TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL. Cleber Giugioli Carrasco 1 ; Francisco Louzada-Neto 2 RESUMO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL. Cleber Giugioli Carrasco 1 ; Francisco Louzada-Neto 2 RESUMO"

Transcrição

1 TTT-PLOT E TESTE DE HIPÓTESES BOOTSTRAP PARA O MODELO BI-WEIBULL Cleber Giugioli Carrasco ; Francisco Louzada-Neto Curso de Matemática, Unidade Universitária de Ciências Exatas e Tecnológicas, UEG. Departamento de Estatística, Universidade Federal de São Carlos, UFSCar. RESUMO O modelo poly-weibul pode ser utilizado para modelar dados de riscos competitivos latentes e, em particular quando os dados apresentam funções de risco em forma de U. Procedimentos de verificação gráfica e testes de hipóteses via técnica bootstrap são considerados como alternativa aos procedimentos usuais baseados na teoria assintótica. Exemplos numéricos ilustram a metodologia adotada. Palavras-chave: Bootstrap, função de risco, modelo bi-weibull, teste de hipóteses, TTT plot. Introdução O modelo poly-weibull surge no cenário de riscos competitivos latentes quando os riscos têm distribuição Weibull independente e, não temos informação sobre qual foi à causa responsável pela falha ou morte do indivíduo. Outra vantagem de utilizar este modelo com relação aos modelos mais simples é, que ele pode acomodar não somente funções de risco constantes, crescentes e decrescentes, mas também funções de risco em forma de U. Neste trabalho apresentamos o modelo poly-weibull e algumas de suas propriedades, apontando as motivações para o seu uso no contexto de dados de riscos competitivos latentes e, propomos uma metodologia para construção de testes de hipóteses baseada na técnica bootstrap, que se apresenta como uma alternativa aos procedimentos usuais de inferência via teoria assintótica. Uma técnica de verificação gráfica para auste do modelo conhecida com TTT-plot é apresentada e exemplos numéricos ilustram a metodologia adotada.

2 Material e Métodos Assumindo que um indivíduo está sueito a m ( ) causas de falhas diferentes e, que o tempo de vida x relacionado com a -ésima causa de falha são independentes e que somente o tempo mínimo entre os vários riscos, t i = min(x,...,x m ) é observado para cada indivíduo, o qual tem uma distribuição poly-weibull (Davison & Louzada-Neto, 000), então a função de risco é dada por, h( t) = m = h m ( t) = = β β t β µ, t > 0 onde µ β 0 são parâmetros associados com a -ésima causa de falha. Neste trabalho vamos, > considerar apenas dois riscos diferentes (m = ), para facilitar os cálculos futuros. Dessa maneira, a função de risco passa assumir a seguinte forma, h ( t ) β β t β t + β β µ µ () β =. () O modelo bi-weibull (), pode acomodar diferentes formas de funções de risco, em particular funções de risco em forma de U, sendo essa uma outra motivação para sua formulação. A Figura apresenta algumas formas dessas funções de risco para o modelo (), a forma dessas funções de risco depende dos valores conuntos dos parâmetros de forma, β e β. Se β = β = o risco é constante, se min( β,β ) > o risco é crescente, se max( β,β ) < o risco é decrescente e, se β < e β > o risco é em forma de U. Função de risco Tempo Figura : Função de risco para o modelo bi-weibull (). Para as curvas µ =.0, µ =.0: ( ) =. 0 β e =. 0 β, (...) 5 β = 0. e = 0. 9 β, (- - -). 5 β e = 5. 0 = β, ( ) 5 β = 0. e β = 8. 0.

