Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Tamanho: px
Começar a partir da página:

Download "Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações."

Transcrição

1 Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. x n i 1 n x i b) Mediana: representada por med (x), é observação que ocupa a posição central das observações ordenadas. Sejam as observações ordenadas: x (1) x ()... x (n), então, a n 1 posição central é dada por, portanto, med ( x) x n1 Notas: i) A mediana também é presentada por x ~. ii) Se n é par, a mediana é dada pela média aritmética das duas observações centrais. c) Moda: representada por mo (x), é observação da amostra com maior frequência, ou seja, a que mais se repete.

2 Um conjunto de dados pode ter mais de uma moda, ou até mesmo, não ter moda. Em relação ao número de modas um conjunto de dados pode ser: i) unimodal: quando o conjunto tem uma única moda; ii) bimodal: quando o conjunto tem duas modas; iii) multimodal: quando o conjunto tem três ou mais modas; iv) amodal: quando o conjunto não tem moda (neste caso, todas as observações aparecem uma única vez na amostra). Exemplos de medidas da posição: Exemplo 1: Número de pessoas com diabetes em 0 grupos de 1000 pessoas cada. Neste caso, foram obtidos os seguintes dados: 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 1 Medidas Descritivas de Posição: 193 i) Média: x i = 193 x 9, 65 casos/grupo ( 10) 0 ii) Mediana: Determinando a posição da mediana: n ,5

3 logo a mediana é a média entre a 10ª e 11ª observações ordenadas x(10) x(11) med ( x) 10 casos/grupo. iii) Moda: mo(x) = 10 casos/grupo, aparece 8 vezes na amostra o conjunto é unimodal. Exemplo : Em 1798 o cientista Henry Cavendish mediu a densidade do globo terrestre em 9 ensaios. Os dados foram obtidos do Annals os Statistics, X = densidade do globo terrestre (g/cm 3 ). 5,50 5,61 4,88 5,07 5,6 5,55 5,36 5,9 5,58 5,65 5,57 5,53 5,6 5,9 5,44 5,34 5,79 5,10 5,7 5,39 5,4 5,47 5,63 5,34 5,46 5,30 5,75 5,68 5,85 Dados ordenados 4,88 5,07 5,10 5,6 5,7 5,9 5,9 5,30 5,34 5,34 5,36 5,39 5,4 5,44 5,46 5,47 5,50 5,53 5,55 5,57 5,58 5,61 5,6 5,63 5,65 5,68 5,75 5,79 5,85 n = 9 observações Medidas Descritivas de Posição: 157,99 i) Média: x i = 157,99 x 5, 45g/cm 3 9

4 ii) Mediana: Determinando a posição da mediana: n 1 15 logo a mediana é a 15ª observação ordenada med x) x ( 5,46 g/cm 3 ( 15) iii) Moda: mo(x) = 5,9 g/cm 3 e mo(x) = 5,34 g/cm 3 o conjunto é bimodal. Exemplo 3: Altura dos alunos da turma B de Bioestatística no primeiro semestre de 015. X = altura dos alunos (em metros). Dados ordenados 1,51 1,55 1,56 1,57 1,58 1,58 1,58 1,60 1,60 1,60 1,60 1,6 1,6 1,6 1,63 1,63 1,65 1,65 1,65 1,65 1,65 1,65 1,66 1,67 1,67 1,70 1,70 1,70 1,7 1,73 1,73 1,74 1,75 1,75 1,75 1,76 1,77 1,78 1,80 1,80 1,80 1,80 1,81 n = 43 observações x i = 71,94

5 Medidas Descritivas de Posição: i) Média: x i = 71,94 71,94 x 1, 67 m 43 ii) Mediana: Determinando a posição da mediana: n 1 44 logo a mediana é a ª observação ordenada: med ( ) x) x ( 1,65m iii) Moda: mo(x) = 1,65m aparece 5 vezes na amostra, o conjunto é unimodal.

6 4.. Medidas de Dispersão (ou variação): a) Amplitude: é dada pela diferença entre o maior e o menor valor da amostra. Sejam x( 1) min [ x1, x,, xn] e x( n) max[ x1, x,, xn], x então, a amplitude da amostra é definida por A x ( x. n) A amplitude A representa o tamanho da região na qual os dados foram observados. b) Variância amostral: a variância amostral é definida pela soma dos quadrados dos desvios das observações em relação à media amostral x, dividida por (n 1), ou seja (1) x s n x i1 i x n 1. Mostra-se facilmente que s pode ser escrita como s n i 1 x i n 1 nx. c) Amplitude Interquartil: é dada pela diferença entre o 3º e o 1º quartis. Para definir a amplitude interquartil, vamos primeiro definir o que são quartis amostrais.

7 Quartis amostrais são medidas descritivas que dividem a amostra ordenada em quatro parcelas iguais de 5%, ou seja: 5% 5% 5% 5% Q 1 Q Q 3 med(x) Assim sendo: i) Q 1 é o primeiro quartil; ii) Q = med(x), é o segundo quartil, iii) Q 3 é o terceiro quartil. Desta forma, denotada por A q, é definida por A q = Q 3 Q 1 A Q determina o tamanho da região em torno da mediana que contém 50% das observações centrais.

8 4..1. Métodos para a obtenção dos quartis amostrais: Para a obtenção dos quartis devemos proceder da mesma forma que para a mediana. Uma vez que a mediana esteja determinada, temos o conjunto de dados ordenados dividido em duas partes. Os quartis, então, são dados pelas observações centrais destas duas metades. Q 1 med(x) Q 3 Observação central da metade inferior Observação central da metade superior O procedimento para encontrar os quartis é o mesmo usado para a mediana, porém, teremos dois procedimentos dependendo do tamanho da amostra n ser par ou ímpar. i) Se o tamanho da amostra n for par: o procedimento é o mesmo da mediana, sendo aplicada a cada uma das metades (inferior e superior). Exemplo: Dados: n = 14 med ( x) x (7) x (8) 5 6 5,5 A mediana med(x) = 5,5 divide os dados em dois grupos ordenados de 7 observações cada. Assim,

9 7 1 4 Q 1 é a 4ª observação da metade inferior e, Q 3 é a 4ª observação da metade superior. Desta forma, os quartis serão as observações ordenadas que ocupam as posições 4 e 11. 5, Q Q 1 x(4) 3 x(11) 3 7 ii) Se o tamanho da amostra n for ímpar: devemos optar por incluir, ou não, a mediana nos cálculos para a determinação dos quartis. ii.1) se a mediana não for incluída, então teremos dois grupos, inferior e superior à mediana, cada um com ( n 1) observações. n 1 observações inferiores n 1 observações superiores Q 1 med(x) Q 3 e os quartis Q 1 e Q 3 são obtidos normalmente.

