CÔNICAS. Cristianeguedes.pro.br/cefet

Tamanho: px
Começar a partir da página:

Download "CÔNICAS. Cristianeguedes.pro.br/cefet"

Transcrição

1 CÔNICAS Cristianeguedes.pro.br/cefet

2 Seções Cônicas São curvas obtidas pela interseção de um cone com um plano.

3

4 Circunferência É o lugar geométrico plano dos pontos que estão à mesma distância r de um ponto C dado (centro ). Equação reduzida da circunferência Considere o ponto C de coordenadas ( C, y C ), chamado centro, e a distância r, chamada raio. Os pontos pertencentes à circunferência Ω devem atender à equação:

5 Tal equação é obtida a partir da aplicação do teorema de Pitágoras a todos os pontos da circunferência. Se P ϵ Ω d pc = r Equação geral Do desenvolvimento da equação reduzida, obtém-se: y y y y r 0 c c c c y a by c 0 com a, b e c constantes reais.

6 Elipse É o lugar geométrico plano no qual a soma das distâncias de qualquer ponto sobre a curva até dois pontos dados F 1 e F (focos), é constante e maior que a distância entre os focos. Elementos Focos: os pontos F 1 e F Eio maior: o segmento A A 1 A, que passa pelos focos (A 1 A = a) Centro: o ponto O, médio de A 1 A A 1 A Eio menor: o segmento B 1 B, perpendicular a A 1 A A 1 A, que passa por O (B 1 B = b). Distância focal: a distância c = F 1 F entre os focos

7 y B1 (0;b) P(;y) a A1 A F1(-c;0) 0 F(c;0) (a;0) B (0; -b)

8 y b F a

9 y F a F1 b

10 y F1 y C(, y ) F b F a a C(, y ) F1 b

11 Equação Elipse com eio maior na horizontal (a > b): Elipse com eio maior na vertical (a > b): Ecentricidade A razão e = c/a (com c a).

12 Propriedade Refletora Uma propriedade muito importante da elipse é que qualquer raio luminoso ou onda sonora que saia de um dos focos será refletido pela elipse na direção do outro foco, conforme indicado na figura abaio:

13 Aplicações A propriedade refletora justifica algumas aplicações da elipse como, por eemplo, a aplicação óptica de um dispositivo de iluminação usado em consultórios odontológicos. Este dispositivo consiste num espelho com a forma de um arco de elipse e numa lâmpada que se coloca no foco mais próimo. A luz da lâmpada é concentrada pelo espelho no outro foco, ajustandose o dispositivo de forma a iluminar o ponto desejado.

14 Aplicações Na astronomia, a descoberta do cometa Halley é paradigmática. Em 1704 Edmund Halley estudou as órbitas de vários cometas, para as quais eistiam dados. Concluiu que os cometas de 168, 1607, 1531 e 1456 eram afinal um único cometa que descrevia uma órbita elíptica à volta do sol com um período de cerca de 76 anos. Fez a previsão correta de seu retorno em 1758, o que fez que o cometa ficasse conhecido pelo seu nome.

15 Aplicações Investigações recentes sugerem que os chineses tivessem registrado este cometa em cerca de 40 a.c... Mesmo depois de Copérnico, que no século XVI formulou a teoria heliocêntrica, se acreditava que o Movimento natural era o movimento circular e, por isso, os planetas deveriam seguir esse tipo de trajetórias à volta do sol. Foi o astrônomo e matemático alemão Johannes Kepler, em 1969, que descobriu que cada planeta descreve uma elipse de que o sol ocupa um dos focos (1 primeira lei de Kepler). O interesse de Kepler pelas cônicas surgiu devido às suas aplicações à óptica e a construção de espelhos parabólicos.

