BC-0005 Bases Computacionais da Ciência. Modelagem e simulação

Tamanho: px
Começar a partir da página:

Download "BC-0005 Bases Computacionais da Ciência. Modelagem e simulação"

Transcrição

1 BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010

2 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício: construção de um modelo

3 O que é um Modelo? É a representação de um objeto, um sistema ou uma idéia, em alguma forma que não seja a própria entidade. (Shannon)

4 Tipos de modelos Físicos modelos em escala, protótipos, Fluxos de idéia Cascata de eventos, de reações químicas ou biológicas Matemáticos Modelos analíticos (equações), programas lineares, computacionais Animais Experimentos c/ animais entendimento da fisiologia humana Lesões em animais que simulam uma doença humana Outros

5 O que é simulação? Simulação de um sistema é a operação ou manipulação de um Modelo, que é a representação de um sistema. O modelo é passível de manipulações que seriam impossíveis, muito caras, impráticas, anti-éticas de realizar no sistema real que ele descreve A operação do modelo pode ser estudada e propriedades do sistema real podem ser deduzidas.

6 Aplicações Operação de usinas de energia (quanto será gerado?) Verificar se estruturas como pontes são estáveis à perturbações (ventos fortes, terremotos, etc) Projetos de protocolos de sistemas de comunicação. Reconhecimento de faces, padrões. Funcionamento do cérebro ou funções cognitivas Operação de sistemas de transportes, como metrô, aeroportos, etc Teste de funcionamento de hospitais, correios (logística) Análise de sistemas financeiros e econômicos

7 Modelos Computacionais Diversos modelos não precisam do computador (fluxo de idéias, modelos analíticos, etc) Então, onde o computador se torna essencial? Sistemas que não têm soluções analíticas; Equações complexas, com soluções analíticas muito difíceis, ou intratáveis; Sistemas com muitas equações ou parâmetros (cérebro, química, etc); Sistemas auto-organizáveis: regras de interação locais simples, que geram comportamento complexos.

8 Modelos tempo contínuo e de tempo discreto Tempo Contínuo as variáveis ( estado ) do sistema podem ser obtidas para qualquer valor real do tempo Ex.: Movimento de um pêndulo, velocidade de um projétil, etc. Tempo Discreto o estado do sistema somente pode ser determinado em instantes específicos Ex.: autômatos celulares, cotação diária da bolsa de valores, população de uma determinada cidade a cada ano, etc.

9 Simulação de um pêndulo simples modelo de tempo contínuo A evolução do sistema é dada pelas equações de movimento. É possível determinar a posição e a velocidade do pêndulo para qualquer instante. No gráfico acima (espaço de fases) o eixo x representa a posição angular do pêndulo, e o eixo y a velocidade angular.

10 Modelo discreto autômatos celulares Regras para a evolução do sistema: - Uma célula viva com menos do que 2 vizinhos vivos, morre; - Uma célula viva com mais do que 3 vizinhos vivos, morre; - Uma célula viva com 2 ou 3 vizinhos vivos, vive; - Uma célula morta com extamente 3 vizinhos vivos se torna viva ; Aplicações: s_game_of_life Simulação do comportamento de gases, estudo de magnetismo; simulação da propagação de incêndios, simulação e estudo de desenvolvimento urbano, simulação do processo de cristalização; etc.

11 Modelos determinísticos e estocásticos Determinísticos Dada uma condição inicial, o futuro está completamente determinado Variáveis determinísticas leis físicas Movimento de partículas, dinâmica de fluidos, (sistemas dinâmicos), etc Estocásticos Modelos têm uma componente imprevisível, mas é possível determinar um comportamento médio Variáveis aleatórias probabilidades Moeda, movimento browniano, teoria cinética dos gases Utilizados por seguradoras, fundos de mercado financeiro

12 Movimento de projéteis: determinismo

13 Sinal recebido por um celular: modelo estocástico x(t) s(t) = + Modelo: x(t)=s(t) + r(t) Componente Estocástico r(t) (ruído)

14 Exemplo de Modelagem Problema: Estudar o crescimento de uma cultura de levedura Modelo a ser adotado: Modelo de tempo discreto Modelo deve descrever o tamanho da população para uma dada hora representada pelo índice n;