10 Exemplo: Dados: n = 13 A mediana med x) x ( 5 divide os dados em dois grupos ( 7) ordenados de 6 observações cada , 5 Q 1 é a média da 3ª e 4ª observações do grupo inferior e, Q 3 é a média da 3ª e 4ª observações do grupo superior Q x x 3 (3) (4) 1,5 Q x x 6 7 (10) (11) 3 6,5 ii.) se a mediana for incluída, então, ela deve ser considerada 1 tanto para a obtenção do 1º quartil, na metade inferior como na obtenção do 3º quartil, na metade superior. Desta forma, teremos grupos, com ( n 1) observações cada. 1 Observe que a mediana é uma só. Ela é apenas considerada nos dois grupos para as contagens das posições dos quartis.

11 Grupo inferior grupo superior Q 1 med(x) Q 3 e os quartis Q 1 e Q 3 são obtidos normalmente. Exemplo: Dados: n = 13 A mediana med x) x ( 5 divide os dados em dois grupos ( 7) ordenados de 6 observações cada. Incluindo a mediana ao procedimento, teremos uma observação a mais em cada grupo, ou seja, teremos 7 observações Q 1 é a 4ª observação do grupo inferior e, Q 3 é a 4ª observação do grupo superior, ou seja, a 11ª observação ordenada (7 + 4). Q Q x(4) 3 3 x(11) 6

12 iii) Outra forma para a obtenção dos quartis é apresentada por Murteira (00). ] Se a mediana ocupa a posição (n + 1)/, então Q 1 deverá ocupar a posição: n 1 1 n 3 4 Para a posição de Q 3 fazemos: ( n 1) n 3 4 3n 1 4 Portanto, Q 1 e Q 3 são dados pelas observações ordenadas que n 3 3n 1 ocupam as posições e, respectivamente. 4 4 n 3 3n 1 Se os valores de e não forem inteiros, Q 1 e Q devem ser obtidos por interpolação linear. Por exemplo, se n 3 4 k, em que k é a parte inteira e a parte decimal, então, Q 1 pertence ao intervalo x ; x ) e ( ( k) ( k1) Q x [ x x )]. 1 ( k) ( k 1) ( k

13 Para Q 3 o procedimento é semelhante, ou seja, se 3n 1, 4 então, Q 3 pertence ao intervalo x ; x ) e Q ( ( ) ( 1) x [ x x )]. 3 ( ) ( 1) ( Exemplo: Dados: n = 14 Para a determinação de Q 1, temos: posição de Q 1 : 4, Como = 0,5, Q 1 é a interpolação entre a 4ª e 5ª observações ordenadas: Q 3 0,5(4 3) 3,5. 1 Para a determinação de Q 3, temos: posição de Q 3 : 10, Aqui = 0,75 e Q 3 é a interpolação entre a 10ª e 11ª observações ordenadas: Q 6 0,75(7 6) 6,75. 3 Obs: o item (iii) com n ímpar é equivalente ao item e (ii.).

14 Notas: Assim como a mediana, os quartis amostrais dependem do tamanho da amostra n, fazendo com que nem sempre os quatro grupos tenham o mesmo tamanho; Existem diversas outras formas para a determinação dos quartis, Nesta disciplina daremos ênfase nos itens (i) e (ii.1); Para n pequeno, pode-se, ainda, obter os quartis graficamente pelo histograma dos dados; Os quartis são casos especiais dos quantis (ou percentis), que são denotados por: x(p) p-ésimo quantil ou quantil de ordem p; Portanto, o quantil x(p) é dado pela observação ordenada que deixa uma frequência acumulada igual 100p % abaixo de si. Assim sendo temos que: i) Q 1 = x(0,5) quantil de ordem 0,5; ii) Q = med(x) = x(0,5) quantil de ordem 0,50; iii) Q 3 = x(0,75) quantil de ordem 0,75.

15 Exemplo 1: Número de pessoas com diabetes em 0 grupos de 1000 pessoas cada. Neste caso, foram obtidos os seguintes dados: 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 1 n i 1 x 193 e x 1889 i n i 1 i 193 a) Média: x 9, 65 casos/grupo ( 10); 0 x(10) x(11) b) Mediana: ( x) 10 med casos/grupo; c) Moda: mo(x) = 10 casos/grupo. i) Variância amostral: (9,65) ,45 s ,55 s 1,397 (casos/grupo) 19 Desvio padrão amostral: s 1,397 1, 18 casos/grupo ( 1) ii) Amplitude amostral: A casos/grupo.

16 iii) Amplitude interquartil: 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 1 n = 10 observações do grupo inferior à mediana n = 10 observações do grupo superior à mediana Para a determinação de Q 1, temos: posição de Q 1 : ,5, logo o 1º quartil é a média entre a 5ª e 6ª observações ordenadas: x(5) x(6) 9 9 Q 1 9 casos/grupo. Para a determinação de Q 1, temos: posição de Q 1 : ,5, logo o 3º quartil é a média entre a 15ª e 16ª observações ordenadas, x(15) x(16) Q 3 10 casos/grupo. Desta forma, a amplitude interquartil é: A caso/grupo. q

17 Relação entre as amplitudes amostral e interquartil: A q A 1 5 0, Ou seja, a metade das observações centrais representam 0% da amplitude total dos dados. Exemplo : Altura dos alunos da turma B de Bioestatística no primeiro semestre de 015. X = altura dos alunos (em metros). Dados ordenados 1,51 1,55 1,56 1,57 1,58 1,58 1,58 1,60 1,60 1,60 1,60 1,6 1,6 1,6 1,63 1,63 1,65 1,65 1,65 1,65 1,65 1,65 1,66 1,67 1,67 1,70 1,70 1,70 1,7 1,73 1,73 1,74 1,75 1,75 1,75 1,76 1,77 1,78 1,80 1,80 1,80 1,80 1,81 n = 43 observações n i 1 x 71,94 e x 10, 63 i n i 1 i 71,94 a) Média: x 1, 67 m; 43 b) Mediana: med x) x ( 1, 65m; ( ) c) Moda: mo(x) = 1,65m.

18 iv) Variância amostral: 10,63 43(1,67) 0,7073 s 0,01684 m 4 4 Desvio padrão amostral: s 0, , 198 m v) Amplitude amostral: A 1,811, m vi) Amplitude interquartil: (sem incluir a mediana) med ( ) x) x ( 1,65m O primeiro quartil é a posição central da metade inferior Q 1 x(11) 1,60m O terceiro quartil é a posição central da metade superior Q 3 x(33) 1,75m Desta forma, a amplitude interquartil é: Aq 1,75 1,60 0,15m Relação entre as amplitudes amostral e interquartil: A q 0,15 0,50 A 0,30 Metade das observações centrais representam 50% da amplitude total.