16 Parábola Dados uma reta r e um ponto F fora dela, é o lugar geométrico plano dos pontos que equidistam de r e F. Elementos Foco: o ponto F Diretriz: a reta r Eio de simetria: a reta s, perpendicular a r, que passa pelo foco Vértice: o ponto V, intersecção da parábola com o eio de simetria Parâmetro da parábola: a distância p entre o foco e a diretriz, i.e, p = FD

17 Equação Forma geral: Pelas coordenadas do vértice: Equação reduzida concavidade para cima: concavidade para baio: Parábola com diretriz na vertical:

18 Propriedade Refletora A propriedade de destaque na parábola, denominada de propriedade de refleão, é o fato de que todo raio luminoso ou onda sonora que incida sobre a parábola paralelamente ao seu eio é refletido de modo a passar pelo foco da parábola. O processo inverso também acontece, ou seja, qualquer raio ou onda que seja emitido do foco da parábola e que incida sobre a parábola é refletido numa mesma direção segundo retas paralelas ao eio da parábola. Essa propriedade faz com que a parábola apresente várias aplicações, como por eemplo, em antenas parabólicas, faróis de veículos, fornos solares e em telescópios.

19 Aplicações Antenas parabólicas e Radares É comum observarmos no alto de residências e edifícios as Antenas Parabólicas, que captam ondas eletromagnéticas que são enviadas por satélites em órbita ao redor da terra. Isto somente é possível devido à propriedade da parábola de refletir o conjunto de raios recebidos em um único ponto (o foco da parábola). Neste ponto encontra-se posicionado o receptor de ondas, que enviará o sinal recebido para um conversor que as decodificará e enviará para o receptor de televisão. Os aparelhos de radar operam de forma semelhante às antenas parabólicas, recebendo o eco de pulsos eletromagnéticos.

20 Aplicações Faróis de veículos Os refletores parabólicos de faróis e lanternas permitem que a luz da lâmpada localizada no foco se propague em raios paralelos ao eio da parábola formando o facho. As lentes parabólicas posicionadas na parte de trás dos faróis dos veículos permitem que a luz gerada pelos mesmos seja direcionada para um ponto específico, o foco da parábola, que normalmente é apontado para o solo, evitando desta forma que a luz de um carro ofusque a visão de um motorista que venha em direção oposta.

21 Hipérbole Dados dois pontos F 1 e F (chamados focos), é o lugar geométrico plano cuja diferença, em módulo, entre as distâncias de qualquer ponto aos focos é constante e menor que F 1 F. Elementos Focos: os pontos F 1 e F Distância focal: a distância c = F 1 F entre os focos Vértices: os pontos A 1 e A, intersecções de F 1 F com a hipérbole Centro: o ponto médio O de A 1 A Eio real ou transverso: o segmento A 1 A (A 1 A = a) Eio imaginário ou conjugado: o eio B 1 B (B 1 B = b)

22 Equação reduzida Eio geral horizontal: Eio real na vertical: Assíntotas: duas retas secantes que passam pelo seu centro e não a interceptam. Suas equações são dadas por: r 1 : b - ay = 0 r : b + ay = 0

23 Ecentricidade É a razão e = c a (com c > a). À medida que essa razão se aproima de 1, os ramos da hipérbole se tornam mais fechados; no ponto em que e tende a infinito, seus ramos se tornam mais abertos. Observe:

24 Propriedade Refletora A propriedade de refleão da hipérbole afirma que qualquer segmento de reta dirigido a um dos focos da hipérbole encontra o ramo correspondente e é refletido em direção ao outro foco.

25 Aplicações Essa propriedade é muito aplicada nos telescópios de refleão, os quais são constituídos de dois espelhos, sendo um maior, que é parabólico e outro menor, que é hiperbólico. Esses dois espelhos dispõem-se de modo que os eios da parábola e da hipérbole coincidam e que o foco da parábola coincida com um dos focos da hipérbole. Nesse tipo de telescópio, quando os raios de luz se refletem no espelho parabólico são dirigidos para o foco, pela propriedade de refleão da parábola.