15 Modelos de tempo-discreto Suponha que x n represente uma variável de interesse após n passos. O modelo será uma regra, ou um conjunto de regras, que descreverá como x n varia de acordo com a evolução do índice temporal n. Em particular, o modelo pode descrever como x n+1 depende dos valores anteriores x n Em geral: x n+1 = f(x n, x n-1, x n-2, )

16 Modelos de tempo-discreto Iremos considerar x n+1 = f(x n ) A relação acima também é chamada de relação de recursão ou um mapa. Note que, dada a equação de recursão e uma condição inicial x 0, podemos calcular os valores de x 1, x 2, da seguinte maneira: x 1 = f(x 0 ); x 2 = f(x 1 ); x 3 = f(x 2 );

17 Modelo Escolhido Valor Futuro = Valor Atual + Incremento x n+1 =x n + x n Objetivo final é obter uma aproximação razoável para x n tal que o modelo reproduza um certo conjunto de dados ou um fenômeno observado.

18 Exemplo: Cultura de Levedura Os seguintes dados foram colhidos de um experimento de medição do crescimento de uma cultura de levedura: Tempo (h) Biomassa Variação da Biomassa n p n Δp n =p n+1 -p n

19 Modelo para crescimento da população de Levedura Variação da Biomassa x Biomassa p n Variação da Biomassa 100 p n 50 p n = p n+1 - p n ~ 0.5p n p n Biomassa p n

20 Modelo Inicial Podemos observar no gráfico que p n = p n+1 - p n ~ 0.5p n Assim, considerando nosso modelo, obtemos p n+1 = p n + p n = p n + 0.5p n = 1.5p n Vejamos o que o nosso modelo indica que ocorrerá com a biomassa para n >7

21 Crescimento Exponencial p n+1 = 1.5(1.5p n-1 ) = 1.5[1.5(1.5p n-2 )] = =(1.5) n+1 p 0 p n n = (1.5) p 0 Dessa forma, o modelo prevê que a população aumentará indefinidamente, o que sabemos que não é verdade! Conclusão: é preciso re-examinar os dados a fim de obter um modelo mais adequado

22 Novos dados sobre a cultura de Tempo (h) Biomassa Variação da Biomassa Levedura n p n Δp n Biomassa tende a um limite próximo de 665.

23 Refinando o Modelo Modelo original : p n = 0.5p n p n+1 = 1.5p n Observando o conjunto de dados podemos concluir que a variação da biomassa torna-se cada vez menor com o passar do tempo, em particular quando pn se aproxima de 665. Novo modelo: p n = k (665- p n ) p n p n+1 = p n + k (665- p n ) p n

24 Novo Modelo Segundo nosso novo modelo p n = k(665-p n ) p n ou seja, a variação da Biomassa é proporcional ao produto (665-p n )p n Indica uma relação linear entre a variação da biomassa ( p n ) e o produto (665-p n ) p n Podemos averiguar isso gerando um gráfico de ( p n ) x (665-p n ) p n, e caso a relação seja linear, podemos estimar o valor de k (regressão linear)

25 Novo Modelo A hipótese de que as duas quantidades são linearmente relacionadas é plausível, e a constante de proporcionalidade encontrada foi k ~

26 Validação do Modelo p n+1 = p n (665- p n ) p n

27 Mapa Logístico x n+1 = x n + k(n-x n )x n O Mapa Logístico pode ser utilizado para modelar diferentes cenários, como Crescimento populacional em um ambiente com recursos limitados x n = Número de indivíduos depois de n intervalos de tempo (por exemplo, anos, meses, etc) N = número máximo de indivíduos que o ambiente suporta Evolução de uma doença infecciosa, como a gripe, em uma população limitada x n = número de indivíduos afetados depois de n intervalos de tempo (por exemplo, dias) N = tamanho da população Caso particular do modelo predador-presa

28 Exercícios sala de aula Clique aqui para abrir o editor do Scilab Com o editor podemos criar scripts sequência de comandos a serem executados pelo Scilab

29 Criando Scripts no Scilab Para executar o script, salve o arquivo e selecione esta opção no menu. Também é possível executar o script a partir da janela de comando. Para isso basta digitar exec( nome_script.sce )