19 4.3. Mais Exemplos Exemplo 1: Dias de manutenção de equipamentos de uma grande companhia, (n = 50 observações) X = dias em manutenção de equipamentos, Dados Ordenados: n i n i 1 1 x i 39 e x i a) x 7, 84 dias ( 8 dias) 50 x(5) x(6) b) med ( x) 6 dias c) mo(x) = 5 dias (8) i) Variância amostral: (7,84) ,8 s,55 dias Desvio padrão amostral: s,545 4, 748 dias

20 ii) Amplitude amostral: A 1 19 dias iii) Amplitude interquartil: O 1º quartil é a 13ª observação ordenada , Q x 4 dias. 1 (13) O 3º quartil é a 38ª observação ordenada , Q x 10 dias. 3 (38) Desta forma, a amplitude interquartil é: A 10 4 = 6 dias Q Relação da amplitude interquartil com a amplitude total: A q 6 0,316 A 19. Metade das observações centrais representam 31,6% da amplitude total. Exemplo : Dados Cavendish, X = densidade do globo terrestre (g/cm 3 ), Dados ordenados 4,88 5,07 5,10 5,6 5,7 5,9 5,9 5,30 5,34 5,34 5,36 5,39 5,4 5,44 5,46 5,47 5,50 5,53 5,55 5,57 5,58 5,61 5,6 5,63 5,65 5,68 5,75 5,79 5,85 n = 9 observações

21 n i 1 x 157,99 e x 86, 0855 i n i 1 i 157,99 a) x 5, 448g/cm 3 9 b) med x) x ( 5, 46g/cm 3 ( 15) c) mo(x) = 5,9 g/cm 3 e 5,34 g/cm 3 i) Variância amostral: 86,0855 9(5,448) 1,3669 s 0,0488 (g/cm 3 ) Desvio padrão amostral: s 0,0488 0, 09 g/cm 3 ii) Amplitude amostral: A 5,85 4,88 0, 97 g/cm 3 iii) Amplitude interquartil: A mediana é 15ª observação ordenada, o primeiro quartil (excluindo-se a mediana do cálculo) é a posição central da metade inferior dos dados, ou seja: 14 1 Q 1 é a média da 7ª e 8ª observações ordenadas 7,5, x(7) x(8) 5,9 5,30 Q 1 5,95 g/cm 3,

22 Q 3 é a média da ª e 3ª observações ordenadas 7,5 15,5, x() x(3) 5,61 5,6 Q 3 5,615 g/cm 3 Desta forma, a amplitude interquartil é: A 5,615 5,95 0,3g/cm 3, q Relação da amplitude interquartil com a amplitude total: A q 0,3 0,330 ( 1/3). A 0,97 Metade das observações centrais representam 33,0% da amplitude total.

23 4.4. O coeficiente de variação amostral: Uma medida utilizada para quantificar a variabilidade dos dados é o coeficiente de variação, ou cv. O cv de variação amostral é dado pela razão do desvio padrão da amostra s e a média amostral x : cv s x Notas: O coeficiente de variação compara a magnitude do desvio padrão s com a média x. Se cv 1 s x. O coeficiente de variação é uma medida adimensional (é um número puro) também podendo ser expresso em %. Exemplos: a) Número de casos com diabetes em 0 grupos de 1000 pessoas: x 9,65 pessoas/grupo s 1,397 (pessoas/grupo) s ,18 pessoas/grupo 1,18 cv 0.1 ou 1,% 9,65

24 b) Altura dos alunos da turma B da disciplina Bioestatística: x 1,67 m s 0,01684 m s ,198 m 0,198 cv 0,078 ou 7,8% 1,67 c) Dias de manutenção de equipamentos: x 7,84 dias s,545 dias s,545 4,748 dias 4,748 cv 0,606 ou 60,6% 7,84 d) Dados Cavendish: x 5,45g/cm 3 s 0,10 g/cm 3 0,10 cv 0,0406 ou 4,06%, 5.45

25 Nos exemplos acima temos os cv s de quatro processos distintos, sendo o maior deles (dias manutenção) 15 vezes maior do que o menor (Cavendish), indicando claramente as diferenças na dispersão dos dados. Tabela: Coeficientes de variação dos exemplos. Dados cv cv (%) Manutenção % Diabetes % Alturas % Cavendish % Um ponto de grande interesse, contudo, diz respeito a quantificar o cv e poder dizer se um conjunto de dados tem uma dispersão muito alta, ou não. A seguir serão apresentados três critérios para classificação do coeficiente de variação Como classificar o Coeficiente de Variação O cv tem uma característica particular de ser intrínseco a cada processo, tendo sido muito estudado na área agrícola, mais especificamente, na experimentação agronômica. Vários autores indicam diferentes métodos para se classificar o coeficiente de variação. A seguir, são apresentadas três classificações.

26 I) Classificação segundo Pimentel Gomes (1985), baseada em ensaios agrícolas. Faixa cv dispersão menor ou igual a 10% baixo baixa dispersão dos dados entre 10% e 0% médio média dispersão dos dados entre 0% e 30% alto alta dispersão dos dados maior do que 30% muito alto dispersão dos dados muito alta II) Classificação segundo Ferreira, F,V, (1991), Estatística Experimental Aplicada à Agronomia, classifica com respeito à precisão do processo. Faixa cv precisão entre 10% e 15% baixo ótima entre 15% e 0% médio boa entre 0% e 30% alto regular maior do que 30% muito alto muito ruim (ou péssima) III) Classificação obtida no site muito utilizada em CEP Controle Estatístico do Processo. Faixa cv dispersão menor ou igual a 15% baixo baixa dispersão dos dados entre 15% e 30% médio média dispersão dos dados maior do que 30% Alto alta dispersão dos dados

27 Nos exemplos: a) Diabetes: 1,18 cv 0.1 (1,%) cv baixo a médio. 9,65 b) Aturas dos alunos: 0,198 cv 0,078 (7,8%) cv baixo. 1,67 c) Dias de manutenção de equipamentos: 4,748 cv 0,606 (60,6%) cv alto ou muito alto. 7,84 d) Dados Cavendish: 0,09 cv 0,0406 (4,06%) cv baixo. 5,448

28 5. Relação empírica entre média, mediana e moda Karl Pearson, metemático famoso, no final do século XIX e início do XX, observou empiricamente, a seguinte relação entre as três medidas de posição média mediana e moda. Observações: x mo( x) 3 x med( x) 1) A relação só se aplica a distribuições com boa simetria; ) Só é valida para casos unimodais; 3) Depende de um tamanho de amostra n elevado Moda de Czuber Em muitas situações quando analisamos dados contínuos a moda amostral pode não representar adequadamente os dados, especialmente quando o conjunto for bimodal ou multimodal. Nessas situações, a distribuição teórica f(x), a qual buscamos identificar pelo histograma, pode não ser bem representada pela amostra devido a diversas razões: poucas observações; grande variabilidade; formado da distribuição. Nesses casos, pode-se indicar não uma moda, mas uma classe modal, dada pela classe na distribuição com a maior frequência. Uma alternativa, entretanto, é utilizar a moda de Czuber, que leva em conta a classe modal e as frequências das classes imediatamente anteriores e posteriores à classe modal.

