BC-0005 Bases Computacionais da Ciência. Modelagem e simulação

Tamanho: px
Começar a partir da página:

Download "BC-0005 Bases Computacionais da Ciência. Modelagem e simulação"

Transcrição

1 BC-0005 Bases Computacionais da Ciência Aula 8 Modelagem e simulação Santo André, julho de 2010

2 Roteiro da Aula Modelagem O que é um modelo? Tipos de modelos Simulação O que é? Como pode ser feita? Exercício: construção de um modelo

3 O que é um Modelo? É a representação de um objeto, um sistema ou uma idéia, em alguma forma que não seja a própria entidade. (Shannon)

4 Tipos de modelos Físicos modelos em escala, protótipos, Fluxos de idéia Cascata de eventos, de reações químicas ou biológicas Matemáticos Modelos analíticos (equações), programas lineares, computacionais Animais Experimentos c/ animais entendimento da fisiologia humana Lesões em animais que simulam uma doença humana Outros

5 O que é simulação? Simulação de um sistema é a operação ou manipulação de um Modelo, que é a representação de um sistema. O modelo é passível de manipulações que seriam impossíveis, muito caras, impráticas, anti-éticas de realizar no sistema real que ele descreve A operação do modelo pode ser estudada e propriedades do sistema real podem ser deduzidas.

6 Aplicações Operação de usinas de energia (quanto será gerado?) Verificar se estruturas como pontes são estáveis à perturbações (ventos fortes, terremotos, etc) Projetos de protocolos de sistemas de comunicação. Reconhecimento de faces, padrões. Funcionamento do cérebro ou funções cognitivas Operação de sistemas de transportes, como metrô, aeroportos, etc Teste de funcionamento de hospitais, correios (logística) Análise de sistemas financeiros e econômicos

7 Modelos Computacionais Diversos modelos não precisam do computador (fluxo de idéias, modelos analíticos, etc) Então, onde o computador se torna essencial? Sistemas que não têm soluções analíticas; Equações complexas, com soluções analíticas muito difíceis, ou intratáveis; Sistemas com muitas equações ou parâmetros (cérebro, química, etc); Sistemas auto-organizáveis: regras de interação locais simples, que geram comportamento complexos.

8 Modelos tempo contínuo e de tempo discreto Tempo Contínuo as variáveis ( estado ) do sistema podem ser obtidas para qualquer valor real do tempo Ex.: Movimento de um pêndulo, velocidade de um projétil, etc. Tempo Discreto o estado do sistema somente pode ser determinado em instantes específicos Ex.: autômatos celulares, cotação diária da bolsa de valores, população de uma determinada cidade a cada ano, etc.

9 Simulação de um pêndulo simples modelo de tempo contínuo A evolução do sistema é dada pelas equações de movimento. É possível determinar a posição e a velocidade do pêndulo para qualquer instante. No gráfico acima (espaço de fases) o eixo x representa a posição angular do pêndulo, e o eixo y a velocidade angular.

10 Modelo discreto autômatos celulares Regras para a evolução do sistema: - Uma célula viva com menos do que 2 vizinhos vivos, morre; - Uma célula viva com mais do que 3 vizinhos vivos, morre; - Uma célula viva com 2 ou 3 vizinhos vivos, vive; - Uma célula morta com extamente 3 vizinhos vivos se torna viva ; Aplicações: s_game_of_life Simulação do comportamento de gases, estudo de magnetismo; simulação da propagação de incêndios, simulação e estudo de desenvolvimento urbano, simulação do processo de cristalização; etc.

11 Modelos determinísticos e estocásticos Determinísticos Dada uma condição inicial, o futuro está completamente determinado Variáveis determinísticas leis físicas Movimento de partículas, dinâmica de fluidos, (sistemas dinâmicos), etc Estocásticos Modelos têm uma componente imprevisível, mas é possível determinar um comportamento médio Variáveis aleatórias probabilidades Moeda, movimento browniano, teoria cinética dos gases Utilizados por seguradoras, fundos de mercado financeiro

12 Movimento de projéteis: determinismo

13 Sinal recebido por um celular: modelo estocástico x(t) s(t) = + Modelo: x(t)=s(t) + r(t) Componente Estocástico r(t) (ruído)