3 Um método simples para detectar qual modelo é mais adequado para a análise dos dados consiste em uma técnica gráfica conhecida com TTT plot (tempo total em teste), que é muito útil em contexto onde que há informações qualitativas sobre a curva de risco. Este gráfico é construído a partir das quantidades, r n G ( r / n) = Ti :n +( n r) Tr:n / Ti:n versus r / n, (3) i= i= onde r =,...,n e T i:n, i =,...,n, são estatísticas de ordem da amostra (Mudholkar, Srivastava, Kollia, 996). A Figura apresenta algumas curvas TTT. Uma reta diagonal (A) como resultado do TTT plot indica uma função de risco constante, enquanto que se a curva obtida for convexa (B) ou côncava (C), para um risco decrescente ou crescente respectivamente, nestes casos um candidato ao auste desses dados é o modelo Weibull simples. Agora, se primeiramente a função é convexa e depois se torna côncava (D), a função de risco tem forma de U, então o modelo mais apropriado para o auste desses dados é o modelo bi-weibull. G(r/n) r/n Figura : TTT plot para o modelo bi-weibull (). Para os parâmetros do modelo fixados em µ =.0, µ =.0: (A) ( ) β =. 0 e β =. 0, (B) (- - -) β = 0. 5 e β = 0. 9, (C) (...) β =. 5 e β = 5. 0, (D) ( ) β = 0. 5 e β = Apesar de existirem técnicas gráficas para verificação do auste do modelo a ser utilizado para um conunto de dados, essas técnicas, porém, podem não ser tão precisa quanto um teste estatístico. Desta maneira surge a necessidade da aplicação de testes estatísticos. Considere uma situação onde existe interesse na verificação de um modelo mais complexo do

4 que um modelo weibull simples, dessa forma devemos testar, por exemplo, o modelo weibull simples contra o modelo bi-weibull. Uma possível formulação para as hipóteses do teste é respectivamente, H 0 : Weibull simples e H : bi-weibull. Uma possibilidade para testarmos H 0 versus H é a utilização da estatística de razão de verossimilhanças (ERV) dada por, que sob a teoria assintótica tem uma distribuição ( ) w = l simples l bi, (4) χ. Valores grandes de w indicam reeição da hipótese nula, ou sea, se w > χ o, α modelo bi-weibull austa melhor os dados, caso contrário o modelo mais adequado é o weibull simples. A utilização da ERV (4) é direcionada pelo tamanho da amostra que deve ser suficientemente grande para podermos utilizar a teoria assintótica. Entretanto em análise de sobrevivência e confiabilidade podemos ter amostras pequenas e moderadas, desta forma técnicas de reamostragens podem ser uma atraente alternativa para obtenção da distribuição empírica da ERV (Carrasco, 00). Através da técnica bootstrap paramétrica e/ou nãoparamétrica (Davison & Hinkley, 997), podemos construir novas amostras, e para cada amostra bootstrap calcular w, e no final de R reamostragens ordenar as ERV w < <,... w R determinando a localização da ERV w 0 calculada da amostra original, obtendo o p-valor empírico que é dado por (Cribari-Neto, 000) onde ( ) p R ( w w ) ψ r 0 = r= R, (5) ψ é uma função indicadora que vale quando w r w 0 e 0 caso contrário. Escolha R tal que α ( R+) sea um número inteiro positivo. A reeição da hipótese nula é obtida se adequado para austar os dados, caso contrário aceitamos a hipótese nula. p α, isto é, o modelo bi-weibull é mais Se as reamostras são obtidas através da reposição dos elementos da amostra original temos o bootstrap não-paramétrico. Se estas forem geradas através do modelo () austado com os valores dos parâmetros fixados nos EMV obtidos na amostra original temos o bootstrap paramétrico. Maiores detalhes sobre a técnica bootstrap podem ser obtidos em Davison & Hinkley (997).

5 Resultados e Discussão Nesta seção aplicamos a metodologia adotada nas seções anteriores a dois exemplos gerados com tamanho amostrais iguais a 80, considerando o modelo (). No primeiro exemplo os parâmetros do modelo foram fixados em µ =, µ =, β = 0. 5 e β = 8, enquanto que no segundo exemplo os parâmetros foram fixados em µ =, µ =, β = 0. 5 e β =. A Figura 3 apresenta o TTT plot dos exemplos acima, onde o primeiro exemplo representa uma situação onde provavelmente o modelo bi-weibull é adequado para o auste desses dados enquanto, para o segundo exemplo um modelo de Weibull simples parece ser suficiente para o auste. G(r/n) Figura 3: TTT plot: ( ) Exemplo e ( ) Exemplo. r/n Para confirmar as indicativas gráficas foram feitos testes estatísticos baseados em reamostragens descritos na seção 4. O log da função de verossimilhança para os modelos Weibull simples e bi-weibull para o exemplo foram respectivamente iguais a e Dessa forma a ERV w 0 para testar estes modelos é igual a , com um p-valor empírico bootstrap paramétrico e não-paramétrico iguais a 0.07 e 0.09 respectivamente, isto é, reeitamos a hipótese nula com α = 0. 05, ou sea o modelo bi-weibull austa melhor os dados, o quem vem confirmar a técnica gráfica apresentada. Para os dados do exemplo a ERV para testar o modelo Weibull simples contra o modelo bi-weibull é menor do que 0.0, com um p-valor empírico bootstrap paramétrico e não-paramétrico iguais a 0.60 e respectivamente, isto é, com α = aceitamos a