29 A moda de Czuber é calculada pela seguinte expressão: mo cz ( x) L i hda ( d d a p, ) Em que: L i é o limite inferior da classe modal; h é a amplitude de classe da distribuição de frequências; d a é a diferença da frequência da classe modal (relativa ou absoluta) com a classe imediatamente anterior; d p é a diferença da frequência da classe modal (relativa ou absoluta) com a classe imediatamente posterior.

30 Exemplo: Considere os dados do tempo de TV de uma turma de estudantes de primeiro de universidade. 0,,,,, 3, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1, 1, 1, 1, 14, 14, 14, 14, 14, 15, 16, 18, 0, 0, 0, 5, 5, 8, 30 Distribuição de frequências de horas TV, Horas TV classes Freq. absoluta Freq. relativa Freq. acumulada n i f i F ac Totais mo cz ( x) (3 5) horas 8 Na representação gráfica a seguir, pode-se observar a moda de Czuber

31 Figura: Moda de Czuber

32 6. Relação entre média, moda e mediana Considere o histograma abaixo: Figura: Função de distribuição de probabilidades sobre o histograma. O que podemos dizer com relação a simetria da distribuição de frequências representa por este histograma? Quando uma distribuição de frequências é perfeitamente simétrica, teremos que a média aritmética, a moda e a mediana serão iguais, ou seja: x = Mo(x) = Md(x) E quanto ao exemplo acima, o que podemos dizer? Quando a distribuição não é simétrica, podemos distinguir duas situações possíveis, conforme destacado pela figura abaixo:

33 a) A a cauda superior da distribuição é mais alongada, puxando a distribuição para a direita. Neste caso, a média é maior do que a moda e a assimetria é dita à direita ou positiva. b) A cauda inferior da distribuição é mais alongada, puxando a distribuição para a esquerda. Neste caso, a média é menor do que a moda e a assimetria é dita à esquerda ou negativa. Figura: Assimetrias à direita e à esquerda, respectivamente.

34 6.1. Média, moda e mediana e a simetria dos dados i) A Média é sempre influenciada por valores extremos, sendo puxada na direção da cauda mais alongada (ver a seta na Figura 5); ii) A Moda é o elemento de maior frequência, sendo o ponto de máximo de f(x); iii) A Mediana está sempre no meio do conjunto, dividindo-o em duas partes iguais, ficando entre as duas medidas anteriores. Assim, para cada situação, teremos: a) Quando a simetria é perfeita as três medidas são iguais.

35 b) Na situação em que ocorre a assimetria à direita, teremos a moda menor do que a mediana que é menor do que a média. c) E, para a assimetria à esquerda, devemos ter a média menor do que a mediana que é menor do que a moda.

36 7. O diagrama box-plot Representação gráfica da dispersão dos dados em torno da mediana, é construído com as 5 medidas ordenadas: mínimo, Q 1, med(x), Q 3 e máximo. As cinco medidas podem ser apresentadas pela representação dos cinco números: med(x) Q Q 1 Q 3 E mínimo máximo Observações: i) A representação dos cinco números, além da construção do box-plot, ajuda na comparação da assimetria das caudas; ii) Outros percentis podem ser incluídos, ampliando a representação. O diagrama box-plot fornece uma visão simplificada da dispersão e simetria dos dados, além de indicar possíveis valores fora do padrão (valores discrepantes). Além disso, pode ser utilizado na comparação de diferentes processos quanto à centralidade (posição) e variabilidade (dispersão). O nome box-plot refere-se à caixa construída para representar a metade das observações centrais entre os quartis.

37 O box plot é constituído de 3 partes: caixa central, braços e valores discrepantes. i) A caixa central representa a metade das observações centrais entre os quartis Q1 e Q3. A mediana é destacada na caixa por uma linha que a divide em duas partes. Com isso, pode-se avaliar a simetria na região central da distribuição dos dados; ii) Os braços são construídos a partir da caixa central, representando as caudas da distribuição. A construção dos braços é baseada nos valores dos quartis e, o tamanho dos braços serve para avaliar a simetria das caudas. iii) Valores discrepantes são valores fora do padrão de dispersão, aparecendo muito distantes da maioria dos dados, podendo indicar grande forte assimetria ou variabilidade (ou ambos). Os valores discrepantes nem sempre estão presentes, sendo representados individualmente a partir das caudas. Valores discrepantes Valores discrepantes Q 1 1.5A Q Q 1 med(x) Q 3 Q A Q

38 7.1. Procedimento para a construção do box-plot i) Construir a caixa ou box com os valores dos quartis Q 1 e Q 3 ; ii) Com uma linha, demarcar a mediana na caixa, dividindo-a em duas partes; iii) Calcular os limites inferior (L I ) e superior (L s ): L I = Q 1 1.5A q L S = Q A q Os limites L I e L s são utilizados para se identificar valores discrepantes. Valores discrepantes são observações menores do que L I ou maiores do que L S e são destacados individualmente no boxplot com pontos além desses limites. iv) Para os braços do box-plot, traçar linhas a partir dos centros das laterais inferior e superior da caixa, obedecendo ao seguinte critério: traçar uma linha da lateral inferior da caixa até o menor valor que não seja discrepante ou até min(x); marcar os pontos discrepantes menores do que L I, caso existam; traçar uma linha da lateral superior da caixa até o maior valor que não seja discrepante ou até max(x); marcar os pontos discrepantes maiores do que L S, caso existam.