30 Criando Scripts no Scilab Conteúdo atual da variável x (um vetor)

31 Criando Scripts no Scilab Para i=3, execute os seguintes comandos Para i=4, execute os seguintes comandos Para i=5, execute os seguintes comandos... Para i=n, execute os seguintes comandos

32 Criando Scripts no Scilab O que o script calcula?

33 Modelo: Cultura de Levedura p n+1 = p n + k(665- p n ) p n p i = p i-1 + k(665- p i-1 ) p i-1 Definindo as variáveis de meu script: N: número máximo de iterações i: índice temporal p: vetor cujos elementos correspondem à biomassa

34 Modelo: Cultura de Levedura p i = p i-1 + k(665- p i-1 ) p i-1

35 Exercício - Casa Implemente no scilab um script para um caso do mapa logístico dado por x n+1 = k (1 -x n )x n onde x n é um valor entre 0 e 1. O valor de x n pode ser interpretado como o tamanho de uma população no instante n, e k um fator ligado à taxa de natalidade e mortalidade da população

36 Exercício - Casa Para um valor máximo de iterações N=200, e um valor arbritário para a população inicial (por exemplo x(1) =.1), avalie o que ocorre com o tamanho da população quando variamos o valor de k. Para isso, execute a simulação e comente os gráficos da evolução da população (que pode ser gerado, por exemplo, com o comando plot(x, o- )) para cada um dos casos abaixo: k é um valor entre 0 e 1 (por exemplo, k = 0.5) k é um valor entre 1 e 2 (por exemplo, k = 1.3) k é um valor entre 2 e 3 (por exemplo, k = 2.9)

37 Exercício - Casa Avalie agora o que ocorre para k=3.7. Simule o que ocorre para a população com diferentes valores iniciais x(1). Apresente os gráficos e comente o que foi observado (dica: procure na internet o que é o mapa logístico e os possíveis comportamentos observados em função do parâmetro k).

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades BC 0005 Bases Computacionais da Ciência Representação Gráfica de Funções Prof a Maria das Graças Bruno Marietto graca.marietto@ufabc.edu.br

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS

DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS Ilmar Ferreira Santos Rodrigo Fernandes de Carvalho UNICAMP - Faculdade de Engenharia Mecânica Departamento de Projeto

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Introdução e Motivação

Introdução e Motivação Introdução e Motivação 1 Análise de sistemas enfoque: sistemas dinâmicos; escopo: sistemas lineares; objetivo: representar, por meio de modelos matemáticos, fenômenos observados e sistemas de interesse;

Leia mais

Atividade 4 Movimento circular uniforme.

Atividade 4 Movimento circular uniforme. Modellus Atividade 4 Movimento circular uniforme. Amarrou-se uma pedra a um fio e pôs-se a rodar com movimento circular uniforme. As equações do movimento, para um sistemas de coordenadas com origem no

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos Modelando Incerteza Opções Reais A incerteza em um projeto pode ter mais do que apenas dois estados. Na prática, o número de incertezas pode ser infinito Prof. Luiz Brandão brandao@iag.puc-rio.br IAG PUC-Rio

Leia mais

Dispositivo que de alguma maneira descreve o comportamento do sistema

Dispositivo que de alguma maneira descreve o comportamento do sistema Sistema: Conceito primitivo (intuitivo) Tentativas de definição: Agregação ou montagem de coisas, combinadas pelo homem ou pela natureza de modo a formar um todo unificado. Grupo de itens interdependente

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é:

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é: Modellus Atividade 3 Queda livre. Do alto de duas torres, uma na Terra e outra na Lua, deixaram-se cair duas pedras, sem velocidade inicial. Considerando que cada uma das pedras leva 3,0s atingir o solo

Leia mais

Simulação Computacional de Sistemas, ou simplesmente Simulação

Simulação Computacional de Sistemas, ou simplesmente Simulação Simulação Computacional de Sistemas, ou simplesmente Simulação Utilização de métodos matemáticos & estatísticos em programas computacionais visando imitar o comportamento de algum processo do mundo real.

Leia mais

Unidade 3: Linguagem de programação

Unidade 3: Linguagem de programação Unidade 3: Linguagem de programação 3.7. Elaborando programas: scripts e funções No programa Scilab podemos criar arquivos contendo comandos que serão executados posteriormente dentro do seu ambiente.