14 Exemplo de Modelagem Problema: Estudar o crescimento de uma cultura de levedura Modelo a ser adotado: Modelo de tempo discreto Modelo deve descrever o tamanho da população para uma dada hora representada pelo índice n;

15 Modelos de tempo-discreto Suponha que x n represente uma variável de interesse após n passos. O modelo será uma regra, ou um conjunto de regras, que descreverá como x n varia de acordo com a evolução do índice temporal n. Em particular, o modelo pode descrever como x n+1 depende dos valores anteriores x n Em geral: x n+1 = f(x n, x n-1, x n-2, )

16 Modelos de tempo-discreto Iremos considerar x n+1 = f(x n ) A relação acima também é chamada de relação de recursão ou um mapa. Note que, dada a equação de recursão e uma condição inicial x 0, podemos calcular os valores de x 1, x 2, da seguinte maneira: x 1 = f(x 0 ); x 2 = f(x 1 ); x 3 = f(x 2 );

17 Modelo Escolhido Valor Futuro = Valor Atual + Incremento x n+1 =x n + x n Objetivo final é obter uma aproximação razoável para x n tal que o modelo reproduza um certo conjunto de dados ou um fenômeno observado.

18 Exemplo: Cultura de Levedura Os seguintes dados foram colhidos de um experimento de medição do crescimento de uma cultura de levedura: Tempo (h) Biomassa Variação da Biomassa n p n Δp n =p n+1 -p n

19 Modelo para crescimento da população de Levedura Variação da Biomassa x Biomassa p n Variação da Biomassa 100 p n 50 p n = p n+1 - p n ~ 0.5p n p n Biomassa p n

20 Modelo Inicial Podemos observar no gráfico que p n = p n+1 - p n ~ 0.5p n Assim, considerando nosso modelo, obtemos p n+1 = p n + p n = p n + 0.5p n = 1.5p n Vejamos o que o nosso modelo indica que ocorrerá com a biomassa para n >7

21 Crescimento Exponencial p n+1 = 1.5(1.5p n-1 ) = 1.5[1.5(1.5p n-2 )] = =(1.5) n+1 p 0 p n n = (1.5) p 0 Dessa forma, o modelo prevê que a população aumentará indefinidamente, o que sabemos que não é verdade! Conclusão: é preciso re-examinar os dados a fim de obter um modelo mais adequado

22 Novos dados sobre a cultura de Tempo (h) Biomassa Variação da Biomassa Levedura n p n Δp n Biomassa tende a um limite próximo de 665.

23 Refinando o Modelo Modelo original : p n = 0.5p n p n+1 = 1.5p n Observando o conjunto de dados podemos concluir que a variação da biomassa torna-se cada vez menor com o passar do tempo, em particular quando pn se aproxima de 665. Novo modelo: p n = k (665- p n ) p n p n+1 = p n + k (665- p n ) p n

24 Novo Modelo Segundo nosso novo modelo p n = k(665-p n ) p n ou seja, a variação da Biomassa é proporcional ao produto (665-p n )p n Indica uma relação linear entre a variação da biomassa ( p n ) e o produto (665-p n ) p n Podemos averiguar isso gerando um gráfico de ( p n ) x (665-p n ) p n, e caso a relação seja linear, podemos estimar o valor de k (regressão linear)

25 Novo Modelo A hipótese de que as duas quantidades são linearmente relacionadas é plausível, e a constante de proporcionalidade encontrada foi k ~

26 Validação do Modelo p n+1 = p n (665- p n ) p n

27 Mapa Logístico x n+1 = x n + k(n-x n )x n O Mapa Logístico pode ser utilizado para modelar diferentes cenários, como Crescimento populacional em um ambiente com recursos limitados x n = Número de indivíduos depois de n intervalos de tempo (por exemplo, anos, meses, etc) N = número máximo de indivíduos que o ambiente suporta Evolução de uma doença infecciosa, como a gripe, em uma população limitada x n = número de indivíduos afetados depois de n intervalos de tempo (por exemplo, dias) N = tamanho da população Caso particular do modelo predador-presa

28 Exercícios sala de aula Clique aqui para abrir o editor do Scilab Com o editor podemos criar scripts sequência de comandos a serem executados pelo Scilab

29 Criando Scripts no Scilab Para executar o script, salve o arquivo e selecione esta opção no menu. Também é possível executar o script a partir da janela de comando. Para isso basta digitar exec( nome_script.sce )