6 hipótese nula, ou sea, o modelo Weibull simples é mais adequado para o auste, o que também vem confirmar a técnica gráfica apresentada. Conclusões O modelo poly-weibull pode ser utilizado para auste de dados de riscos competitivos latentes e, em particular a dados com função de risco em forma de U. Entretanto, cuidado é necessário nos procedimentos de construção de testes de hipóteses, pricipalmente para amostras pequenas e moderadas. Neste caso, podemos utilizar a técnica de reamostragem bootstrap paramétrico e não-paramétrico na obtenção das distribuições empíricas das estatísticas de testes. A metodologia proposta neste trabalho foi aplicada a dois exemplos de dados simulados. Pode-se verificar que o modelo bi-weibull se austa ao conunto de dados do primeiro exemplo e, que o modelo weibull simples se austa ao segundo conunto de dados. Isto é verificado através da técnica gráfica apresentada e testes de hipóteses via técnica boostrap que foram aplicados a estes exemplos. Referências Bibliográficas. CARRASCO, C.G. Comparação dos procedimentos para construção de intervalos de confiança para os parâmetros do modelo poly-log-logístico p. Dissertação (Mestrado em Estatística) Universidade Federal de São Carlos UFSCar, São Carlos, 00.. CRIBARI-NETO, F. Bootstrap and applications. In: Workshop 000 Métodos Computacionais em Estatística, São Carlos-SP, p.4-4, DAVISON, A.C., HINKLEY, D.V. Bootstrap Methods and their Application. Cambridge: Cambridge University Press, p. 4. DAVISON, A.C., LOUZADA-NETO, F, Inference for the poly-weibull model. Journal ad the Royal Statistical Society D, v.49, p , MUDHOLKAR, G.S., SRIVASTAVA, D.k. and KOLLIA, G.D. A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data. Journal of the American Statistical Association, v.9, p , 996.

Utilizando Monte Carlo e Reamostragem em Estimativas. Mauricio Aguiar, TI Métricas

Utilizando Monte Carlo e Reamostragem em Estimativas. Mauricio Aguiar, TI Métricas Utilizando Monte Carlo e Reamostragem em Estimativas Mauricio Aguiar, TI Métricas Agenda Introdução Um Exemplo Simples Outro Exemplo Reamostragem Faça Você Mesmo - Monte Carlo Resumo Introdução Estimativas

Leia mais

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência

Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos de Sobrevivência TEMA Tend. Mat. Apl. Comput., 7, No. 1 (2006), 91-100. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Uma Avaliação do Uso de um Modelo Contínuo na Análise de Dados Discretos

Leia mais

Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise

Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise Estudo dos fatores que influenciam no tempo até o transplante renal nos pacientes em tratamento de Hemodiálise Carolina Ferreira Barroso 1 Graziela Dutra Rocha Gouvêa 2 1. Introdução A análise de sobrevivência

Leia mais

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R

MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R MODIFICAÇÃO DO TESTE DE NORMALIDADE DE SHAPIRO-WILK MULTIVARIADO DO SOFTWARE ESTATÍSTICO R Roberta Bessa Veloso 1, Daniel Furtado Ferreira 2, Eric Batista Ferreira 3 INTRODUÇÃO A inferência estatística

Leia mais

A distribuição Weibull-Poisson

A distribuição Weibull-Poisson A distribuição Weibull-Poisson Estela Maris P. Bereta - DEs/UFSCar Francisco Louzada-Neto - DEs/UFSCar Maria Aparecida de Paiva Franco - DEs/UFSCar Resumo Neste trabalho é proposta uma distribuição de

Leia mais

UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática

UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática UNIVERSIDADE ESTADUAL DE GOIÁS Unidade Universitária de Ciências Exatas e Tecnológicas Curso de Licenciatura em Matemática Construção de intervalos de confiança percentil bootstrap para a média sob não

Leia mais

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES

DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Modelagem e Simulação Material 02 Projeto de Simulação

Modelagem e Simulação Material 02 Projeto de Simulação Modelagem e Simulação Material 02 Projeto de Simulação Prof. Simão Sirineo Toscani Projeto de Simulação Revisão de conceitos básicos Processo de simulação Etapas de projeto Cuidados nos projetos de simulação

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás

Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Modelo para estimativa de risco operacional e previsão de estoque para equipamentos da Comgás Resumo Marcos Henrique de Carvalho 1 Gabriel Alves da Costa Lima 2 Antonio Elias Junior 3 Sergio Rodrigues

Leia mais

Workshop: Como usar o software estatístico DAD?