Leia mais

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos Avaliação de Desempenho de Sistemas Conceitos Básicos de Sistemas e Modelos O que é Desempenho? Webster s? The manner in which a mechanism performs. Aurélio: Conjunto de características ou de possibilidades

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Universidade Federal de São Paulo Campus São José dos Campos LISTA DE DISCIPLINAS DA GRADUAÇÃO

Universidade Federal de São Paulo Campus São José dos Campos LISTA DE DISCIPLINAS DA GRADUAÇÃO A B C Álgebra Linear Álgebra Linear Computacional Álgebra Linear II Algoritmos e Estrutura de Dados I Algoritmos e Estrutura de Dados II Algoritmos em Bioinformática Alteridade e Diversidade no Brasil

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Algoritmos Genéticos

Algoritmos Genéticos UNIVERSIDADE PRESBITERIANA MACKENZIE Laboratório de Computação Natural LCoN I ESCOLA DE COMPUTAÇÃO NATURAL Algoritmos Genéticos Rafael Xavier e Willyan Abilhoa Outubro/2012 www.computacaonatural.com.br

Leia mais

Neste método o cálculo é efetuado de maneira exponencial, ou seja, juros são computados sobre os juros anteriormente calculados.

Neste método o cálculo é efetuado de maneira exponencial, ou seja, juros são computados sobre os juros anteriormente calculados. Microsoft Excel Aula 4 Objetivos Trabalhar no Excel com cálculos de juros simples e compostos Trabalhar com as funções financeiras VF e PGTO do Excel Trabalhar com a ferramenta Atingir Meta Apresentar

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A IMPORTÂNCIA DA MATEMÁTICA O desenvolvimento das sociedades tem sido também materializado por um progresso acentuado no plano científico e nos diversos domínios

Leia mais

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi Metodologias de Desenvolvimento de Sistemas Analise de Sistemas I UNIPAC Rodrigo Videschi Histórico Uso de Metodologias Histórico Uso de Metodologias Era da Pré-Metodologia 1960-1970 Era da Metodologia

Leia mais

Avaliação econômica (quantitativa) de impacto de programas (de saúde) Prof. Gervásio F. Santos Departamento de Economia/UFBA

Avaliação econômica (quantitativa) de impacto de programas (de saúde) Prof. Gervásio F. Santos Departamento de Economia/UFBA Avaliação econômica (quantitativa) de impacto de programas (de saúde) Prof. Gervásio F. Santos Departamento de Economia/UFBA Problemas econômicos Impacto de um programa de treinamento sobre salário/hora

Leia mais

Computabilidade em sistemas dinâmicos

Computabilidade em sistemas dinâmicos 1 Computabilidade em sistemas dinâmicos Daniel da Silva Graça 1,2 1 DM/FCT, Universidade do Algarve, Portugal 2 SQIG, Instituto de Telecomunicações, Portugal 30 de Julho de 2009 2 Introdução Informalmente

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

DELIBERAÇÃO CONSEP Nº 149/2012

DELIBERAÇÃO CONSEP Nº 149/2012 DELIBERAÇÃO CONSEP Nº 149/2012 Altera o Currículo do Curso de Engenharia de Controle e Automação para regime seriado semestral. O CONSELHO DE ENSINO E PESQUISA, na conformidade do Processo nº MEC-481/2012,

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Introdução ao GeoGebra

Introdução ao GeoGebra Universidade Federal de Alfenas UNIFAL-MG Introdução ao GeoGebra Prof. Dr. José Carlos de Souza Junior AGOSTO 2010 Sumário 1 Primeiros Passos com o GeoGebra 4 1.1 Conhecendo o Programa............................

Leia mais

Scilab. Introdução ao Scilab. Como obter ajuda

Scilab. Introdução ao Scilab. Como obter ajuda Scilab Scilab é uma linguagem de programação associada a uma rica coleção de algoritmos numéricos cobrindo muitos aspectos dos problemas de computação científica. Do ponto de vista do software, Scilab

Leia mais

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki

Mestranda: Márcia Maria Horn. Orientador: Prof. Dr. Sandro Sawicki Universidade Regional do Noroeste do Estado do Rio Grande do Sul Departamento de Ciências Exatas e Engenharias Programa de Mestrado em Modelagem Matemática Grupo de Pesquisa em Computação Aplicada Temática:

Leia mais

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas,

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, MODELAÇÃO E DETERMINAÇÃO DE PARÂMETROS CINÉTICOS FILIPE GAMA FREIRE 1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, etc. a que chamaremos y

Leia mais

O USO DO SOFTWARE MATHEMATICA PARA O ENSINO DE CÁLCULO DIFERENCIAL E INTEGRAL

O USO DO SOFTWARE MATHEMATICA PARA O ENSINO DE CÁLCULO DIFERENCIAL E INTEGRAL O USO DO SOFTWARE MATHEMATICA PARA O ENSINO DE CÁLCULO DIFERENCIAL E INTEGRAL Edward Luis de Araújo edward@pontal.ufu.br Evaneide Alves Carneiro eva@pontal.ufu.br Germano Abud de Rezende germano@pontal.ufu.br

Leia mais

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus Investigação e Modelação na aula de Matemática Círculo de Estudos ccpfc/acc 19941/00 Eduardo Cunha www.educunha.net Escola Secundária de Barcelos 2000/2001 Módulo 2: Estudo de Funções - calculadora gráfica.

Leia mais

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2

UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 UNIVERSIDADE FEDERAL DO PIAUÍ (UFPI) ENG. DE PRODUÇÃO PROBABILIDADE E ESTATÍSTICA 2 LISTA N O 2 Prof.: William Morán Sem. I - 2011 1) Considere a seguinte função distribuição conjunta: 1 2 Y 0 0,7 0,0

Leia mais

Módulo 2. 2.3 Diagramas causais, construção de modelos e o software STELLA. Análise de Sistemas Ambientais 2011/2012

Módulo 2. 2.3 Diagramas causais, construção de modelos e o software STELLA. Análise de Sistemas Ambientais 2011/2012 Módulo 2 2.3 Diagramas causais, construção de modelos e o software STELLA Bibliografia específica: - Caderno de exercícios do módulo 2 - Ford (1999). Capítulos 2, 3, 7, 8, Anexo C - Jørgensen (2009). Capítulos

Leia mais

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A.

IMES Catanduva. Probabilidades e Estatística. no Excel. Matemática. Bertolo, L.A. IMES Catanduva Probabilidades e Estatística Estatística no Excel Matemática Bertolo, L.A. Aplicada Versão BETA Maio 2010 Bertolo Estatística Aplicada no Excel Capítulo 3 Dados Bivariados São pares de valores

Leia mais

Interface Homem-Computador

Interface Homem-Computador Faculdade de Ciências e Tecnologia do Maranhão Interface Homem-Computador Aula: Engenharia Cognitiva e Semiótica Professor: M.Sc. Flávio Barros flathbarros@gmail.com Conteúdo Engenharia Cognitiva Fundamentos

Leia mais

Guia de Atividades para Introdução do Powersim no Processo Ensinoaprendizagem de Equações Diferenciais Ordinárias

Guia de Atividades para Introdução do Powersim no Processo Ensinoaprendizagem de Equações Diferenciais Ordinárias Guia de Atividades para Introdução do Powersim no Processo Ensinoaprendizagem de Equações Diferenciais Ordinárias Nestas atividades temos como objetivo sua familiarização com o software Powersim e, através

Leia mais

Tutorial de animação quadro a quadro

Tutorial de animação quadro a quadro Tutorial de animação quadro a quadro quadro a quadro é uma técnica que consiste em utilizar imagens ou fotografias diferentes de um mesmo objeto para simular o seu movimento. Nesse caso, trata-se de relatar

Leia mais

Glossário de Dinâmica Não-Linear

Glossário de Dinâmica Não-Linear Glossário de Dinâmica Não-Linear Dr. Fernando Portela Câmara, MD, PhD Coordenador do Depto. Informática da ABP (2004-2007) Atrator O estado no qual um sistema dinâmico eventualmente se estabiliza. Um atrator

Leia mais

Teoria de Filas. Prof. Gustavo Leitão. Campus Natal Central. Planejamento de Capacidade de Sistemas

Teoria de Filas. Prof. Gustavo Leitão. Campus Natal Central. Planejamento de Capacidade de Sistemas Teoria de Filas Prof. Gustavo Leitão Campus Natal Central. Planejamento de Capacidade de Sistemas 5/27/2010 Objetivo da Aula 5/27/2010 5/27/2010 OBJETIVO Apresentar os conceitos de teoria de filas e suas