30 Criando Scripts no Scilab Conteúdo atual da variável x (um vetor)

31 Criando Scripts no Scilab Para i=3, execute os seguintes comandos Para i=4, execute os seguintes comandos Para i=5, execute os seguintes comandos... Para i=n, execute os seguintes comandos

32 Criando Scripts no Scilab O que o script calcula?

33 Modelo: Cultura de Levedura p n+1 = p n + k(665- p n ) p n p i = p i-1 + k(665- p i-1 ) p i-1 Definindo as variáveis de meu script: N: número máximo de iterações i: índice temporal p: vetor cujos elementos correspondem à biomassa

34 Modelo: Cultura de Levedura p i = p i-1 + k(665- p i-1 ) p i-1

35 Exercício - Casa Implemente no scilab um script para um caso do mapa logístico dado por x n+1 = k (1 -x n )x n onde x n é um valor entre 0 e 1. O valor de x n pode ser interpretado como o tamanho de uma população no instante n, e k um fator ligado à taxa de natalidade e mortalidade da população

36 Exercício - Casa Para um valor máximo de iterações N=200, e um valor arbritário para a população inicial (por exemplo x(1) =.1), avalie o que ocorre com o tamanho da população quando variamos o valor de k. Para isso, execute a simulação e comente os gráficos da evolução da população (que pode ser gerado, por exemplo, com o comando plot(x, o- )) para cada um dos casos abaixo: k é um valor entre 0 e 1 (por exemplo, k = 0.5) k é um valor entre 1 e 2 (por exemplo, k = 1.3) k é um valor entre 2 e 3 (por exemplo, k = 2.9)

37 Exercício - Casa Avalie agora o que ocorre para k=3.7. Simule o que ocorre para a população com diferentes valores iniciais x(1). Apresente os gráficos e comente o que foi observado (dica: procure na internet o que é o mapa logístico e os possíveis comportamentos observados em função do parâmetro k).

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções

Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades. Representação Gráfica de Funções Bacharelado em Ciência e Tecnologia Bacharelado em Ciências e Humanidades BC 0005 Bases Computacionais da Ciência Representação Gráfica de Funções Prof a Maria das Graças Bruno Marietto graca.marietto@ufabc.edu.br

Leia mais

Atividade 4 Movimento circular uniforme.

Atividade 4 Movimento circular uniforme. Modellus Atividade 4 Movimento circular uniforme. Amarrou-se uma pedra a um fio e pôs-se a rodar com movimento circular uniforme. As equações do movimento, para um sistemas de coordenadas com origem no

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é:

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é: Modellus Atividade 3 Queda livre. Do alto de duas torres, uma na Terra e outra na Lua, deixaram-se cair duas pedras, sem velocidade inicial. Considerando que cada uma das pedras leva 3,0s atingir o solo

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Introdução e Motivação

Introdução e Motivação Introdução e Motivação 1 Análise de sistemas enfoque: sistemas dinâmicos; escopo: sistemas lineares; objetivo: representar, por meio de modelos matemáticos, fenômenos observados e sistemas de interesse;

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia

Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia Modelagem computacional para o Ensino de Equações Diferenciais Ordinárias em cursos de Engenharia Maria Madalena Dullius Centro Universitário Univates Brasil madalena@univates.br Resumo Neste trabalho

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos

Opções Reais. Processos Estocásticos. Processos Estocásticos. Modelando Incerteza. Processos Estocásticos Modelando Incerteza Opções Reais A incerteza em um projeto pode ter mais do que apenas dois estados. Na prática, o número de incertezas pode ser infinito Prof. Luiz Brandão brandao@iag.puc-rio.br IAG PUC-Rio

Leia mais

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos

Avaliação de Desempenho de Sistemas. Conceitos Básicos de Sistemas e Modelos Avaliação de Desempenho de Sistemas Conceitos Básicos de Sistemas e Modelos O que é Desempenho? Webster s? The manner in which a mechanism performs. Aurélio: Conjunto de características ou de possibilidades

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios

5910179 Biofísica I Turma de Biologia FFCLRP USP Prof. Antônio C. Roque Segunda lista de exercícios Lista sobre funções no Excel A ideia desta lista surgiu em sala de aula, para ajudar os alunos a conhecer de modo prático as principais funções matemáticas que aparecem em biologia. Inicialmente, para