Workshop: Como usar o software estatístico DAD? Workshop: Como usar o software estatístico DAD? Medidas de Pobreza e Desigualdade: algumas aplicações teóricas Prof. Caio Piza CCSA - Depto de Economia/NPQV Medidas de Pobreza e Desigualdade O que é DAD

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana

Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Estudo de sobrevivência de insetos pragas através da distribuição de Weibull: uma abordagem bayesiana Leandro Alves Pereira - FAMAT, UFU Rogerio de Melo Costa Pinto - FAMAT, UFU 2 Resumo: Os insetos-pragas

Leia mais

Predição bootstrap via amostragem Gibbs do montante a- nual de indemnizações

Predição bootstrap via amostragem Gibbs do montante a- nual de indemnizações Actas do XIV Congresso Anual da SPE 1 Predição bootstrap via amostragem Gibbs do montante a- nual de indemnizações Susana Rosado-Ganhão Faculdade de Arquitectura da UTL, Departamento de Tecnologias da

Leia mais

Distribuição de Freqüências

Distribuição de Freqüências Distribuição de Freqüências Por constituir-se o tipo de tabela importante para a Estatística Descritiva, faremos um estudo completo da distribuição de freqüências. Uma distribuição de freqüências condensa

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura

Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura Análise de Diagnóstico no Modelo de Regressão Bivariado com Fração de Cura Juliana B. Fachini Universidade de São Paulo Edwin M. M. Ortega Universidade de São Paulo 1 Introdução Dados de sobrevivência

Leia mais

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística 1. IDENTIFICAÇÃO PLANO DE ENSINO Disciplina: Estatística Multivariada Código: PGMAT568 Pré-Requisito: No. de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: Semestre: 1º Ano: 2015 Turma(s): 01 Professor(a):

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

Avaliação de Desempenho em Sistemas de Computação e Comunicação

Avaliação de Desempenho em Sistemas de Computação e Comunicação Avaliação de Desempenho em Sistemas de Computação e Comunicação Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM UFES Objetivos

Leia mais

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO

COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV- SMIRNOV, ANDERSON-DARLING, CRAMER VON MISES E SHAPIRO-WILK POR SIMULAÇÃO COMPARAÇÃO DOS TESTES DE ADERÊNCIA À NORMALIDADE KOLMOGOROV SMIRNOV, ANDERSONDARLING, CRAMER VON MISES E SHAPIROWILK POR SIMULAÇÃO Vanessa Bielefeldt Leotti, Universidade Federal do Rio Grande do Sul,

Leia mais

1. Introdução. 1.1 Introdução

1. Introdução. 1.1 Introdução 1. Introdução 1.1 Introdução O interesse crescente dos físicos na análise do comportamento do mercado financeiro, e em particular na análise das séries temporais econômicas deu origem a uma nova área de

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

Aula 13 Técnicas de Integração

Aula 13 Técnicas de Integração Aula 13 Técnicas de Integração Objetivos da Aula Estudar técnicas especiais de integração: integração por substituição e por partes, mostrando que estes processos são ferramentas poderosas para facilitar

Leia mais

Occurrence and quantity of precipitation can be modelled simultaneously. Peter K. Dunn Autor Braga Junior e Eduardo Gomes Apresentação

Occurrence and quantity of precipitation can be modelled simultaneously. Peter K. Dunn Autor Braga Junior e Eduardo Gomes Apresentação Occurrence and quantity of precipitation can be modelled simultaneously Peter K. Dunn Autor Apresentação Introdução Introdução Estudos sobre modelagem da precipitação de chuvas são importantes, pois permitem

Leia mais

AJUSTE DO MODELO DE COX A DADOS DE CÂNCER DE MAMA

AJUSTE DO MODELO DE COX A DADOS DE CÂNCER DE MAMA AJUSTE DO MODELO DE COX A DADOS DE CÂNCER DE MAMA Luciene Resende Gonçalves 1, Verônica kataoka 2, Mário Javier Ferrua Vivanco 3, Thelma Sáfadi 4 INTRODUÇÃO O câncer de mama é o tipo de câncer que se manifesta

Leia mais

Imposto progressivo. vem inteirinho, sem nenhum imposto, e no segundo há que se pagar 15%, isto é, 165, restando apenas 935.