Leia mais

CONFIGURAÇÃO DO OUTLOOK EXPRESS

CONFIGURAÇÃO DO OUTLOOK EXPRESS CONFIGURAÇÃO DO OUTLOOK EXPRESS Antes de configurar o Outlook, é necessário fazer a instalação do certificado de segurança. Veja a seguir como fazer 1 Faça o download do arquivo: https://www.pae.sc.gov.br/down/caciasc.crt

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA PAULO, João Pedro Antunes de Universidade Estadual de Goiás UnU de Iporá jpadepaula@hotmail.com RESUMO Esta pesquisa foi feita

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 3 Modelação Matemática usando o software Modellus Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Modelação Matemática

Leia mais

Prof. Dr. Iron Macêdo Dantas

Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN MESTRADO EM CIÊNCIAS NATURAIS Prof. Dr. Iron Macêdo Dantas

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

MA 37 - Modelagem Matemática

MA 37 - Modelagem Matemática MA 37 - Modelagem Matemática Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia - UESB Modelagem Matemática PROFMAT mbortoloti@uesb.edu.br

Leia mais

Aluno(a) autor(a): Turma: Outros integrantes do grupo: ; ;.

Aluno(a) autor(a): Turma: Outros integrantes do grupo: ; ;. Novembro de 2013 FÍSICA EXPERIMENTAL FORÇA DE ATRITO Aluno(a) autor(a): Turma: Outros integrantes do grupo: ; ;. 1) OBJETIVOS - Reconhecer o atrito como uma força que varia com o estado de repouso ou movimento

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO

O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO Débora da Silva Soares 1 Universidade Estadual Paulista Julio de Mesquita Filho debbie_mat@yahoo.com.br Nilton Silveira Domingues

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

Modelagem e Simulação

Modelagem e Simulação AULA 11 EPR-201 Modelagem e Simulação Modelagem Processo de construção de um modelo; Capacitar o pesquisador para prever o efeito de mudanças no sistema; Deve ser próximo da realidade; Não deve ser complexo.

Leia mais

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática

CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS. Curso de Matemática Introdução ao GeoGebra software livre 0 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS Curso de Matemática Primeiros Passos Com o Software Livre GeoGebra Março de 2010 Prof. Ilydio Pereira de Sá Introdução ao

Leia mais

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 1 Prof.: Patricia Maria Bortolon, D. Sc. Estatística Estatística

Leia mais

Diferenciais Ordinárias (EDO)

Diferenciais Ordinárias (EDO) Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399

Leia mais

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA

PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA Carine Girardi Manfio Universidade Federal de Santa Maria carinemanfio@hotmail.com Cristiane Hahn Universidade Federal de Santa Maria crisfgh@yahoo.com.br

Leia mais

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

Métodos de Monte Carlo

Métodos de Monte Carlo Departamento de Estatística - UFJF Outubro e Novembro de 2014 são métodos de simulação São utilizados quando não temos uma forma fechada para resolver o problema Muito populares em Estatística, Matemática,

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Tribunal de Justiça do Estado do Amapá Secretaria de Gestão Processual Eletrônica. Tucujuris Web Contato: tucujuris@tjap.jus.br

Tribunal de Justiça do Estado do Amapá Secretaria de Gestão Processual Eletrônica. Tucujuris Web Contato: tucujuris@tjap.jus.br 1. Para protocolar recursos ou demais petições nos processos em trâmite, deve-se acessar o menu Peticionamento e depois escolher a opção Peticionamento Incidental. Atenção: o peticionamento eletrônico

Leia mais

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios Lista sobre funções no Excel A ideia desta lista surgiu em sala de aula, para ajudar os alunos a conhecer de modo prático as principais funções matemáticas que aparecem em biologia. Inicialmente, para

Leia mais

Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia

Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia Maria Madalena Dullius Centro Universitário Univates Brasil madalena@univates.br Resumo Neste trabalho

Leia mais

Prática 1 - Microsoft Excel

Prática 1 - Microsoft Excel Instituto Federal de Educação, Ciência e Tecnologia do Estado da Paraíba, Campus Sousa Disciplina: Informática Básica Prática 1 - Microsoft Excel Assunto: Tópicos abordados: Prática Utilização dos recursos