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a

Leia mais

Difusão. Introdução Histórica

Difusão. Introdução Histórica Estas notas de aula estão fortemente baseadas no livro de T. F. Weiss (2 vols.) indicado na bibliografia. Difusão A difusão pode ser definida como o processo pelo qual uma população de partículas é transportada

Leia mais

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique

3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Interpretação e Análise de gráficos 1. O que é importante na hora de analisar um gráfico? Atenção

Leia mais

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência

Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Por: George Schlesinger Existem diversos tipos de gráficos: linhas, barras, pizzas etc. Estudaremos aqui os gráficos

Leia mais

2 Modelo Clássico de Cramér-Lundberg

2 Modelo Clássico de Cramér-Lundberg 2 Modelo Clássico de Cramér-Lundberg 2.1 Conceitos fundamentais Nesta sessão introduziremos alguns conceitos fundamentais que serão utilizados na descrição do modelo de ruína. A lei de probabilidade que

Leia mais

PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA

PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA PLANOS DE INTERNET 3G SOB A ÓTICA DA MODELAGEM MATEMÁTICA Carine Girardi Manfio Universidade Federal de Santa Maria carinemanfio@hotmail.com Cristiane Hahn Universidade Federal de Santa Maria crisfgh@yahoo.com.br

Leia mais

DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS

DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS DESENVOLVIMENTO DE PROGRAMA MULTIMIDIA PARA O ENSINO DEDINÂMICA DE MÚLTIPLOS CORPOS Ilmar Ferreira Santos Rodrigo Fernandes de Carvalho UNICAMP - Faculdade de Engenharia Mecânica Departamento de Projeto

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1

A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A MATEMÁTICA NO ENSINO SUPERIOR POLICIAL 1 A IMPORTÂNCIA DA MATEMÁTICA O desenvolvimento das sociedades tem sido também materializado por um progresso acentuado no plano científico e nos diversos domínios

Leia mais

Pesquisa Operacional

Pesquisa Operacional GOVERNO DO ESTADO DO PARÁ UNIVERSIDADE DO ESTADO DO PARÁ CENTRO DE CIÊNCIAS NATURAIS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA Pesquisa Operacional Tópico 4 Simulação Rosana Cavalcante de Oliveira, Msc rosanacavalcante@gmail.com

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Modelamento e simulação de processos

Modelamento e simulação de processos Modelamento e simulação de processos 4. Método de Monte Carlo Prof. Dr. André Carlos Silva 1. INTRODUÇÃO O Método de Monte Carlo (MMC) é um método estatístico utilizado em simulações estocásticas com diversas

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

Glossário de Dinâmica Não-Linear

Glossário de Dinâmica Não-Linear Glossário de Dinâmica Não-Linear Dr. Fernando Portela Câmara, MD, PhD Coordenador do Depto. Informática da ABP (2004-2007) Atrator O estado no qual um sistema dinâmico eventualmente se estabiliza. Um atrator

Leia mais

Universidade Federal de São Paulo Campus São José dos Campos LISTA DE DISCIPLINAS DA GRADUAÇÃO

Universidade Federal de São Paulo Campus São José dos Campos LISTA DE DISCIPLINAS DA GRADUAÇÃO A B C Álgebra Linear Álgebra Linear Computacional Álgebra Linear II Algoritmos e Estrutura de Dados I Algoritmos e Estrutura de Dados II Algoritmos em Bioinformática Alteridade e Diversidade no Brasil

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas,

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, MODELAÇÃO E DETERMINAÇÃO DE PARÂMETROS CINÉTICOS FILIPE GAMA FREIRE 1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, etc. a que chamaremos y

Leia mais

Geração de Números Aleatórios e Simulação

Geração de Números Aleatórios e Simulação Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

Módulo 13. Regulação em reprodutores contínuos: a eq. logística

Módulo 13. Regulação em reprodutores contínuos: a eq. logística Módulo 13. Regulação em reprodutores contínuos: a eq. logística Objectivos Suponhamos que se dispõe de observações da densidade populacional ( 1, 2, 3,...) duma população de reprodutores contínuos, na

Leia mais

Prof. Dr. Iron Macêdo Dantas

Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN MESTRADO EM CIÊNCIAS NATURAIS Prof. Dr. Iron Macêdo Dantas

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...

