estimador maximum likelihood a um teste de vida sequencial truncado utilizando-se uma distribuição eibull Invertida de três parâmetros como

Leia mais

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Resumo Marcos Henrique de Carvalho 1 Gabriel Alves da Costa Lima 2 Antonio Elias Junior 3 Sergio Rodrigues

Leia mais

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda.

UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. UNIDADE DE PESQUISA CLÍNICA Centro de Medicina Reprodutiva Dr Carlos Isaia Filho Ltda. Avaliação do risco de viés de ensaios clínicos randomizados pela ferramentada colaboração Cochrane Alan P. V. de Carvalho,

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

A distribuição Weibull-Poisson

A distribuição Weibull-Poisson A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Introdução ao Método de Galerkin Estocástico

Introdução ao Método de Galerkin Estocástico Introdução ao Método de Galerkin Estocástico Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 1 Introdução A dinâmica de um sistema

Leia mais

A normalidade em função do arredondamento e baixa discriminação dos dados.

A normalidade em função do arredondamento e baixa discriminação dos dados. A normalidade em função do arredondamento e baixa discriminação dos dados. Image credit: wavebreakmediamicro / 123RF Banco de Imagens Normalmente nós

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Modelos Defeituosos para Dados com Fraçao de Cura Baseado em Processo de Wiener

Modelos Defeituosos para Dados com Fraçao de Cura Baseado em Processo de Wiener Modelos Defeituosos para Dados com Fraçao de Cura Baseado em Processo de Wiener Ricardo Rocha 1 Vera Tomazella 1 Saralees Nadarajah 2 1 Introdução Nos últimos anos a teoria de sobrevivência tem sido bastante

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

Modelos de Cura: Aplicação ao Cancro da Mama Feminino DISSERTAÇÃO DE MESTRADO

Modelos de Cura: Aplicação ao Cancro da Mama Feminino DISSERTAÇÃO DE MESTRADO DM Modelos de Cura: Aplicação ao Cancro da Mama Feminino Ana Carina Fernandes Alves Modelos de Cura: Aplicação ao Cancro da Mama Feminino DISSERTAÇÃO DE MESTRADO Ana Carina Fernandes Alves MESTRADO EM

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

Distribuição de Erlang

Distribuição de Erlang Distribuição de Erlang Uma variável aleatória exponencial descreve a distância até que a primeira contagem é obtida em um processo de Poisson. Generalização da distribuição exponencial : O comprimento

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

Técnicas de Cluster para Analisar Restrição Financeira e Decisão de Investimento: Uma Abordagem Bayesiana

Técnicas de Cluster para Analisar Restrição Financeira e Decisão de Investimento: Uma Abordagem Bayesiana Técnicas de Cluster para Analisar Restrição Financeira e Decisão de Investimento: Uma Abordagem Bayesiana Camila Fernanda Bassetto 1 Aquiles E. G. Kalatzis 2 1 Introdução - Restrição Financeira e Decisão

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA

A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA A INTEGRAÇÃO ENTRE ESTATÍSTICA E METROLOGIA João Cirilo da Silva Neto jcirilo@araxa.cefetmg.br. CEFET-MG-Centro Federal de Educação Tecnológica de Minas Gerais-Campus IV, Araxá Av. Ministro Olavo Drumonnd,

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Metodologia em Estudos Clínicos

Metodologia em Estudos Clínicos Metodologia em Estudos Clínicos Gabriela Stangenhaus Livre Docente - USP Prof. Adjunto - UNICAMP Pesquisa Científica e Estudos Clínicos Pesquisa Científica Aquisição de novo conhecimento Pesquisa Científica

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que:

Vamos denominar 1/µ o tempo médio de atendimento de um cliente. Tem-se, então que: Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caríssimos. Recebi muitos e-mails pedindo ajuda com eventuais recursos para as provas do BACEN. Em raciocínio lógico, eu não vi possibilidade de recursos, apesar de achar que algumas questões tiveram o

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Variáveis Aleatórias Discretas e Distribuições de Probabilidade

Variáveis Aleatórias Discretas e Distribuições de Probabilidade Variáveis Aleatórias Discretas e Distribuições de Probabilidade Objetivos do aprendizado a.determinar probabilidades a partir de funções de probabilidade b.determinar probabilidades a partir de funções

Leia mais

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R Roberta Bessa Veloso 1, Daniel Furtado Ferreira 2, Eric Batista Ferreira 3 INTRODUÇÃO A inferência estatística

Leia mais

Modelo de Fração de Cura: Uma Aplicação a Dados de Sobrevida de Mulheres Acometidas pelo Câncer de Mama

Modelo de Fração de Cura: Uma Aplicação a Dados de Sobrevida de Mulheres Acometidas pelo Câncer de Mama Modelo de Fração de Cura: Uma Aplicação a Dados de Sobrevida de Mulheres Acometidas pelo Câncer de Mama Gleici da Silva Castro Perdoná DMS, FMRP/USP Juliana Cobre DEs, UFSCar Ana Maria de Almeida EERP,

Leia mais

2. Otimização de Portfolio

2. Otimização de Portfolio 2. Otimização de Portfolio 2.1. Análise de Média-Variância Portfolio (carteira, em português) é uma combinação de ativos, tais como investimentos, ações, obrigações, commodities, imóveis, entre outros.