Imposto progressivo. vem inteirinho, sem nenhum imposto, e no segundo há que se pagar 15%, isto é, 165, restando apenas 935. Imposto progressivo Eduardo Colli Neste texto, falaremos um pouco sobre uma modalidade de tributação dos salários, adotada no Brasil, que é o Imposto de Renda com tabela progressiva. Nosso intuito é apenas

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

REVISTA PARA RELATOS DE EXPERIÊNCIA E ARTIGOS DAS PRÁTICAS PEDAGÓGICAS E EXTENSIONISTAS

REVISTA PARA RELATOS DE EXPERIÊNCIA E ARTIGOS DAS PRÁTICAS PEDAGÓGICAS E EXTENSIONISTAS REVISTA PARA RELATOS DE EXPERIÊNCIA E ARTIGOS DAS PRÁTICAS PEDAGÓGICAS E EXTENSIONISTAS INSTRUÇÕES AOS AUTORES 1 GERAIS: Originais: Os artigos e os relatos de experiência devem ser enviados exclusivamente

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA

ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA ASSOCIAÇÃO ENTRE PRESENÇA DE CÂNCER DE ESÔFAGO COMPARADA COM HÁBITO DE FUMAR E IDADE EM INDIVÍDUOS DA DINAMARCA Bárbara Camboim Lopes de FIGUEIRÊDO 1, Gustavo Henrique ESTEVES 2 1 Departamento de Estatística

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda)

2. Imagine um mercado que apresenta as seguintes curvas de oferta e demanda: (Curva de Demanda) Universidade de Brasília Departamento de Economia Disciplina: Economia Quantitativa I Professor: Carlos Alberto Período: 1/7 Segunda Prova Questões 1. Resolver a seguinte integral: 1 ln ( 1 + x.5 ) dx

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

LEVANTAMENTO ESTATÍSTICO DO PERFIL DE UM CALL CENTER VISANDO O AJUSTE DE UM MODELO DE FILAS

LEVANTAMENTO ESTATÍSTICO DO PERFIL DE UM CALL CENTER VISANDO O AJUSTE DE UM MODELO DE FILAS SPOLM 06 ISSN 1806-3632 Rio de Janeiro, Brasil, 15 e 16 de de 06 LEVANTAMENTO ESTATÍSTICO DO PERFIL DE UM CALL CENTER VISANDO O AJUSTE DE UM MODELO DE FILAS Helinton A. L. Barbosa Departamento de Estatística

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 05 Taxas de variação e função lineares III Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

Análise Espectral de uma Série. Estatistica de Temperatura no Sul do Brasil

Análise Espectral de uma Série. Estatistica de Temperatura no Sul do Brasil 418 Análise Espectral de uma Série, Estatistica de Temperatura no Sul do Brasil Moraes, L. L., Degra:::ia, a.a '1 Radar Afffeorológico, Universidade Federal de Pelotas, 96100 Pelotas, RS, Brasil, e Depm'tamento

Leia mais

MATEMÁTICA I AULA 07: TESTES PARA EXTREMOS LOCAIS, CONVEXIDADE, CONCAVIDADE E GRÁFICO TÓPICO 02: CONVEXIDADE, CONCAVIDADE E GRÁFICO Este tópico tem o objetivo de mostrar como a derivada pode ser usada

Leia mais

3 Metodologia 3.1. Tipo de pesquisa

3 Metodologia 3.1. Tipo de pesquisa 3 Metodologia 3.1. Tipo de pesquisa Escolher o tipo de pesquisa a ser utilizado é um passo fundamental para se chegar a conclusões claras e responder os objetivos do trabalho. Como existem vários tipos

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

A normalidade em função do arredondamento e baixa discriminação dos dados.

A normalidade em função do arredondamento e baixa discriminação dos dados. A normalidade em função do arredondamento e baixa discriminação dos dados. Image credit: wavebreakmediamicro / 123RF Banco de Imagens Normalmente nós

Leia mais

Análise de séries temporais aplicada aos valores do salário mínimo necessário do Brasil

Análise de séries temporais aplicada aos valores do salário mínimo necessário do Brasil Análise de séries temporais aplicada aos valores do salário mínimo necessário do Brasil Talita Tanaka Fernandes Jacqueline Meneguim Manoel Ivanildo Silvestre Bezerra 3 Luiz Ricardo Nakamura Introdução

Leia mais

ESTIMADORES NÃO VICIADOS PARA O TEMPO MÉDIO ATÉ A FALHA E PARA PERCENTIS OBTIDOS DO MODELO DE REGRESSÃO DE WEIBULL

ESTIMADORES NÃO VICIADOS PARA O TEMPO MÉDIO ATÉ A FALHA E PARA PERCENTIS OBTIDOS DO MODELO DE REGRESSÃO DE WEIBULL ESTIMADORES NÃO VICIADOS PARA O TEMPO MÉDIO ATÉ A FALHA E PARA PERCENTIS OBTIDOS DO MODELO DE REGRESSÃO DE WEIBULL Linda Lee Ho Departamento de Engenharia de Produção, Escola Politécnica Universidade de

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO?

RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO? RODA DE BICICLETA, BAMBOLÊ OU CICLO TRIGONOMÉTRICO? Lessandra Marcelly Sousa da Silva Universidade Estadual Paulista Júlio de Mesquita Filho lessandramarcelly@gmail.com Resumo: Este trabalho é um relato

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

Introdução à Simulação

Introdução à Simulação Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

Probabilidade. Distribuição Exponencial

Probabilidade. Distribuição Exponencial Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos

Leia mais

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I

MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO DE CÁLCULO I Universidade dos Vales do Jequitinhonha e Mucuri UFVJM Instituto de Ciência, Engenharia e Tecnologia ICET Grupo de Estudos em Software Livre no Ensino GESE MINICURSO DE GEOGEBRA PARA INICIANTES NO ESTUDO

Leia mais

COOPERAÇÃO EMPRESAS-LABORATÓRIOS PARA P&D E INOVAÇÃO

COOPERAÇÃO EMPRESAS-LABORATÓRIOS PARA P&D E INOVAÇÃO COOPERAÇÃO EMPRESAS-LABORATÓRIOS PARA P&D E INOVAÇÃO Gilson Geraldino Silva Jr. 1, 2 1 INTRODUÇÃO Este artigo analisa se o uso de infraestrutura laboratorial externa à empresa impacta na decisão de fazer

Leia mais

TÉCNICAS DE PESQUISA. Profa. Esp. Tiago S. de Oliveira

TÉCNICAS DE PESQUISA. Profa. Esp. Tiago S. de Oliveira TÉCNICAS DE PESQUISA Profa. Esp. Tiago S. de Oliveira TÉCNICAS DE PESQUISA Existem algumas técnicas de pesquisa que podem ser utilizadas pelo pesquisador no desenvolvimento do trabalho científico. Estas

Leia mais

6 Construção de Cenários

6 Construção de Cenários 6 Construção de Cenários Neste capítulo será mostrada a metodologia utilizada para mensuração dos parâmetros estocásticos (ou incertos) e construção dos cenários com respectivas probabilidades de ocorrência.

Leia mais

PREVISÃO DE DEMANDA - O QUE PREVISÃO DE DEMANDA - TIPOS E TÉCNICAS DE PREVISÃO DE DEMANDA - MÉTODOS DE PREVISÃO - EXERCÍCIOS

PREVISÃO DE DEMANDA - O QUE PREVISÃO DE DEMANDA - TIPOS E TÉCNICAS DE PREVISÃO DE DEMANDA - MÉTODOS DE PREVISÃO - EXERCÍCIOS CONTEÚDO DO CURSO DE PREVISÃO DE DEMANDA PROMOVIDO PELA www.administrabrasil.com.br - O QUE PREVISÃO DE DEMANDA - TIPOS E TÉCNICAS DE PREVISÃO DE DEMANDA - MÉTODOS DE PREVISÃO - EXERCÍCIOS - HORIZONTE

Leia mais

Artigo publicado. na edição 18. www.revistamundologistica.com.br. Assine a revista através do nosso site. setembro e outobro de 2011

Artigo publicado. na edição 18. www.revistamundologistica.com.br. Assine a revista através do nosso site. setembro e outobro de 2011 Artigo publicado na edição 18 Assine a revista através do nosso site setembro e outobro de 2011 www.revistamundologistica.com.br :: artigo Cálculo do estoque de segurança as suas diferentes abordagens

Leia mais

Medida de correlação entre padrões pontuais de origemdestino

Medida de correlação entre padrões pontuais de origemdestino Medida de correlação entre padrões pontuais de origemdestino Renato M. Assunção, Danilo L. Lopes Departamento de Estatística Universidade Federal de Minas Gerais (UFMG) Caixa Postal 70 3170-901 Belo Horizonte

Leia mais

A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA

A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA A UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS NO ENSINO DA DISCIPLINA DE ENGENHARIA ECONÔMICA Álvaro Gehlen de Leão Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Departamento

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Capítulo 5 Representações gráficas para variáveis quantitativas

Capítulo 5 Representações gráficas para variáveis quantitativas Capítulo 5 Representações gráficas para variáveis quantitativas Introdução Até o capítulo passado, você aprendeu a sintetizar dados a partir de um conjunto desordenado de dados, identificando a quantidade

Leia mais

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com

TEORIA DO RISCO. LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com TEORIA DO RISCO LUIZ SANTOS / MAICKEL BATISTA economia.prof.luiz@hotmail.com maickel_ewerson@hotmail.com 1 TARIFAÇÃO (FERREIRA, 2002) Diversos conceitos e metodologias envolvidos no cálculo do preço pago

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA PAULO, João Pedro Antunes de Universidade Estadual de Goiás UnU de Iporá jpadepaula@hotmail.com RESUMO Esta pesquisa foi feita

Leia mais

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura

Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Distribuição Exponencial Exponenciada na Presença de Fração de Cura: Modelos de Mistura e Não-Mistura Emílio Augusto Coelho-Barros 1,2 Jorge Alberto Achcar 2 Josmar Mazucheli 3 1 Introdução Em análise

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO UNIVERSIDADE FEDERAL DE PERNAMBUCO Mestrado em Ciência da Computação CENTRO DE INFORMÁTICA Análise comparativa entre os diferentes tipos De protocolos para transmissão de dados Grupo: Professora: Disciplina:

Leia mais

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios...

CONTEÚDO. 1.6.4 Tempo Médio e Vida Média Residual. 1.6.5 Relações entre as Funções 1.7 Exercícios... Conteúdo Prefácio xiii 1 Conceitos Básicos e Exemplos 1 1.1 Introdução... 1 1.2 Objetivo e Planejamento dos Estudos 3 1.3 Caracterizando Dados de Sobrevivência 6 1.3.1 Tempo de Falha 7 1.3.2 Censura e

Leia mais

INVESTIMENTO DIRETO ESTRANGEIRO E DESENVOLVIMENTO DO SISTEMA FINANCEIRO BRASILEIRO, UMA ANÁLISE EMPÍRICA

INVESTIMENTO DIRETO ESTRANGEIRO E DESENVOLVIMENTO DO SISTEMA FINANCEIRO BRASILEIRO, UMA ANÁLISE EMPÍRICA INVESTIMENTO DIRETO ESTRANGEIRO E DESENVOLVIMENTO DO SISTEMA FINANCEIRO BRASILEIRO, UMA ANÁLISE EMPÍRICA Elaine Aparecida Fernandes CPF 027576066-97 Estudante de pós-graduação da Universidade Federal de

Leia mais

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária

Leia mais

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO Ao incidir em uma lente convergente, um feixe paralelo de luz, depois de passar pela lente, é concentrado em um ponto denominado foco (representado por

Leia mais

Introdução a Química Analítica. Professora Mirian Maya Sakuno

Introdução a Química Analítica. Professora Mirian Maya Sakuno Introdução a Química Analítica Professora Mirian Maya Sakuno Química Analítica ou Química Quantitativa QUÍMICA ANALÍTICA: É a parte da química que estuda os princípios teóricos e práticos das análises

Leia mais

Software. Guia do professor. Geometria do táxi Distâncias. Ministério da Educação. Ministério da Ciência e Tecnologia

Software. Guia do professor. Geometria do táxi Distâncias. Ministério da Educação. Ministério da Ciência e Tecnologia Números e funções Geometria e medidas Guia do professor Software Geometria do táxi Distâncias Objetivos da unidade 1. Consolidar o uso de coordenadas cartesianas no plano e introduzir uma nova noção de

Leia mais

5 Análise dos Resultados Seguro de Vida

5 Análise dos Resultados Seguro de Vida Capítulo 5 Análise dos Resultados - Seguro de Vida 5 Análise dos Resultados Seguro de Vida Este capítulo tem como objetivo a análise dos resultados obtidos através da modelagem dos dados de uma seguradora.