SUMÁRIO LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19. 1.1 - Introdução...21 1.2 - Revisão Bibliográfica... SUMÁRIO Pág. LISTA DE FIGURAS... 15 LISTA DE TABELAS...17 LISTA DE SÍMBOLOS... 19 CAPÍTULO 1 - INTRODUÇÃO... 21 1.1 - Introdução...21 1.2 - Revisão Bibliográfica...25 CAPÍTULO 2 - MODELAGEM ESTOCÁSTICA

Leia mais

Dispositivo que de alguma maneira descreve o comportamento do sistema

Dispositivo que de alguma maneira descreve o comportamento do sistema Sistema: Conceito primitivo (intuitivo) Tentativas de definição: Agregação ou montagem de coisas, combinadas pelo homem ou pela natureza de modo a formar um todo unificado. Grupo de itens interdependente

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA QUÍMICA E BIOLÓGICA DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA QUÍMICA E BIOLÓGICA DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Página 1 de 12 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior para titulares de Diploma de Especialização Tecnológica, Decreto-Lei n.º 113/2014, de

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Prof. Leandro Alexandre da Silva Processos metalúrgicos 2012/2 Fenômenos de Transporte Prof. Leandro Alexandre da Silva Motivação O que é transporte? De maneira geral, transporte

Leia mais

MA 37 - Modelagem Matemática

MA 37 - Modelagem Matemática MA 37 - Modelagem Matemática Márcio Antônio de Andrade Bortoloti Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia - UESB Modelagem Matemática PROFMAT mbortoloti@uesb.edu.br

Leia mais

BIOMETRIA:CURVA DE CRESCIMENTO

BIOMETRIA:CURVA DE CRESCIMENTO UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA BIOMETRIA:CURVA DE CRESCIMENTO TAYANI RAIANA DE SOUZA ROQUE Disciplina: Estatística Aplicada Professores: Héliton

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

Introdução ao GeoGebra

Introdução ao GeoGebra Universidade Federal de Alfenas UNIFAL-MG Introdução ao GeoGebra Prof. Dr. José Carlos de Souza Junior AGOSTO 2010 Sumário 1 Primeiros Passos com o GeoGebra 4 1.1 Conhecendo o Programa............................

Leia mais

Unidade 3: Linguagem de programação

Unidade 3: Linguagem de programação Unidade 3: Linguagem de programação 3.7. Elaborando programas: scripts e funções No programa Scilab podemos criar arquivos contendo comandos que serão executados posteriormente dentro do seu ambiente.

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

Apostila Básica sobre Microsoft Excel 2003. Sumário

Apostila Básica sobre Microsoft Excel 2003. Sumário Apostila Básica sobre Microsoft Excel 2003 Esta apostila básica para Microsoft Excel 2003 foi confeccionada para compor material de consulta do curso de Introdução a Informática Básica da Faetec. Para

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais

Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Um modelo evolutivo para a dengue considerando incertezas de fatores ambientais Luciana T. Gomes, Laécio C. de Barros, Depto de Matemática Aplicada, IMECC, UNICAMP 133-59, Campinas, SP E-mail: ra@ime.unicamp.br,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte IV 2012/02 Distribuição Exponencial Vamos relembrar a definição de uma variável com Distribuição Poisson. Número de falhas ao longo

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Trabalhando Matemática: percepções contemporâneas

Trabalhando Matemática: percepções contemporâneas CONSTRUINDO CONCEITOS SOBRE FAMÍLIA DE FUNÇÕES POLINOMIAL DO 1º GRAU COM USO DO WINPLOT Tecnologias da Informação e Comunicação e Educação Matemática (TICEM) GT 06 MARCOS ANTONIO HELENO DUARTE Secretaria

Leia mais

MOQ-13 Probabilidade e Estatística

MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br Motivação Idéias Básicas

Leia mais

Universidade Federal Rural de Pernambuco

Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Departamento de Morfologia e Fisiologia Animal Área de Biofísica Traçando Gráficos Prof. Romildo Nogueira 1. Introduzindo o tema No trabalho experimental lida-se

Leia mais

Engenharia de Sistemas

Engenharia de Sistemas UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Engenharia de Sistemas Prof Luís César da Silva, Dr UFES/CCA Conceitos Necessários! Engenharia! Sistema Agroindustriais! Técnicas de Modelagem! Cadeia Produtiva Supply

Leia mais

Análise de Sensibilidade

Análise de Sensibilidade Análise de Risco de Projetos Análise de Risco Prof. Luiz Brandão Métodos de Avaliação de Risco Análise de Cenário Esta metodologia amplia os horizontes do FCD obrigando o analista a pensar em diversos

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

As informações apresentadas neste documento não dispensam a consulta da legislação em vigor e do programa da disciplina.