Leia mais

Estimação e diagnóstico na disribuição Weibull- Binomial-Negativa em análise de sobrevivência (Fonte: Tahoma 17) Bao Yiqi

Estimação e diagnóstico na disribuição Weibull- Binomial-Negativa em análise de sobrevivência (Fonte: Tahoma 17) Bao Yiqi Estimação e diagnóstico na disribuição Weibull- Binomial-Negativa em análise de sobrevivência (Fonte: Tahoma 17) Bao Yiqi SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: Estimação e

Leia mais

Paradigmas em Estatística

Paradigmas em Estatística Pedro A. Morettin Instituto de Matemática e Estatística Universidade de São Paulo pam@ime.usp.br http://www.ime.usp.br/ pam Sumário As Origens 1 As Origens 2 3 4 5 Paradigma As Origens Modelo, padrão a

Leia mais

Simulação de Evacuação Emergencial Via Autômatos Celulares: Uma Proposta de Modificação do Modelo de Schadschneider

Simulação de Evacuação Emergencial Via Autômatos Celulares: Uma Proposta de Modificação do Modelo de Schadschneider Anais do CNMAC v.2 ISSN 1984-820X Simulação de Evacuação Emergencial Via Autômatos Celulares: Uma Proposta de Modificação do Modelo de Schadschneider Leandro A. Pereira Faculdade de Matemática, UFU 38400-902,

Leia mais

Capítulo 5. Modelos de Confiabilidade. Gustavo Mello Reis José Ivo Ribeiro Júnior

Capítulo 5. Modelos de Confiabilidade. Gustavo Mello Reis José Ivo Ribeiro Júnior Capítulo 5 Modelos de Confiabilidade Gustavo Mello Reis José Ivo Ribeiro Júnior Universidade Federal de Viçosa Departamento de Informática Setor de Estatística Viçosa 007 Capítulo 5 Modelos de Confiabilidade

Leia mais

ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA

ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA Bárbara Camboim Lopes de FIGUEIRÊDO 1, Gustavo Henrique ESTEVES 2 1 Departamento de Estatística

Leia mais

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO

TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO 1 TÉCNICAS EXPERIMENTAIS APLICADAS EM CIÊNCIA DO SOLO Mario de Andrade Lira Junior www.lira.pro.br direitos autorais. INTRODUÇÃO À ANÁLISE MULTIVARIADA Apenas uma breve apresentação Para não dizerem que

Leia mais

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/

Lógica e Raciocínio. Decisão sob Risco Probabilidade. Universidade da Madeira. http://dme.uma.pt/edu/ler/ Lógica e Raciocínio Universidade da Madeira http://dme.uma.pt/edu/ler/ Decisão sob Risco Probabilidade 1 Probabilidade Em decisões sob ignorância a probabilidade dos diferentes resultados e consequências

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Comparação dos procedimentos GLM em parcelas subdivididas e o MIXED no modelo de medidas repetidas

Comparação dos procedimentos GLM em parcelas subdivididas e o MIXED no modelo de medidas repetidas Comparação dos procedimentos GLM em parcelas subdivididas e o MIXED no modelo de medidas repetidas Maria Elizabeth da Costa Vasconcellos 1 Paula Cristina de Oliveira Klefens 2 Cezar Francisco Araujo Junior

Leia mais

REDES BAYESIANAS. Palavras-chave: Redes bayesianas, Grafo, Estrutura de Dados, Inteligência artificial.

REDES BAYESIANAS. Palavras-chave: Redes bayesianas, Grafo, Estrutura de Dados, Inteligência artificial. REDES BAYESIANAS Gabriel Rigo da Cruz Jacobsen gabrielrigoj@gmail.com Prof. Leonardo Sommariva, Estrutura de Dados RESUMO: Uma rede bayesiana é uma forma de representar o conhecimento de um domínio onde

Leia mais

Doenças cardiovasculares constituem um dos maiores problemas que afligem a

Doenças cardiovasculares constituem um dos maiores problemas que afligem a 18 1 INTRODUÇÃO Doenças cardiovasculares constituem um dos maiores problemas que afligem a população dos países industrializados. Essas doenças são responsáveis por mais de cinco milhões de pessoas hospitalizadas

Leia mais

Análise de Componente Principais (PCA) Wagner Oliveira de Araujo

Análise de Componente Principais (PCA) Wagner Oliveira de Araujo Análise de Componente Principais (PCA) Wagner Oliveira de Araujo Technical Report - RT-MSTMA_003-09 - Relatório Técnico May - 2009 - Maio The contents of this document are the sole responsibility of the

Leia mais

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009

XVIII CONGRESSO DE PÓS-GRADUAÇÃO DA UFLA 19 a 23 de outubro de 2009 REGRESSÃO MÚLTIPLA APLICADA AOS DADOS DE VENDAS DE UMA REDE DE LOJAS DE ELETRODOMÉSTICOS VANESSA SIQUEIRA PERES 1 RESUMO: Esse trabalho foi realizado com o objetivo de ajustar os dados de vendas de uma

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica Relatório Final - MS777 Modelagem matemático/probabilística dos módulos acústicos e de linguagem de sistemas

Leia mais