39 Exemplo 1: variável: horas gastas por semana assistindo TV. 10 Q 5 14 E 0 30 Figura 7.1: Box-plot s para a variável horas de TV, nas posições vertical e horizontal. Comandos do R para o box-plot: x <- c( 0,,,,, 3, 4, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 8, 8, 8,10,10,10,10,10,10,10,10, 10,10,10,1,1, 1,1,14,14,14,14,14,15,16, 18,0,0,0,5,5,8,30) boxplot(x, col="bisque", main="horas assistindo TV", ylab="horas", pch=19)

40 Freqüência Freqüência Exemplo : variável Renda PC por exposição à violência doméstica (grupos exposto e não exposto). Grupo exposto não exposto Estatísticas descritivas (reais), por grupo. Grupo n x med(x) s s Q 1 Q 3 Exposto ,00 10,00 57,9 47, Não exposto ,13 10, ,70 79, Grupo Exposto Grupo não Exposto Box-plot renda per capita Box-plot renda per capita Grupo Exposto Grupo Não Exposto Figura 7.: Histogramas e box-plot s individuais

41 Figura 7.3: box-plot s por grupo lado-a-lado. Comandos do R para o box-plot lado-a-lado: exp <- c(68,96,100,100,11,11,117,10,10,135,150,160, 160,00,60) nexp <- c(36,50,70,84,108,109,10,10,150,150,180,0, 50,60,300) renda <- c(nexp,exp) gr <- c(rep("nexp",length(nexp)), rep("exp",length(exp))) boxplot(renda~gr, pch=19, col=c("mediumseagreen","lightcoral")) # para o box-plot horizontal boxplot(renda~gr, pch=19, horizontal=t, col=c("mediumseagreen","lightcoral"))

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Stela Adami Vayego - DEST/UFPR 1

Stela Adami Vayego - DEST/UFPR 1 Aula 03 Análise Exploratória dos Dados (Medidas Descritivas de Variáveis Quantitativas) Parte 1 Medidas de Tendência Central Stela Adami Vayego - DEST/UFPR 1 Medidas de Tendência Central dos Dados Para

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

6) Estatística Gráfica:

6) Estatística Gráfica: Estatística Descritiva Básica prof. Ilydio Pereira de Sá 36 UNIDADE II: ESTATÍSTICA GRÁFICA E MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL Gráficos: barras, colunas, histogramas e polígonos de freqüências.

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Medidas de Tendência Central Generalidades Estatística Descritiva: Resumo ou descrição das características importantes de um conjunto conhecido de dados populacionais Inferência Estatística: Generalizações

Leia mais

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados

Estatística descritiva. Também designada Análise exploratória de dados ou Análise preliminar de dados Estatística descritiva Também designada Análise exploratória de dados ou Análise preliminar de dados 1 Estatística descritiva vs inferencial Estatística Descritiva: conjunto de métodos estatísticos que

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

Medidas de Variação ou Dispersão

Medidas de Variação ou Dispersão Medidas de Variação ou Dispersão Estatística descritiva Recapitulando: As três principais características de um conjunto de dados são: Um valor representativo do conjunto de dados: uma média (Medidas de

Leia mais

Estatística Descritiva I

Estatística Descritiva I Estatística Descritiva I Bacharelado em Economia - FEA - Noturno 1 o Semestre 2016 Profs. Fábio P. Machado e Gilberto A. Paula MAE0219 (Economia-FEA-Noturno) Estatística Descritiva I 1 o Semestre 2016

Leia mais

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA

MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA MÉDIA ARITMÉTICA MÉDIA PONDERADA MODA MEDIANA Em um amostra, quando se têm os valores de uma certa característica, é fácil constatar que os dados normalmente não se distribuem uniformemente, havendo uma

Leia mais

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo ESTATÍSTICA COISAS DO ESTADO ESTATÍSTICA: - Apresentação e Análise de dados - Tomadas de Decisões baseadas em análises -

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: alcione.miranda@gmail.com Introdução O primeiro passo

Leia mais

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade Escola de Engenharia de Lorena - EEL Controle Estatístico de Processos CEP Prof. MSc. Fabrício Maciel Gomes Objetivo de um Processo Produzir um produto que satisfaça totalmente ao cliente. Conceito de

Leia mais

NOÇÕES BÁSICAS DE ESTATÍSTICA

NOÇÕES BÁSICAS DE ESTATÍSTICA Curso de Capacitação em Epidemiologia Básica e Análise da Situação de Saúde Ministério da Saúde Secretaria de Vigilância em Saúde NOÇÕES BÁSICAS DE ESTATÍSTICA Gleice Margarete de Souza Conceição Airlane

Leia mais

Estatística Descritiva

Estatística Descritiva Estatística Descritiva Como construir uma distribuição de freqüências. Como construir gráficos de freqüências. Como encontrar medidas de tendência central. Como encontrar medidas de variabilidade. Como

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Posição Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial

1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 1 1. Registou-se o número de assoalhadas da população de 100 apartamentos vendidos num bairro residencial 0; 0; 0; 1;

Leia mais

Introdução à Estatística

Introdução à Estatística Introdução à Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br 1 Estatística: O que é? Estatística

Leia mais

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015

ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À GESTÃO Ficha de exercícios 1 Estatística Descritiva 2014/2015 1. Numa revista foi publicada uma lista com as 100 empresas

Leia mais

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I

Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ano lectivo: 2008/2009 Universidade da Beira Interior - Departamento de Matemática ESTATÍSTICA APLICADA À PSICOLOGIA I Ficha de exercícios 1 Validação de Pré-Requisitos: Estatística Descritiva Curso: Psicologia

Leia mais

Exemplo Considere novamente os dados sobre a dureza do alumínio. Fonte: Hoaglin, Mosteller e Tukey, 1983, apud Morettin & Bussab,

Exemplo Considere novamente os dados sobre a dureza do alumínio. Fonte: Hoaglin, Mosteller e Tukey, 1983, apud Morettin & Bussab, Gráficos Exemplo Considere novamente os dados sobre a dureza do alumínio. 53,0 70,2 84,3 69,5 77,8 87,5 53,4 82,5 67,3 54,1 70,5 71,4 95,4 51,1 74,4 55,7 63,5 85,8 53,5 64,3 82,7 78,5 55,7 69,1 72,3 59,5

Leia mais

3. Características amostrais. Medidas de localização e dispersão

3. Características amostrais. Medidas de localização e dispersão Estatística Descritiva com Excel Complementos. 77 3. Características amostrais. Medidas de localização e dispersão 3.1- Introdução No módulo de Estatística foram apresentadas as medidas ou estatísticas

Leia mais

Apostila para o minicurso. Estatística Básica. Usando o

Apostila para o minicurso. Estatística Básica. Usando o Apostila para o minicurso Estatística Básica Usando o Professor José Cardoso Neto Departamento de Estatística ICE/UFAM 1. Sumário 1. Conceitos fundamentais 1.1. A estatística e sua importância 1.2. População

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense

TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09. Universidade Federal Fluminense CURSO DE ESPECIALIZAÇÃO EM ENSINO DE MATEMÁTICA INSTITUTO DE MATEMÁTICA E ESTATÍSTICA 7 DE OUTUBRO DE 2014 TRATAMENTO DA INFORMAÇÃO/ANÁLISE DE DADOS AULA 09 Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Leia mais

EXERCÍCIOS EXERCÍCIOS. Definições Básicas. Definições Básicas. Definições Básicas. Introdução à Estatística. Dados: valores de variáveis observadas.