26 Como este também é foco da hipérbole, pela propriedade de refleão desta os raios de luz refletem-se no espelho hiperbólico e seguem em direção ao outro foco da hipérbole. Os raios de luz passam através de um orifício no centro do espelho primário, atrás do qual está uma lente-ocular que permite corrigir ligeiramente a trajetória da luz, que chega finalmente aos olhos do observador ou à película fotográfica. A vantagem deste tipo de telescópio reside no fato de ter um comprimento muito menor do que os telescópios de refração (isto é, de lentes) com o mesmo poder de ampliação.

27 Eemplos )4 1 5 )4 5 5 ) ) y y d y c y b y a

28 Eercícios 1) Esboçar o gráfico das seguintes curvas: a) b)4 c)4 3y y 3y 4 6y y 7 0 ) Os pontos de interseção da reta +y= com a elipse 4y 4 são P e Q. Determine a distância entre P e Q. 3) Determine o valor de b, sabendo que a reta y = + b é tangente à elipse y 4) O maior valor de k para o qual a reta y = + k e a parábola y 4 apresentam ponto comum é:

29 Continuação dos Eercícios 1 y 5) Determine os valores de m para os quais a reta y = m não intercepta a hipérbole 6) Determine os possíveis valores de k, sabendo que a parábola e a circunferência abaio têm quatro pontos em comum: 7) A equação que representa duas retas perpendiculares é: 1 ) ( y k y y y y y

A ELIPSE, A PARÁBOLA E A HIPÉRBOLE - PROPRIEDADES E APLICAÇÕES -

A ELIPSE, A PARÁBOLA E A HIPÉRBOLE - PROPRIEDADES E APLICAÇÕES - A ELIPSE, A PARÁBOLA E A HIPÉRBOLE - PROPRIEDADES E APLICAÇÕES - João Filipe Queiró Universidade de Coimbra (responsável pelo módulo dos bilhares) A elipse, a parábola e a hipérbole são curvas que possuem

Leia mais

APLICAÇÕES DE CÔNICAS NA ENGENHARIA

APLICAÇÕES DE CÔNICAS NA ENGENHARIA O que você deve saber sobre APLICAÇÕES DE CÔNICAS NA ENGENHARIA As equações das curvas chamadas cônicas recebem esse nome devido à sua origem (a intersecção de um cone por um plano) e podem ser determinadas

Leia mais

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada

Este trabalho foi licenciado com a Licença Creative Commons Atribuição - NãoComercial - SemDerivados 3.0 Não Adaptada 1. Introdução Definição: Parábola é o lugar geométrico dos pontos do plano cujas distâncias entre uma reta fixa, chamada de reta diretriz, e a um ponto fixo situado fora desta reta, chamado de foco da

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa este conjunto de pontos

Leia mais

Geometria Analítica: Cônicas

Geometria Analítica: Cônicas Geometria Analítica: Cônicas 1 Geometria Analítica: Cônicas 1. Parábola Definição: Considere em um plano uma reta d e um ponto F não pertencente à d. Parábola é o lugar geométrico formado pelo conjunto

Leia mais

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas CÔNICAS Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas Parábola Elipse Hipérbole Circunferência 1.Parábola 1.1 Definição Parábola é o lugar geométrico de todos

Leia mais

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

SUPERFÍCIES QUÁDRICAS

SUPERFÍCIES QUÁDRICAS 1 SUPERFÍCIES QUÁDRICAS Dá-se o nome de superfície quádrica ou simplesmente quádrica ao gráfico de uma equação do segundo grau, nas variáveis, e, da forma: A + B + C + D + E + F + G + H + I + K = 0, que

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Profª.. Deli Garcia Ollé Barreto

Profª.. Deli Garcia Ollé Barreto CURVAS CÔNICAS Curvas cônicas são curvas resultantes de secções no cone reto circular. Cone reto circular é aquele cuja base é uma circunferência e a projeção do vértice sobre o plano da base é o centro

Leia mais

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,

Leia mais

CÔNICAS E QUÁDRICAS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

CÔNICAS E QUÁDRICAS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga CÔNICAS E QUÁDRICAS Álgebra Linear e Geometria Analítica Prof. Aline Paliga 11.1 CÔNICAS Pierre de Fermat (1601-1665) estabeleceu o princípio fundamental da Geometria Analítica, segundo o qual, uma equação