As informações apresentadas neste documento não dispensam a consulta da legislação em vigor e do programa da disciplina. AGRUPAMENTO DE ESCOLAS DE PINHEIRO ESCOLA BÁSICA E SECUNDÁRIA INFORMAÇÃO- EXAME PROVA DE EQUIVALÊNCIA À FREQUÊNCIA DE FÍSICA ENSINO SECUNDÁRIO 12º ANO 2011/2012 1- INTRODUÇÃO O presente documento visa

Leia mais

Prova Escrita de Física e Química A

Prova Escrita de Física e Química A Exame Final Nacional do Ensino Secundário Prova Escrita de Física e Química A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 715/Época Especial Critérios de Classificação 11 Páginas

Leia mais

Márcio Dinis do Nascimento de Jesus

Márcio Dinis do Nascimento de Jesus Márcio Dinis do Nascimento de Jesus Trabalho 3 Modelação Matemática usando o software Modellus Departamento de Matemática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2013 2 Modelação Matemática

Leia mais

MÓDULO 1 - Abrindo o Winplot e construindo gráficos

MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 MÓDULO 1 - Abrindo o Winplot e construindo gráficos 1 - Abrindo o Winplot Para abrir o Winplot.exe clique duas vezes no ícone. Abrirá a caixa: Clique (uma vez) no botão. Surgirá uma coluna: Clique no

Leia mais

Sistemas p-fuzzy modificados para o modelo do controle de pragas

Sistemas p-fuzzy modificados para o modelo do controle de pragas Biomatemática 22 (2012), 61 76 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Sistemas p-fuzzy modificados para o modelo do controle de pragas Thiago F. Ferreira 1, Rosana S. M.

Leia mais

Energia e Momento Linear do Campo Eletromagnético

Energia e Momento Linear do Campo Eletromagnético Energia e Momento Linear do Campo Eletromagnético Metas Generalizar a lei de conservação da energia e do momento linear de forma a incluir fenômenos eletromagnéticos; Deduzir as expressões para as densidades

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Scilab. Introdução ao Scilab. Como obter ajuda

Scilab. Introdução ao Scilab. Como obter ajuda Scilab Scilab é uma linguagem de programação associada a uma rica coleção de algoritmos numéricos cobrindo muitos aspectos dos problemas de computação científica. Do ponto de vista do software, Scilab

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIAS E TECNOLOGIA Princípios e Fenômenos da Mecânica Professor: Humberto EXPERIMENTO Nº 6 LANÇAMENTO HORIZONTAL DE PROJÉTIL Discentes: Camila de

Leia mais

Desenvolvimento de um Modelo de Simulação baseado em uma Solução de Integração Teórica utilizando a Ferramenta PRISM

Desenvolvimento de um Modelo de Simulação baseado em uma Solução de Integração Teórica utilizando a Ferramenta PRISM 1 Desenvolvimento de um Modelo de Simulação baseado em uma Solução de Integração Teórica utilizando a Ferramenta PRISM Guilherme Henrique Schiefelbein Arruda Orientador: Dr. Sandro Sawicki 2 Roteiro Enterprise

Leia mais

Simulação Computacional de Sistemas, ou simplesmente Simulação

Simulação Computacional de Sistemas, ou simplesmente Simulação Simulação Computacional de Sistemas, ou simplesmente Simulação Utilização de métodos matemáticos & estatísticos em programas computacionais visando imitar o comportamento de algum processo do mundo real.

Leia mais

Título : B2 Matemática Financeira. Conteúdo :

Título : B2 Matemática Financeira. Conteúdo : Título : B2 Matemática Financeira Conteúdo : A maioria das questões financeiras é construída por algumas fórmulas padrão e estratégias de negócio. Por exemplo, os investimentos tendem a crescer quando

Leia mais

DELIBERAÇÃO CONSEP Nº 149/2012

DELIBERAÇÃO CONSEP Nº 149/2012 DELIBERAÇÃO CONSEP Nº 149/2012 Altera o Currículo do Curso de Engenharia de Controle e Automação para regime seriado semestral. O CONSELHO DE ENSINO E PESQUISA, na conformidade do Processo nº MEC-481/2012,

Leia mais

Engenharia de Controle

Engenharia de Controle Engenharia de Controle Prof. Fernando de Oliveira Souza Contato: Sala 2523 (BLOCO 1) e-mail: fosouza@cpdee.ufmg.br www.cpdee.ufmg.br/ fosouza Terças-feiras (20h55 às 22h35) e Sextas-feiras (19h00 às 20h40)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO - PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS CURRÍCULO DO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO PERFIL

UNIVERSIDADE FEDERAL DE PERNAMBUCO - PRÓ-REITORIA PARA ASSUNTOS ACADÊMICOS CURRÍCULO DO CURSO DE GRADUAÇÃO EM ENGENHARIA DA COMPUTAÇÃO PERFIL PERFIL 3001 - Válido para os alunos ingressos a partir de 2002.1 Disciplinas Obrigatórias Ciclo Geral Prát IF668 Introdução à Computação 1 2 2 45 MA530 Cálculo para Computação 5 0 5 75 MA531 Álgebra Vetorial

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE

SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GSE 28 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO VIII GRUPO DE ESTUDO DE SUBESTAÇÕES E EQUIPAMENTOS ELÉTRICOS - GSE MODELAGEM

Leia mais

Introdução ao Estudo de Sistemas Dinâmicos

Introdução ao Estudo de Sistemas Dinâmicos Introdução ao Estudo de Sistemas Dinâmicos 1 01 Introdução ao Estudo de Sistemas Dinâmicos O estudo de sistemas dinâmicos envolve a modelagem matemática, a análise e a simulação de sistemas físicos de

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus

Círculo de Estudos ccpfc/acc 19941/00. Eduardo Cunha. www.educunha.net. Escola Secundária de Barcelos 2000/2001. T I 83 - Plus Investigação e Modelação na aula de Matemática Círculo de Estudos ccpfc/acc 19941/00 Eduardo Cunha www.educunha.net Escola Secundária de Barcelos 2000/2001 Módulo 2: Estudo de Funções - calculadora gráfica.

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

APLICAÇÃO DE TÉCNICAS ESTATÍSTICAS UTILIZANDO O SISVAR

APLICAÇÃO DE TÉCNICAS ESTATÍSTICAS UTILIZANDO O SISVAR APLICAÇÃO DE TÉCNICAS ESTATÍSTICAS UTILIZANDO O SISVAR Nádia Giaretta Biase 1 Universidade Federal de Uberlândia nadia@pontal.ufu.br Jéssica Paula Silva Costa 2 Universidade Federal de Uberlândia jessicapaula@mat.pontal.ufu.br

Leia mais

Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB

Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB MEEC Mestrado em Engenharia Electrotécnica e de Computadores MCSDI Guião do trabalho laboratorial nº Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB Análise de Sistemas Não Lineares

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS

ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 OBJECTIVOS ESPECÍFICOS PROBABILIDADES E COMBINATÓRIA ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA A 12ºANO ANO LETIVO 2015/2016 Introdução ao cálculo Conhecer terminologia das probabilidades de Probabilidades

Leia mais

Informática Aplicada à Engenharia Florestal

Informática Aplicada à Engenharia Florestal Informática Aplicada à Engenharia Florestal Computação Científica Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Computação Científica Conceito Computação Científica

Leia mais

Introdução ao Scilab

Introdução ao Scilab Programação de Computadores 1 Capítulo 1 Introdução ao Scilab José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto 2014.2 1/35 1 MATLAB e Scilab 2 O ambiente Scilab 2/35

Leia mais

Criando e usando Gráficos

Criando e usando Gráficos DANDO A LARGADA Criando e usando Gráficos Mathcad torna fácil para você criar um gráfico de x-y de uma expressão. Para isto, digite uma expressão que depende de uma variável, por exemplo, sin(x), e então

Leia mais