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

MOQ-13 Probabilidade e Estatística

MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Motivação Idéias Básicas

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

MC-102 Aula 01. Instituto de Computação Unicamp

MC-102 Aula 01. Instituto de Computação Unicamp MC-102 Aula 01 Introdução à Programação de Computadores Instituto de Computação Unicamp 2015 Roteiro 1 Por que aprender a programar? 2 Hardware e Software 3 Organização de um ambiente computacional 4 Algoritmos

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

Primeiros Passos para o Simulador de Ações do FinanceDesktop. Parte A INICIANDO E CONFIGURANDO (5 passos)

Primeiros Passos para o Simulador de Ações do FinanceDesktop. Parte A INICIANDO E CONFIGURANDO (5 passos) Primeiros Passos para o Simulador de Ações do FinanceDesktop. Seja bem-vindo(a) ao Simulador de Ações FinanceDesktop. Seu propósito é oferecer um ambiente completo e fácil de usar que permita o registro

Leia mais

Conexões entre matemática e biologia

Conexões entre matemática e biologia EB-207 Matemática Biológica 1 Conexões entre matemática e biologia Prof. Rodrigo Sávio Pessoa Sumário 2 1. Introdução 2. A nanotecnologia aplicada as ciências biológicas 3. Algumas questões biológicas

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Interpretação e Análise de gráficos 1. O que é importante na hora de analisar um gráfico? Atenção

Leia mais

GRÁFICOS E ANIMAÇÕES: UMA ESTRATÉGIA PARA O ENSINO-APRENDIZAGEM DE FUNÇÕES

GRÁFICOS E ANIMAÇÕES: UMA ESTRATÉGIA PARA O ENSINO-APRENDIZAGEM DE FUNÇÕES GRÁFICOS E ANIMAÇÕES: UMA ESTRATÉGIA PARA O ENSINO-APRENDIZAGEM DE FUNÇÕES Dircélia dos Santos Universidade Federal do Rio Grande do Sul dirceliafg@yahoo.com.br Elisabeta D' Elia Gallicchio Universidade

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO - PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS CURRÍCULO DO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO PERFIL

UNIVERSIDADE FEDERAL DE PERNAMBUCO - PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS CURRÍCULO DO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO PERFIL PERFIL 3001 - Válido para os alunos ingressos a partir de 2002.1 Disciplinas Obrigatórias Ciclo Geral Prát IF668 Introdução à Computação 1 2 2 45 MA530 Cálculo para Computação 5 0 5 75 MA531 Álgebra Vetorial

Leia mais

Criando e usando Gráficos

Criando e usando Gráficos DANDO A LARGADA Criando e usando Gráficos Mathcad torna fácil para você criar um gráfico de x-y de uma expressão. Para isto, digite uma expressão que depende de uma variável, por exemplo, sin(x), e então

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Introdução a Avaliação de Desempenho de Sistemas Prof. Othon M. N. Batista othonb@yahoo.com Roteiro Definição de Sistema Exemplo de Sistema: Agência Bancária Questões

Leia mais

ENGENHARIA DE SOFTWARE/ SISTEMAS DE SOFTWARE

ENGENHARIA DE SOFTWARE/ SISTEMAS DE SOFTWARE ENGENHARIA DE SOFTWARE/ SISTEMAS DE SOFTWARE CMP1280/CMP1250 Prof. Me. Fábio Assunção Introdução à Engenharia de Software SOFTWARE Programa de computador acompanhado dos dados de documentação e configuração

Leia mais

EMENTAS DO CURSO SUPERIOR DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

EMENTAS DO CURSO SUPERIOR DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS EMENTAS DO CURSO SUPERIOR DE TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS INTRODUÇÃO À COMPUTAÇÃO 60 h 1º Evolução histórica dos computadores. Aspectos de hardware: conceitos básicos de CPU, memórias,

Leia mais

CI165 Introdução. André Vignatti. 31 de julho de 2014

CI165 Introdução. André Vignatti. 31 de julho de 2014 Introdução 31 de julho de 2014 Antes de mais nada... Os slides de 6 aulas (introdução, insertion sort, mergesort, quicksort, recorrências e limitantes de ordenação) foram originalmente feitos pelos Profs.

Leia mais