EXERCÍCIOS EXERCÍCIOS. Definições Básicas. Definições Básicas. Definições Básicas. Introdução à Estatística. Dados: valores de variáveis observadas. Definições Básicas Introdução à Estatística ESTATÍSTICA: estudo dos métodos para coletar, organizar, apresentar e analisar dados. População: conjunto constituído por todos os indivíduos que apresentem

Leia mais

JORNALISMO DE DADOS E VISUALIZAÇÃO. Noções de Estatística para Jornalistas. Marcelo Leme de Arruda www.chancedegol.com.br

JORNALISMO DE DADOS E VISUALIZAÇÃO. Noções de Estatística para Jornalistas. Marcelo Leme de Arruda www.chancedegol.com.br JORNALISMO DE DADOS E VISUALIZAÇÃO Noções de Estatística para Jornalistas Marcelo Leme de Arruda www.chancedegol.com.br Introdução Conceitos matemáticos 1 Somatório (Σ) Soma geral de termos Notação: n

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Estatística Básica. Introdução à Análise Exploratória de Dados. Renato Dourado Maia. Instituto de Ciências Agrárias

Estatística Básica. Introdução à Análise Exploratória de Dados. Renato Dourado Maia. Instituto de Ciências Agrárias Estatística Básica Introdução à Análise Exploratória de Dados Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Organização de Dados Hoje, serão discutidos alguns

Leia mais

Ogiva percentual decrescente

Ogiva percentual decrescente DISCIPLINA: ANÁLISE EXPLORATÓRIA DE DADOS PROF. LUIZ MEDEIROS DE ARAUJO LIMA FILHO 3ª LISTA DE EXERCÍCIOS QUESTÃO 01 A partir de uma amostra de 200 observações da idade das crianças de uma comunidade foi

Leia mais

Lista de Exercícios 1 - Estatística Descritiva

Lista de Exercícios 1 - Estatística Descritiva 1. O arquivo satisfaçãocomuniversidade.xlsx contém informações de uma amostra de 400 alunos de uma universidade. Deseja-se construir um histograma para a variável desempenho acadêmico, com intervalos de

Leia mais

Lista 2. Considere os dados abaixo sobre distribuição de salário (em reais) num grupo de 1000 individuos.

Lista 2. Considere os dados abaixo sobre distribuição de salário (em reais) num grupo de 1000 individuos. Lista 2 Exercício 1 Considere os dados abaixo sobre distribuição de salário (em reais) num grupo de 1000 individuos. Tabela 1: Distribuição de frequências da variável salário Classe de Salário n i f i

Leia mais

Medidas de dispersão: os valores estão próximos entre si ou variam muito?

Medidas de dispersão: os valores estão próximos entre si ou variam muito? NOTAS DE EPIDEMIOLOGIA E ESTATÍSTICA Medidas de dispersão: os valores estão próximos entre si ou variam muito? Measures of dispersion: are all values close to each other or do they vary a lot? JOÃO LUIZ

Leia mais

OBS. Essas fórmulas acima, são para determinar os termos da mediana (posição)

OBS. Essas fórmulas acima, são para determinar os termos da mediana (posição) FÓRMULAS 1) Amplitude total da amostra A= Ls Li EXERCÍCIOS DE FIXAÇÃO 2) Amplitude do intervalo de classe c= Ls Li 3) Média aritmética X = Xi n 3.1) Média aritmética para dados dispostos em freqüência

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

CAPÍTULO 2 ANÁLISE PRELIMINAR DE DADOS HIDROLÓGICOS. 2.1 Apresentação Gráfica de Dados Hidrológicos

CAPÍTULO 2 ANÁLISE PRELIMINAR DE DADOS HIDROLÓGICOS. 2.1 Apresentação Gráfica de Dados Hidrológicos CAPÍTULO AÁLISE PRELIMIAR DE DADOS HIDROLÓGICOS Conforme exposto no capítulo 1, os fenômenos hidrológicos apresentam uma aleatoriedade intrínseca devida à complexa interação e dependência entre inúmeros

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ANÁLISE E TRATAMENTO DE DADOS Ano Lectivo 2015/2016

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular ANÁLISE E TRATAMENTO DE DADOS Ano Lectivo 2015/2016 UNIVERSIDADE LUSÍADA DE LISBOA Programa da Unidade Curricular ANÁLISE E TRATAMENTO DE DADOS Ano Lectivo 2015/2016 1. Unidade Orgânica Ciências Humanas e Sociais (1º Ciclo) 2. Curso Psicologia 3. Ciclo

Leia mais

Aula 7 Medidas de Tendência Central 2ª parte

Aula 7 Medidas de Tendência Central 2ª parte 1 Estatística e Probabilidade Aula 7 Medidas de Tendência Central 2ª parte Professor Luciano Nóbrega Medidas de posição Resumo Média aritmética ( x ) É a razão entre o somatório dos valores das variáveis

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

ESTATÍSTICA 3 ROTEIRO PARA PESQUISAS DESCRITIVA E EXPERIMENTAL

ESTATÍSTICA 3 ROTEIRO PARA PESQUISAS DESCRITIVA E EXPERIMENTAL ESTATÍSTICA 1 INTRODUÇÃO Desde a antiguidade vários povos já registravam o número de habitantes, de nascimentos, de óbitos, faziam estimativas das riquezas individual e social, distribuíam eqüitativamente

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1

CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 CURSO ON-LINE PROFESSOR GUILHERME NEVES 1 Olá pessoal! Resolverei neste ponto a prova de Matemática e Estatística para Técnico Administrativo para o BNDES 2008 organizado pela CESGRANRIO. Sem mais delongas,

Leia mais

CURSO DE ESTATÍSTICA APLICADA

CURSO DE ESTATÍSTICA APLICADA CURSO DE ESTATÍSTICA APLICADA Prof. Henrique Dantas Neder Instituto de Economia Universidade Federal de Uberlândia. SUMÁRIO 1. Introdução... 4. Estatística Descritiva... 8.1 Tipos de Variáveis... 8. Tabelas

Leia mais

Fundamentos de Estatística Aplicada Módulo I: Estatística Descritiva

Fundamentos de Estatística Aplicada Módulo I: Estatística Descritiva Universidade Federal Fluminense Instituto de Matemática e Estatística Fundamentos de Estatística Aplicada Módulo I: Estatística Descritiva Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

UNIVERSIDADE FEDERAL DO MATO GROSSO CAMPUS

UNIVERSIDADE FEDERAL DO MATO GROSSO CAMPUS BIOESTATÍSTICA Aula 0 TÓPICOS ABORDADOS: Introdução a estatística; Coleta de dados; Estatística descritiva; Distribuição de frequências; Notação de somatório Medidas de posição. ESTATÍSTICA É um ramo da