Leia mais

PMBoK Comentários das Provas TRE-PR 2009

PMBoK Comentários das Provas TRE-PR 2009 PMBoK Comentários das Provas TRE-PR 2009 Comentário geral: As provas apresentaram grau de dificuldade médio. Não houve uma preocupação da banca em aprofundar os conceitos ou dificultar a interpretação

Leia mais

Medidas e Incertezas

Medidas e Incertezas Medidas e Incertezas O que é medição? É o processo empírico e objetivo de designação de números a propriedades de objetos ou eventos do mundo real de forma a descreve-los. Outra forma de explicar este

Leia mais

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência.

Utilizando-se as relações entre as funções básicas é possível obter as demais funções de sobrevivência. MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesta abordagem paramétrica, para estimar as funções básicas da análise de sobrevida, assume-se que o tempo de falha T segue uma distribuição

Leia mais

Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER DO APARELHO DIGESTIVO

Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER DO APARELHO DIGESTIVO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA CURSO DE ESTATÍSTICA Bastian Ignacio Olivares Flores ANÁLISE DE SOBREVIDA DE PACIENTES COM CÂNCER

Leia mais

FDQ-TOOL UMA FERRAMENTA PARA A ANÁLISE DA QUALIDADE DA MÉTRICA DE ESFORÇO DO PDS

FDQ-TOOL UMA FERRAMENTA PARA A ANÁLISE DA QUALIDADE DA MÉTRICA DE ESFORÇO DO PDS 25 a 28 de Outubro de 2011 ISBN 978-85-8084-055-1 FDQ-TOOL UMA FERRAMENTA PARA A ANÁLISE DA QUALIDADE DA MÉTRICA DE ESFORÇO DO PDS Marcos Mitsuo Ashihara 1, Nelson Tenório Jr 2, Rita Cristina Galarraga

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26)

CURVA DE GAUSS. Bruno Vaz Hennemann (03) Gabriel Gustavo Ferrarini (10) Murillo Henrique de Mello Peteffi (25) Paulo Renan Schmitt Pereira (26) FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA CURSO TÉCNICO EM MECÂNICA PRIMEIRA SÉRIE DO ENSINO MÉDIO Turma 3111 Grupo E Projeto Reconstrução de uma Experiência do MCT-PUC CURVA DE GAUSS Bruno

Leia mais

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense CURSO DE ESPECIALIZAÇÃO EM ENSINO DE MATEMÁTICA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA 7 DE OUTUBRO DE 2014 TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09 Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Leia mais

UNIVERSIDADE IGUAÇU FACUDADE DAS CIÊNCIAS BIOLÓGICAS E DA SAÚDE CURSO DE GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS

UNIVERSIDADE IGUAÇU FACUDADE DAS CIÊNCIAS BIOLÓGICAS E DA SAÚDE CURSO DE GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS UNIVERSIDADE IGUAÇU FACUDADE DAS CIÊNCIAS BIOLÓGICAS E DA SAÚDE CURSO DE GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS MANUAL PARA ELABORAÇÃO DE PROJETO DE MONOGRAFIA FILOMENA MARIA RATES SOARES VITOR TENÓRIO NOVA

Leia mais

Estudo de funções parte 2

Estudo de funções parte 2 Módulo 2 Unidade 13 Estudo de funções parte 2 Para início de conversa... Taxa de desemprego no Brasil cai a 5,8% em maio A taxa de desempregados no Brasil caiu para 5,8% em maio, depois de registrar 6%

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Palavras chave: Reamostragem ; Método Bootstrap; Intervalo de confiança

Palavras chave: Reamostragem ; Método Bootstrap; Intervalo de confiança ESTUDO E APLICAÇÕES DA TÉCNICA BOOTSTRAP Ana Lucia Tucci Rizzo (analurizzo@uol.com.br), Raquel Cymrot Orientadora: Raquel Cymrot (raquelc@mackenzie.com.br) Resumo A técnica de reamostragem Bootstrap é

Leia mais

As estações do ano e a incidência do dengue nas regiões brasileiras

As estações do ano e a incidência do dengue nas regiões brasileiras As estações do ano e a incidência do dengue nas regiões brasileiras Paulo Cesar de Holanda Furtado; Izabel Cristina Alcantara de Souza; Ronei Marcos de Moraes Resumo Divulga-se que o período de maior incidência

Leia mais