Leia mais

A N A L Í T I C A UNEB / DCET I. Prof. ADRIANO CATTAI. Apostila 01: Cônicas

A N A L Í T I C A UNEB / DCET I. Prof. ADRIANO CATTAI. Apostila 01: Cônicas ac G E O M E T R I A UNEB / DCET I A N A L Í T I C A 01 Prof. ADRIANO CATTAI Apostila 01: Cônicas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições

Leia mais

Funções quadráticas. Matemática - UEL Compilada em 18 de Março de 2010.

Funções quadráticas. Matemática - UEL Compilada em 18 de Março de 2010. Matemática Essencial Funções quadráticas Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 A função quadrática

Leia mais

Aula 15 Parábola. Objetivos

Aula 15 Parábola. Objetivos MÓDULO 1 - AULA 15 Aula 15 Parábola Objetivos Descrever a parábola como um lugar geométrico determinando a sua equação reduzida nos sistemas de coordenadas com eixo x paralelo à diretriz l e origem no

Leia mais

ASPECTOS HISTÓRICOS E A IMPORTÂNCIA DAS CÔNICAS

ASPECTOS HISTÓRICOS E A IMPORTÂNCIA DAS CÔNICAS Título: O ENCANTO DAS CÔNICAS COM RÉGUA E COMPASSO Nome dos autores: Ediléia Novais Alves Jercino Mendes de Souza Tiago Cardoso Silveira RESUMO: A teoria das cônicas com origem no século IV a.c. desenvolveu-se

Leia mais

Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6

Hipérbole. Sumário. 6.1 Introdução Hipérbole Forma canônica da hipérbole... 6 6 Hipérbole Sumário 6.1 Introdução....................... 2 6.2 Hipérbole........................ 2 6.3 Forma canônica da hipérbole............. 6 6.3.1 Hipérbole com centro na origem e reta focal coincidente

Leia mais

MÓDULO 1 - AULA 21. Objetivos

MÓDULO 1 - AULA 21. Objetivos Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio

Leia mais

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6.

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa Nome: 4 ā Lista de Geometria Analítica e Álgebra Linear No que segue, todas as bases utilizadas

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Curiosidades relacionadas com o Cartaz da OBMEP 2017

Curiosidades relacionadas com o Cartaz da OBMEP 2017 Curiosidades relacionadas com o Cartaz da OBMEP 2017 As esferas de Dandelin A integração das duas maiores competições matemáticas do país, a OBMEP e a OBM, inspirou-nos a anunciar nos quatro cantos do

Leia mais

9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros

9º ANO FUNÇÕES. Função Quadrática. Nuno Marreiros Nuno Marreiros 9º ANO FUNÇÕES Função Quadrática Ponto de partida Já foi estudada a função de proporcionalidade direta bem como a função de proporcionalidade inversa. Hoje vamos aprender e estudar um pouco

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

AS CÔNICAS DE APOLÔNIO

AS CÔNICAS DE APOLÔNIO Sociedade na Contemporaneidade: desafios e possibilidades AS CÔNICAS DE APOLÔNIO Arianne Alves da Silva Universidade Federal de Uberlândia arianne@mat.pontal.ufu.br Mirianne Andressa Silva Santos Universidade

Leia mais

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47

1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47 ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Gráfico da função quadrática e inequações de segundo grau. Primeiro Ano do Ensino Médio

Gráfico da função quadrática e inequações de segundo grau. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Gráfico da função quadrática e inequações de segundo grau Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha

Leia mais

Outras características dos espelhos planos são:

Outras características dos espelhos planos são: ÓPTICA Espelhos O espelho plano se caracteriza por apresentar uma superfície plana e polida, onde a luz que é incidida reflete de forma regular. Para obter um bom grau de reflexão, é necessário que a variação

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 63 CÔNICAS

MATEMÁTICA - 2 o ANO MÓDULO 63 CÔNICAS MATEMÁTICA - 2 o ANO MÓDULO 63 CÔNICAS Fixação 1) (UnB) O cometa Halley tem uma órbita n elíptica com eixo maior e eixo menor iguais a 540 x 10 7 km e 140 x 10 7 km, respectivamente. Sabendo que o Sol

Leia mais

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS

EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1 EXERCÍCIOS RESOLVIDOS CURVAS CÔNICAS 1. ENCONTRAR OS FOCOS DE UMA ELIPSE SENDO DADOS O EIXO MAIOR E O MENOR. Sejam os eixos AA' e BB' dados que se intersectam no ponto O (centro da elipse). Coloque a

Leia mais

Ricardo Bianconi. Fevereiro de 2015

Ricardo Bianconi. Fevereiro de 2015 Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 2º ano - Física - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 2º ano - Física - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 2º ano - Física - 3º trimestre Aluno: Série: Turma: Data: Questão 1 A imagem de um objeto formada por um espelho côncavo mede metade do tamanho do objeto. Se o objeto é deslocado

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS PROF. PEDRO RIBEIRO

LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS PROF. PEDRO RIBEIRO LISTA DE EXERCÍCIOS ESPELHOS ESFÉRICOS PROF. PEDRO RIBEIRO Questão 01 - (UEPG PR) A figura abaixo representa um espelho esférico convexo com um objeto à sua frente. A distância do objeto ao espelho é igual

Leia mais

Algumas aplicações da Geometria Analítica. Some applications of Analytic Geometry

Algumas aplicações da Geometria Analítica. Some applications of Analytic Geometry Algumas aplicações da Geometria Analítica André Luiz Ferreira * andreferreira79@yahoo.com.br Resumo O principal objetivo deste texto é apresentar alguns tópicos de Geometria Analítica abertamente aplicados

Leia mais

Exercícios Dissertativos

Exercícios Dissertativos Exercícios Dissertativos 1. (2002) O Sol tem diâmetro de 1, 4.10 9 m e a sua distância média à Terra é de 1, 5.10 11 m. Um estudante utiliza uma lente convergente delgada de distância focal 0,15 m para

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Raios de luz: se propagam apenas em uma. direção e em um sentido

Raios de luz: se propagam apenas em uma. direção e em um sentido A luz é uma onda eletromagnética, cujo comprimento de onda se inclui num determinado intervalo dentro do qual o olho humano é a ela perceptível. O seu estudo é a base da óptica. Raios de luz: se propagam

Leia mais

Apostila de Física 35 Reflexão da Luz Espelhos Esféricos

Apostila de Física 35 Reflexão da Luz Espelhos Esféricos Apostila de Física 35 Reflexão da Luz Espelhos Esféricos 1.0 Definições Um plano, ao cortar uma superfície esférica, divide-a em 2 partes calotas de calotas esféricas. Espelho esférico Uma calota esférica,

Leia mais

1 a série E.M. Professores Tiago Miranda e Cleber Assis

1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine

Leia mais

Anual de Física ª Lista de embasamento Espelhos Planos e Esféricos

Anual de Física ª Lista de embasamento Espelhos Planos e Esféricos nual de Física 2015 Questão 01 figura mostra um par de espelhos E 1 e E 2 verticais distanciados 40 cm entre si. Dois pontos e encontram-se alinhados verticalmente e equidistantes dos dois espelhos como

Leia mais

Espelhos esféricos. Calota esférica

Espelhos esféricos. Calota esférica Espelhos esféricos Espelhos esféricos são espelhos que resultam do corte de uma esfera formando o que se chama de calota esférica.nesses espelhos, uma das superfícies da calota é espelhada, produzindo

Leia mais

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner

Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner Material by: Caio Guimarães (Equipe Rumoaoita.com) Referência: cadernos de aula: Professor Eduardo Wagner 3 - Parábolas Definição 1.1: Dados um ponto no plano F e uma reta d no plano, é denominada Parábola

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professoras: Rosimeire Borges 2ª RECUPERAÇÃO AUTÔNOMA DE FÍSICA

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professoras: Rosimeire Borges 2ª RECUPERAÇÃO AUTÔNOMA DE FÍSICA COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO - 2013 Professoras: Rosimeire Borges 2ª RECUPERAÇÃO AUTÔNOMA DE FÍSICA ROTEIRO DE ESTUDO - QUESTÕES Estudante: Turma: Data: / / Conteúdos: - CAPÍTULO

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios Recuperação do 4º Bimestre Nome: Física Série: 2 ª série Ensino Médio Nº: CONTEÚDO: ÓPTICA GEOMÉTRICA 1- A figura representa um espelho plano

Leia mais

Espelhos Esféricos 2017

Espelhos Esféricos 2017 TEXTO PARA A PRÓXIMA QUESTÃO: Considere o campo gravitacional uniforme. 1. (Pucrs 2017) Na figura abaixo, ilustra-se um espelho esférico côncavo E e seus respectivos centro de curvatura (C), foco (F) e

Leia mais

19/Dez/2012 Aula Sistemas ópticos e formação de imagens 23.1 Combinação de lentes 23.2 Correcção ocular 23.3 Microscópio 23.

19/Dez/2012 Aula Sistemas ópticos e formação de imagens 23.1 Combinação de lentes 23.2 Correcção ocular 23.3 Microscópio 23. 7/Dez/2012 Aula 22 22. Óptica geométrica 22.1 Espelhos planos 22.2 Espelhos curvos (esféricos) 22.3 Espelhos convexos 22.4 Imagens formadas por refracção 22.5 Lentes finas 22.6 Lentes grossas 22.7 Convenções

Leia mais

Vetores e Geometria Analítica

Vetores e Geometria Analítica Vetores e Geometria Analítica ECT2102 Prof. Ronaldo Carlotto Batista 4 de maio de 2016 Círculo Denição Círculo é o conjunto de pontos P (x, y) a uma distância a, chamada de raio, de um ponto C (x o, y

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

6. (Upe 2011) Em relação aos espelhos esféricos, analise as proposições que se seguem:

6. (Upe 2011) Em relação aos espelhos esféricos, analise as proposições que se seguem: º Lista de exercícios ESPELHOS ESFÉRICOS PROFESSOR: DUDU. (Uemg 0) Muitos profissionais precisam de espelhos em seu trabalho. Porteiros, por exemplo, necessitam de espelhos que lhes permitem ter um campo

Leia mais

Questão 2: Considere a hipérbole descrita pela equação 9x 2 16y 2 = 144. vértices, focos e esboce seu gráco.

Questão 2: Considere a hipérbole descrita pela equação 9x 2 16y 2 = 144. vértices, focos e esboce seu gráco. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 8 - Cônicas e Quádricas

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Sumário. O Universo. Modelo geocêntrico

Sumário. O Universo. Modelo geocêntrico Sumário 2- Estudo do Universo - Modelos de organização do Universo: Teoria Geocêntrica e Teoria Heliocêntrica. - Da Astronomia a olho nu às lunetas e telescópios. Explorando o espaço. - Teoria do Big Bang

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

FÍSICA MÓDULO 14 A REFLEXÃO DA LUZ EM ESPELHOS PLANOS E ESFÉRICOS. Professor Sérgio Gouveia

FÍSICA MÓDULO 14 A REFLEXÃO DA LUZ EM ESPELHOS PLANOS E ESFÉRICOS. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 14 A REFLEXÃO DA LUZ EM ESPELHOS PLANOS E ESFÉRICOS 1. ESPELHO É qualquer superfície polida capaz de refletir a luz. 2. ESPELHO PLANO É uma superfície plana polida.

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

O Universo e o Sistema Solar

O Universo e o Sistema Solar O Universo e o Sistema Solar 1 O cientista não estuda a natureza porque ela é útil; ele a estuda porque tem prazer nisso, e ele tem prazer nisso porque ela é linda. Se a natureza não fosse linda, não valeria

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA., a 0 é chamada função do função

INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA., a 0 é chamada função do função INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS SERRA BACHARELADO EM SISTEMAS DE INFORMAÇÃO FUNÇÃO QUADRÁTICA 1. DEFINIÇÃO A função quadrática. f : R R definida por f ( x) = ax + x + c, a 0 é chamada função

Leia mais

Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental

Apostila de Geometria Analítica Prof. Luciano Soares Pedroso 1º período de Agronomia e Engenharia Ambiental postila de Geometria nalítica º período de gronomia e Engenharia mbiental luno(a): data: / /0 GEOMETRII NLÍÍTIIC.. O PLNO CRTESIINO Y ( eio das ORDENDS ) issetriz dos quadrantes pares issetriz dos quadrantes

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE

Borja ESTABILIDADE DAS CONSTRUÇÕES NOTAS DE AULA: - Prof. INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA e TECNOLOGIA DO RIO GRANDE DO NORTE DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL TEC. EM CONSTR. DE EDIFICIOS EDIFICAÇÕES TÉCNICO SUBSEQUENTE ESTABILIDADE DAS CONSTRUÇÕES

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA IV Co Capítulo 04 Ângulos entre Retas; Inequações no Plano; Circunferência 0 D Analisando o gráfico, tem-se que as coordenadas dos estabelecimentos são: 01 A) 03 C Assim,

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

Apêndice I Funções e Gráficos

Apêndice I Funções e Gráficos http://www.medeirosjf.net/fisica Física I Apêndice I: Funções e Gráficos pág.i 1 - Introdução Apêndice I Funções e Gráficos Neste apêndice, iremos trabalhar com alguns pré-requisitos básicos para que você

Leia mais

Elementos ópticos. 1 - Conceitos relacionados. Reflexão e refração da luz, imagem real, imagem virtual, distância focal.

Elementos ópticos. 1 - Conceitos relacionados. Reflexão e refração da luz, imagem real, imagem virtual, distância focal. 1 - Conceitos relacionados Reflexão e refração da luz, imagem real, imagem virtual, distância focal. 2 - Objetivos Determinar a distância focal, o centro de curvatura e verificar a formação de imagens

Leia mais

Matemática Régis Cortes GEOMETRIA ANALÍTICA

Matemática Régis Cortes GEOMETRIA ANALÍTICA GEOMETRI NLÍTIC 1 GEOMETRI NLÍTIC Foi com o francês René Descartes, filósofo e matemático que surgiu a geometria analítica. issetriz dos quadrantes pares º QUDRNTE ( -, + ) Y ( eio das ORDENDS ) 1º QUDRNTE

Leia mais

MAT Poli Roteiro de Estudos sobre as Cônicas

MAT Poli Roteiro de Estudos sobre as Cônicas MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +

Leia mais

COLÉGIO PREVEST ÓPTICA GEOMÉTRICA ESPELHOS ESFÉRICOS DISCIPLINA FÍSICA PROFESSOR PAULO SÉRGIO ESPELHOS ESFÉRICOS DE GAUSS

COLÉGIO PREVEST ÓPTICA GEOMÉTRICA ESPELHOS ESFÉRICOS DISCIPLINA FÍSICA PROFESSOR PAULO SÉRGIO ESPELHOS ESFÉRICOS DE GAUSS COLÉGIO PREVEST ÓPTICA GEOMÉTRICA ESPELHOS ESFÉRICOS DISCIPLINA FÍSICA PROFESSOR PAULO SÉRGIO ESPELHOS ESFÉRICOS DE GAUSS IMAGENS EM ESPELHOS ESFÉRICOS - CÔNCAVOS E CONVEXOS 01 - (PUC SP/2016) Determine

Leia mais

Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas

Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Geometria Analítica Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas 1 Coordenadas no Espaço Vamos introduir um sistema de coordenadas retangulares no espaço. Para isto, escolhemos um ponto

Leia mais

LISTA 2 ESPELHOS PLANOS (MÓD. 3 E 4)

LISTA 2 ESPELHOS PLANOS (MÓD. 3 E 4) 1. (Epcar (Afa) 2016) Considere um objeto formado por uma combinação de um quadrado de aresta a cujos vértices são centros geométricos de círculos e quadrados menores, como mostra a figura abaixo. Colocando-se

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Anual de Física 2014 Exercícios de Embasamento Espelhos esféricos

Anual de Física 2014 Exercícios de Embasamento Espelhos esféricos Questão 01 (Vunesp) Isaac Newton foi o inventor do Telescópio Refletor. O mais caro desses instrumentos até hoje fabricado pelo homem, o telescópio Espacial Hubble, custa cerca de 1,6 bilhões de dólares.

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA

18/06/13 REVISTA DO PROFESSOR DE MATEMÁTICA - SOCIEDADE BRASILEIRA DE MATEMÁTICA COMPUTADOR NA SALA DE AULA Estudo das cônicas com Geometria Dinâmica José Carlos de Souza Jr. Andréa Cardoso Unifal MG COMPUTADOR NA SALA DE AULA A exploração de softwares de Geometria Dinâmica nos permite

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência.

Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Prof : André Costa. Equação da circunferência; Sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Então: Portanto, (x - a) 2

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana, denominada diretriz, paralelamente a uma reta

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 11 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Aula 18 Cilindros quádricos e identificação de quádricas

Aula 18 Cilindros quádricos e identificação de quádricas MÓDULO 2 - AULA 18 Aula 18 Cilindros quádricos e identificação de quádricas Objetivos Estudar os cilindros quádricos, analisando suas seções planas paralelas aos planos coordenados e estabelecendo suas

Leia mais

Unidade 1 SOM E LUZ. Ciências Físico-químicas - 8º ano de escolaridade. Reflexão da Luz e Espelhos. Objetivos. Unidade 1 Som e Luz

Unidade 1 SOM E LUZ. Ciências Físico-químicas - 8º ano de escolaridade. Reflexão da Luz e Espelhos. Objetivos. Unidade 1 Som e Luz Ciências Físico-químicas - 8º ano de escolaridade Unidade 1 SOM E LUZ Reflexão da Luz e Espelhos Objetivos Interpretar e reconhecer a importância da reflexão e difusão da luz. Distinguir e reconhecer a

Leia mais

EXERCÍCIOS DE ESPELHOS

EXERCÍCIOS DE ESPELHOS EXERCÍCIOS DE ESPELHOS 1. (UFV-94) As figuras abaixo pretendem representar objetos (O) e suas respectivas imagens (I), refletidas num espelho plano. Em relação às figuras, assinale a opção correta: a.

Leia mais

2ª série ESPELHOS ESFÉRICOS. Ensino Médio. Professor(a): Paulo Sérgio DIA:16 MÊS: 03. Segmento temático: ESPELHOS ESFÉRICOS DE GAUSS

2ª série ESPELHOS ESFÉRICOS. Ensino Médio. Professor(a): Paulo Sérgio DIA:16 MÊS: 03. Segmento temático: ESPELHOS ESFÉRICOS DE GAUSS A: Professor(a): Paulo Sérgio 04 2ª série Ensino Médio Turma: A e B Aluno(a): Segmento temático: ESPELHOS ESFÉRICOS DIA:16 MÊS: 03 2017 ESPELHOS ESFÉRICOS DE GAUSS IMAGENS EM ESPELHOS ESFÉRICOS - CÔNCAVOS

Leia mais

5 - (UFMG) As figuras representam, de forma esquemática, espelhos e lentes.

5 - (UFMG) As figuras representam, de forma esquemática, espelhos e lentes. 1 - (Unicamp) Um sistema de lentes produz a imagem real de um objeto, conforme a figura a seguir. Calcule a distância focal e localize a posição de uma lente delgada que produza o mesmo efeito. 4 - (Uerj)

Leia mais