Leia mais

Estatística Básica Usando o R

Estatística Básica Usando o R UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA Histogram of rnorm(10000, 0, 1) Frequency 0 500 1000 1500 2000 4 2 0 2 4 rnorm(10000, 0, 1) Estatística Básica Usando o R http://geocities.yahoo.com.br/augustofilho

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Pesquisa Estatística. Estatística Descritiva. Gestão Ambiental Prof. Luiz Rogério Mantelli

Pesquisa Estatística. Estatística Descritiva. Gestão Ambiental Prof. Luiz Rogério Mantelli Gestão Ambiental Prof. Luiz Rogério Mantelli Pesquisa Estatística Estatística Descritiva São técnicas utilizadas para descrever um conjunto de dados ou apresentá-lo de forma resumida. 1.Gráficos descritivos:

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Apresentação Caule e Folha. Exemplo

Apresentação Caule e Folha. Exemplo Análise Exploratória de Dados As técnicas de análise exploratória de dados consistem em gráficos simples de desenhar que podem ser utilizados para resumir rapidamente um conjunto de dados. Uma destas técnicas

Leia mais

Omatematico.com ESTATÍSTICA DESCRITIVA

Omatematico.com ESTATÍSTICA DESCRITIVA Omatematico.com ESTATÍSTICA DESCRITIVA 1. Classifique as variáveis abaixo: (a) Tempo para fazer um teste. (b) Número de alunos aprovados por turma. (c) Nível sócio-econômico (d) QI (Quociente de inteligência).

Leia mais

QUALITATIVA VARIÁVEL QUANTITATIVA

QUALITATIVA VARIÁVEL QUANTITATIVA NOMINAL ORDINAL QUALITATIVA VARIÁVEL QUANTITATIVA DISCRETA CONTÍNUA - Variável qualitativa nominal = valores que expressam atributos, sem nenhum tipo de ordem. Ex: cor dos olhos, sexo, estado civil, presença

Leia mais

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS

CURSO ONLINE REGULAR ESTATÍSTICA BÁSICA PROF. SÉRGIO CARVALHO AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Olá, amigos! AULA 13 RELAÇÃO DOS EXERCÍCIOS FINAIS Ainda não é chegada nossa aula derradeira! Sei que muitos estão chateados e com toda a razão do mundo pelo atraso destas últimas aulas. Noutra ocasião

Leia mais

CONTROLE ESTATÍSTICO DA QUALIDADE

CONTROLE ESTATÍSTICO DA QUALIDADE CONTROLE ESTATÍSTICO DA QUALIDADE Prof., PhD OBJETIVO DO CEP A idéia principal do Controle Estatístico de Processo (CEP) é que melhores processos de produção, ou seja, com menos variabilidade, propiciam

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA SÉRIES, TABELAS E GRÁFICOS ESTATÍSTICOS Departamento de Estatística Tarciana Liberal TABELAS TABELAS TABELAS TABELAS TABELAS SÉRIES ESTATÍSTICAS Um gerente de produção da

Leia mais

IMES Catanduva. Disciplina: Estatística na Fisioterapia. Estatística Descritiva Aplicada no Excel. Fisioterapia. Bertolo, L. A.

IMES Catanduva. Disciplina: Estatística na Fisioterapia. Estatística Descritiva Aplicada no Excel. Fisioterapia. Bertolo, L. A. IMES Catanduva Disciplina: Estatística na Fisioterapia Estatística Descritiva Aplicada no Excel, L. A. Fisioterapia Versão BETA Maio 2011 Capítulo 2 Medidas Estatísticas A distribuição de frequências permite-nos

Leia mais

Lista de Exercícios #1. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 1, seção 1.4, páginas 26-33.

Lista de Exercícios #1. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 1, seção 1.4, páginas 26-33. Universidade de São Paulo IME (Insituto de Matemática e Estatística) MAE 121 Profº. Wagner Borges São Paulo, 19 de março de 2002 Fernando Henrique Ferraz Pereira da Rosa Bach. Estatística Lista de Exercícios

Leia mais

Teste Intermédio A I (50%)

Teste Intermédio A I (50%) aculdade de Economia da Universidade ova de Lisboa 1304 Análise de Dados e robabilidades ernando Brito Soares Graça Silva edro Chaves Teste Intermédio A Data: 14 de Abril de 2007, 11.00 Duração: 2 horas

Leia mais

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4

Prova Parcial de Estatística I. Turma: AE1 AE2 AE3 AE4 ESCOLA DE ADMINISTRAÇÃO DE EMPRESAS DE SÃO PAULO FUNDAÇÃO GETULIO VARGAS Prova Parcial de Estatística I Data: Setembro / Professores: Eduardo Francisco Francisco Aranha Nelson Barth A Nome do Aluno: GABARITO

Leia mais

A Estatística, um ramo da Matemática, é aplicada em diferentes áreas, como Administração, Engenharia, Medicina, Psicologia, Ciências Sociais etc.

A Estatística, um ramo da Matemática, é aplicada em diferentes áreas, como Administração, Engenharia, Medicina, Psicologia, Ciências Sociais etc. ESTATÍSTICA DESCRITIVA MÓDULO 1 - INTRODUÇÃO À ESTATÍSTICA DESCRITIVA A Estatística, um ramo da Matemática, é aplicada em diferentes áreas, como Administração, Engenharia, Medicina, Psicologia, Ciências

Leia mais

Estatística Descritiva II

Estatística Descritiva II Estatística Descritiva II Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Estatística Descritiva II 1 o Semestre 2015 1 / 47 Objetivos da Aula

Leia mais

AT = X MÁX - X MÍN. Σ F i =n

AT = X MÁX - X MÍN. Σ F i =n UNIVERSIDADE FEDERAL DA PARAÍBA DISTRIBUIÇÃO DE FREQUÊNCIA Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente

Leia mais

MÓDULO 1. I - Estatística Básica

MÓDULO 1. I - Estatística Básica MÓDULO 1 I - 1 - Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos e empíricamente observáveis. Unidade Estatística nome dado a cada observação de um

Leia mais

Intervalos Estatísticos para uma Única Amostra

Intervalos Estatísticos para uma Única Amostra Roteiro Intervalos Estatísticos para uma Única Amostra 1. Introdução 2. Intervalo de Confiança para Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3.

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA a LISTA DE EXERCÍCIOS Bioestatística Professor: Ednaldo Carvalho Guimarães ) Um pesquisador obteve os seguintes valores de umidade (%) em casa

Leia mais

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis

Revisão: Noções básicas de estatística aplicada a avaliações de imóveis Curso de Avaliações Prof. Carlos Aurélio Nadal cnadal@ufpr.br 1 AULA 03 Revisão: Noções básicas de estatística aplicada a avaliações de imóveis 2 OBSERVAÇÃO: é o valor obtido durante um processo de medição.

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Estatística Básica. Armando Oscar Cavanha Filho

Estatística Básica. Armando Oscar Cavanha Filho Estatística Básica Armando Oscar Cavanha Filho 1- INTRODUÇÃO A Estatística tem ampliado a sua participação na linguagem das atividades profissionais da atualidade, já que os números e seus significados

Leia mais

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 1. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 1 Prof.: Patricia Maria Bortolon, D. Sc. Estatística Estatística

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

BIOMETRIA:CURVA DE CRESCIMENTO

BIOMETRIA:CURVA DE CRESCIMENTO UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA BIOMETRIA:CURVA DE CRESCIMENTO TAYANI RAIANA DE SOUZA ROQUE Disciplina: Estatística Aplicada Professores: Héliton

Leia mais

Lista de Exercícios 2ª Série Estatística Amanda

Lista de Exercícios 2ª Série Estatística Amanda Lista de Exercícios 2ª Série Estatística Amanda 1) O diabetes, doença relacionada ai nível de glicose no sangue, geralmente tem como sintomas: muita sede, vontade de urinar diversas vezes, perda de peso,

Leia mais

Faturamento de Restaurantes

Faturamento de Restaurantes Faturamento de Restaurantes Gilberto A. Paula Departamento de Estatística IME-USP, Brasil giapaula@ime.usp.br 2 o Semestre 2015 G. A. Paula (IME-USP) Faturamento de Restaurantes 2 o Semestre 2015 1 / 28

Leia mais

Análise exploratória de dados univariados. Introdução à Análise Estatística com. Natureza dos dados (e respectiva variável) Dados no R.

Análise exploratória de dados univariados. Introdução à Análise Estatística com. Natureza dos dados (e respectiva variável) Dados no R. Curso Introdução à Análise Estatística com Análise exploratória de dados univariados População Unidade Estatística Variável Amostra Sessão 3 Análise exploratória de dados Maria João Martins Objectivo:

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum. Também será denotada por população objetivo, que é sobre a qual desejamos

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Especialização em Engenharia Clínica

Especialização em Engenharia Clínica Especialização em Engenharia Clínica Introdução a Bioestatística Docente: > Marcelino M. de Andrade, Dr. Apresentação: Módulo 02 Teoria Elementar da Amostragem A teoria elementar da amostragem é um estudo

Leia mais

Instituto Politécnico de Viseu Escola Superior de Tecnologia

Instituto Politécnico de Viseu Escola Superior de Tecnologia Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005

Leia mais

Anexo 1. Definição das variáveis de análise

Anexo 1. Definição das variáveis de análise Métodos Anexo 1 Definição das variáveis de análise 1. Saúde: a. Taxa de mortalidade infantil (TMI): número de óbitos de menores de um ano de idade, por mil nascidos vivos, na população residente em determinado

Leia mais

PROBABILIDADE E ESTATÍSTICA (SI)

PROBABILIDADE E ESTATÍSTICA (SI) PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA Prof. Hélio Radke Bittencourt PROBABILIDADE E ESTATÍSTICA (SI) 1. CONCEITOS BÁSICOS DE ESTATÍSTICA

Leia mais

ActivALEA. active e actualize a sua literacia

ActivALEA. active e actualize a sua literacia ActivALEA active e actualize a sua literacia N.º 25 HIISTOGRAMA Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL memartins@fc.ul.pt Emília Oliveira Escola

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Ensino da Estatística na Educação Básica: Ferramenta Computacional como proposta para o processo pedagógico

Ensino da Estatística na Educação Básica: Ferramenta Computacional como proposta para o processo pedagógico Ensino da Estatística na Educação Básica: Ferramenta Computacional como proposta para o processo pedagógico José Carlos Coelho Saraiva 1 GD6 Educação Matemática, Tecnologias Informáticas e Educação à Distância

Leia mais

LISTA DE MATEMÁTICA. Aluno(a): Nº. 1. Determinada editora pesquisou o número de páginas das revistas mais vendidas em uma cidade.

LISTA DE MATEMÁTICA. Aluno(a): Nº. 1. Determinada editora pesquisou o número de páginas das revistas mais vendidas em uma cidade. LISTA DE MATEMÁTICA Aluno(a): Nº. Professor: Rosivane Série: 2 ano Disciplina: Matematica Data da prova: Pré Universitário Uni-Anhanguera MEDIDAS DE DISPERSÃO 1. Determinada editora pesquisou o número

Leia mais

Noções de Bioestatística. Luis Guillermo Coca Velarde, D.Sc. Departamento de Estatística E-mail: guilleco@terra.com.br guille@est.uff.

Noções de Bioestatística. Luis Guillermo Coca Velarde, D.Sc. Departamento de Estatística E-mail: guilleco@terra.com.br guille@est.uff. Noções de Bioestatística Luis Guillermo Coca Velarde, D.Sc. Departamento de Estatística E-mail: guilleco@terra.com.br guille@est.uff.br Índice Prefácio 4 1 Conceitos iniciais 6 1.1 Planejamentodeumapesquisa...

Leia mais

O BOXPLOT. Ana Maria Lima de Farias Departamento de Estatística (GET/UFF)

O BOXPLOT. Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) O BOXPLOT Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) Introdução O boxplot é um gráfico construído com base no resumo dos cinco números, constituído por: Valor mínimo Primeiro quartil

Leia mais

RESUMO DA AULA PRÁTICA DE EXCEL

RESUMO DA AULA PRÁTICA DE EXCEL PARA CONSTRUIR TABELAS: RESUMO DA AULA PRÁTICA DE EXCEL Vai em ; Em seguida irá abrir a janela: Na parte Selecione os dados ou somente a variável que deseja analisar, por exemplo: Em seguida marque a opção

Leia mais

1ª Actividade Formativa

1ª Actividade Formativa 1ª Actividade Formativa 1. Foi feito um inquérito a um grupo de 40 compradores de carros novos, de determinada marca, para determinar quantas reparações ou substituições de peças foram feitas durante o

Leia mais

Aula 00 Curso: Noções de Estatística p/ Auditor TCU Professor: Fábio Amorim

Aula 00 Curso: Noções de Estatística p/ Auditor TCU Professor: Fábio Amorim Aula 00 Curso: Noções de Estatística p/ Auditor TCU Professor: Fábio Amorim Prof. Fábio Amorim 1 de 38 Olá pessoal! Curso: Noções de Estatística p/ Auditor TCU Sejam bem vindos ao Exponencial Concursos!

Leia mais

Histogramas. 12 de Fevereiro de 2015

Histogramas. 12 de Fevereiro de 2015 Apêndice B Histogramas Uma situação comum no laboratório e na vida real é a de se ter uma grande quantidade de dados e deles termos que extrair uma série de informações. Encontramos essa situação em pesquisas

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais