σ-álgebras, geradores e independência

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "σ-álgebras, geradores e independência"

Transcrição

1 σ-álgebras, geradores e independência Roberto Imbuzeiro M. F. de Oliveira 15 de Março de 2009 Resumo Notas sobre a σ-álgebra gerada por uma variável aleatória X e sobre as condições de independência de σ-álgebras. Nos dois casos, prova-se que a condição a ser checada vale se e somente se ela vale sobre os geradores da σ-álgebra em questão. Mostramos também que uma função cumulativa sobre R d é um produto de funções de cada coordenada se e somente se as coordenadas do vetor aleatório correspondendo a F são independentes. Todos os resultados dados aqui podem ser tomados como hipótese nas listas posteriores. 1 A σ-álgebra gerada por X Seja X : Ω Θ, onde (Ω, F) (Θ, G) são espaços mensuráveis. Para B Θ, defina {X B} = X 1 (B) = {ω Ω : X(ω) B}. Definição 1 (σ-álgebra gerada por X). A σ-álgebra gerada por X é o subconjunto σ(x) = {X 1 (B) : B G}. X é dita mensurável (ou variável aleatória) se σ(x) F, isto é: Proposição 2. Temos 1. X 1 (Θ) = Ω, X 1 ( ) = ; B G, X 1 (B) F. 2. para todo A G (X 1 (A)) c = X 1 (A c ); IMPA, Rio de Janeiro, RJ, Brazil,

2 3. para toda seqüência {A i } + i=1 em G, + i=1 X 1 (A i ) = X 1 ( + i=1 A i). Por conseguinte, σ(x) é de fato uma σ-álgebra. Prova: [Exercício.] É conveniente saber que a consição definindo mensurabilidade não precisa ser checada para todos os sub-conjuntos de uma σ-álgebra, mas apenas para algum sub-conjunto que a gera. Proposição 3. Seja O um conjunto gerador para G. Então X é mensurável se e somente se X 1 (O) F para todo O O. Prova: O somente se é trivial. Para provar o se, considere G X = {B G : X 1 (B) F}. Usando o raciocínio da proposição anterior, vemos que G X é uma σ-álgebra. Por hipótese, G X contem O; mas então G X σ(o), que é a σ-álgebra gerada por O, que é G. Logo G = G X, o que significa que para todo B G tem-se X 1 (B) F. Exemplo 4. Se Ω, Θ são espaços topológicos com F, G geradas por seus respectivos abertos, toda X : F G contínua é mensurável: de fato, basta tomar O =abertos no resultado acima e notar que X 1 (O) é aberto (logo está em F) para todo O O. Se X : R R é monótona, pode-se tomar O = {(, r] : r R} e provar que X é necessariamente mensurável. Proposição 5. Seja {X i : Ω Θ i } i A uma família de v.a.s, quando cada Θ i é dotado de uma σ-álgebra G i. Considere o vetor X : Ω Θ = i A Θ i ω (X i (ω)) i A. Seja Θ dotado da σ-álgebra produto G. Então X é F/G mensurável. Observação 6. Se X é mensurável, então cada X i o é. [Exercício] Prova: G é gerada por O = {A j {(θ i ) i A Θ : θ j A} : j A, A G j }. Note que X 1 (A j ) = Xj 1 (A) F sempre que A G j, posto que X j é mensrável. Segue que X 1 (O) F para todo O O, o que implica o resultado desejado. 2

3 Exercício 1. Considere novamente o produto cartesiano Θ = i A Θ i, onde cada (Θ i, G i ) é mensurável e G é a σ-álgebra produto. Dado B A, construa de maneira similar Θ = i B Θ i com σ-álgebra G. Então a projeção Π é mensurável: Π : Θ Θ (θ i ) i A (θ j ) j B. Exercício 2. A composição de funções mensuráveis é mensurável. Proposição 7. Seja Y : Ω Γ, onde (Γ, H = B(Γ)) é um espaço métrico separável completo com a σ-álgebra de Borel correspondente. Y é σ(x)/hmensurável se e somente se existe f : Θ Γ G/H-mensurável tal que Y é a composição Y = f(x) f X. A prova requerirá alguns fatos sobre espaços métricos e conjuntos de Borel neles. Observação 8. A hipótese sobre Γ significa que há uma métrica d sobre Γ tal que toda seqüência de Cauchy converge e um conjunto enumerável D que é denso em Γ. Neste caso, se g i : Θ Γ uma seqüência de funções mensuráveis, o conjunto é mensurável. De fato [Exercício], L = n N m N L {θ Θ : lim i g i (θ)} γ D i m gi 1 (B(γ, 1/n)), onde B(x, ɛ) é a bola aberta de raio ɛ ao redor de x. Além disso, se definimos f como sendo igual a lim i g i no conjunto L e igual a um c Γ arbitrário fora dele, f é mensurável [Exercício]. Prova: Mais uma vez a parte somente se é trivial. Para provar o se, seja Y : Ω Γ σ(x)/h mensurável. Suponha primeiro que Y é simples, isto é, que há uma partição Γ = H 1 H 2 H 3... em conjuntos mensuráveis e valores distintos γ k Γ tais que Y (ω) = γ k quando ω H k. Escreveremos: Y = k 1 γ k I Hk. 3

4 Neste caso, cada H i está em σ(x); logo há conjuntos E i G que são necessariamente disjuntos tais que H i = X 1 (E i ). Segue-se que Y = g i X, onde g i k 1 γ k I Ek é G/H-mens. Agora considere Y geral. O primeiro passo é provar que Y é o limite de funções simples. Fixe um i N e uma enumeração D = {γ 1, γ 2, γ 3,... }e defina uma partição de G em conjuntos H i,k B(γ k, 1/i)\ B(γ j, 1/i). 1 j<k Note que cada H i,k H e que sua união cobre Γ, posto que {γ i } + i=1 é densa. Se Y i = k 1 γ k I Hi,k, vemos que Y i Y quando i + e que cada Y i é simples. Isto cumpre nosso primeiro passo e nos permite escrever (usando o resultado para funções simples): Y = lim g i(x), onde g i é G/H-mens.. i + Agora considere o conjunto L e uma função f definida como na Observação acima. Note que para todo θ = X(ω) para algum ω Ω temos que lim i + g i (θ) = Y (ω). Logo a imagem de Ω por X está toda contida em L. Segue-se que para todo ω: f(x(ω)) = lim g i(x(ω)) = lim Y i(ω) = Y (ω). i + i + Como f é G/H-mensurável, isto é exatamente o resultado buscado. 2 Independência Agora (Ω, F, P) é um espaço de probabilidade. Definição 9. Seja {F i F} i A uma família de σ-álgebras sobre Ω. Dizemos que esta família é independente quando para todo S A finito e toda escolha de A i F i para i S temos: ( ) P A i = P (A i ). i S i S 4

5 Uma família de v.a. s {X i } i A sobre (Ω, F, P) é independente quando {F i = σ(x i )} i A o for. Observação 10. Com as definições da Proposição 5, se {X i : Ω Θ i } i A é dado, (Θ, G) é o produto de (Θ i, G i ) e X = (X i ) i A, é fácil ver que P X é produto se e somente se a família {X i } i A é independente. Também neste caso basta checar a condição para conjuntos geradores. Proposição 11. Uma família {F i F} i A de σ-álgebras sobre Ω é independente se e somente se existem conjntos geradores O i para cada F i tais que para todo S A finito e toda escolha de O i O i para i S temos: ( ) P O i = P (O i ). i S i S Prova: Usaremos o seguinte exercício: Exercício 3. Dada uma coleção de subconjuntos C F, a família é σ-álgebra. I C {A F : C C, P (C A) = P (C) P (A)} Para provar o teorema, note em primeiro lugar que basta considerar o caso de A finito. Escreva então A = {a 1,..., a n } com n N. Provaremos por indução em k = 1,..., n que, sob as hipóteses do teorema, são independentes. Para k = 1, tome F 1,..., F k, O k+1, O k+2,..., O n C {O i1 O i2 O ir : O il O il, 2 i 1 < i 2 < < i r n}. Veja que, por hipótese, P (O 1 C) = P (O 1 ) P (C) para cada C C e O 1 O 1, logo O 1 I C e, como este conjunto é uma σ-álgebra, σ(o 1 ) = F 1 I C. Exercício 4. Deduza que F 1, O 2, O 3,..., O n são independentes. como fazer o passo indutivo aplicando a mesma idéia. Mostre 5

6 Mostraremos agora que tomar funções de variáveis aleatórias independentes preserva a independência. Proposição 12. Considere v.a. s {X i : Ω Θ i } i A independentes sobre (Ω, F, P) (onde cada Θ i tem uma σ-álgebra correspondente). Se para cada i A f i : Θ i Γ i é mensurável (para uma certa σ-álgebra corrrespondente), então {f i (X i ) : Ω Γ i } i A também é família independente. Prova: σ(f i (X i )) σ(x i ) para todo i. O seguinte resultado mostra que vetores construídos disjuntamente a partir de v.a. s independentes são também independentes. Proposição 13. Sejam {X i : Ω Θ i } i A v.a. s independentes sobre (Ω, F, P). Considere uma partição A = j U A j de A e considere os vetores Y j (X i ) i Aj, que são mensuráveis na σ-álgebra produto correspondente (cf. Proposição 5). Então {Y j } j U é independente. Definimos: Definição 14. Se {G i } i U são σ-álgebras sobre o mesmo espaço, denotaremos a σ-álgebra gerada por sua união por i U G i. Na situação da proposição acima, σ(y j ) i Aj σ(x i ). Portanto, basta provar que: Proposição 15. Seja {F i F} i A uma família de σ-álgebras independentes sobre (Ω, F, P). Considere uma partição A = j U A j de A e considere as σ-álgebras G j = i Aj F i. Então {G j } j U é independente. Prova: Tome O j = i Aj F i para cada j e aplique o resultado sobre conjuntos geradores (a hipótese vale para O i O i pela independência das F i s). 3 Independência em R Proposição 16. Seja X = (X 1,..., X d ) R d um vetor aleatório com função cumulativa F : R d R. As coordenadas de X são independentes se e somente se existem F i : R R tais que: r R d, F (r) = F 1 (r 1 )... F d (r d ). (1) 6

7 Prova: A parte somente se é trivial: basta tomar cada F i como a função cumulativa de X i. Para a parte se, suponha que (1) vale. Note que tomando valores absolutos, podemos supor que F i 0. Começamos mostrando que: Afirmação 17. Para cada i há um m i R tal que F i (r i ) > 0 para todo r i m i. De fato, em caso contrário haveria uma seqúência {r i,n } n com r i,n + e F i (r i,n ) = 0 sempre. Neste caso teríamos lim inf F (r) lim F (r i,n, r i,n,..., r i,n ) = 0, r 1,...,r d + n o que contradiz o requerimento que F (r) 1 quando r 1,..., r d +. Agora mostraremos que F 1 é não-decrescente; uma prova análoga mostra que todas as F i também o são. Seja m = max 1 i d m i. Então F i (m) > 0 para todo i. Se r 1 s 1, o fato de que F é crescente em cada variável mostra que F (r 1, m, m, m,..., m) F (s 1, m, m, m,..., m), o que implica que F 1 (r 1 )F 2 (m)... F d (m) F 1 (s 1 )F 2 (m)... F d (m) F 1 (r 1 ) F 1 (s 1 ) já que os outros termos no produto são positivos. Isto mostra que F 1 (r 1 ) F 1 (s 1 ) sempre que r 1 s 1, como desejado. É fácil usar um método semelhante para mostrar que cada F i é contínua à direita: se r 1,n r 1, F (r 1,n, m, m, m,..., m) F (r 1, m, m, m,..., m) F 1 (r 1,n ) F 1 (r 1 ). Para provar que F 1 (r 1 ) 0 quando r 1 (e analogamente para toda F i ), recordamos que se r 1, F (r) 0. Tomando r = (r 1, m,..., m), deduzimos o resultado desejado. Agora consideramos lim ri + F i (r i ). Como cada F i é crescente, deduzimos que os limites F i (+ ) = lim i + F i (r i ) existem e (pela Afirmação) são positivos. De fato, como F (r) 1 quando cada coordenada cresce, temos: F 1 (+ )F 2 (+ )... F n (+ ) = 1. Logo podemos substituir cada F i por F i /F i (+ ) (o que não muda F ) e imaginar que F i (+ ) = 1. 7

8 Segue dos resultados provados acima que podemos supor que cada F i em (1) é uma cdf. Como ) F (r) = P X ( d i=1(, r i ] = F 1 (r 1 )... F d (r d ), vemos que P X coincide com a medida-produto determinada por F 1 F d sobre um conjunto de geradores da σ-álgebra de Borel. Segue que a distribuição de X é produto e que os X i s têm de ser independentes. 8

Números naturais e cardinalidade

Números naturais e cardinalidade Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde

Leia mais

1.3 Conjuntos de medida nula

1.3 Conjuntos de medida nula 1.3 Conjuntos de medida nula Seja (X, F, µ) um espaço de medida. Um subconjunto A X é um conjunto de medida nula se existir B F tal que A B e µ(b) = 0. Do ponto de vista da teoria da medida, os conjuntos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA. Medida e Probabilidade UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ESTATÍSTICA Medida e Probabilidade Aluno: Daniel Cassimiro Carneiro da Cunha Professor: Andre Toom 1 Resumo Este trabalho contem um resumo dos principais

Leia mais

Teoria Ergódica (9 a aula)

Teoria Ergódica (9 a aula) Outubro 2012 Espaços de Sequências Seja (X, d 0 ) um espaço métrico compacto. B Z (X ) = X Z = { x = (x j ) j Z : x j X, j Z } B N (X ) = X N = { x = (x j ) j N : x j X, j N } B(X ) designa indiferentemente

Leia mais

Topologia e espaços métricos

Topologia e espaços métricos Topologia e espaços métricos Roberto Imbuzeiro Oliveira 7 de Fevereiro de 2014 Conteúdo 1 Preliminares sobre conjuntos 2 2 Introdução aos espaços métricos 3 2.1 Definição............................. 3

Leia mais

Axiomatizações equivalentes do conceito de topologia

Axiomatizações equivalentes do conceito de topologia Axiomatizações equivalentes do conceito de topologia Giselle Moraes Resende Pereira Universidade Federal de Uberlândia - Faculdade de Matemática Graduanda em Matemática - Programa de Educação Tutorial

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso.

Demonstração. Ver demonstração em [1]. . Para que i j se tem µ i µ j? Determine a derivada no sentido de Radon-Nikodym em cada caso. Proposição 2.39 (Propriedades de e.). Sejam µ, λ, λ 1, λ 2 medidas no espaço mensurável (X, F). Então 1. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 2. se λ 1 µ e λ 2 µ então (λ 1 + λ 2 ) µ. 3. se λ 1 µ e λ

Leia mais

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso)

Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Notas sobre conjuntos, funções e cardinalidade (semana 1 do curso) Roberto Imbuzeiro Oliveira 8 de Janeiro de 2014 1 Conjuntos e funções Neste curso procuraremos fundamentar de forma precisa os fundamentos

Leia mais

Notas Para o Curso de Medida e. Daniel V. Tausk

Notas Para o Curso de Medida e. Daniel V. Tausk Notas Para o Curso de Medida e Integração Daniel V. Tausk Sumário Capítulo 1. Medida de Lebesgue e Espaços de Medida... 1 1.1. Aritmética na Reta Estendida... 1 1.2. O Problema da Medida... 6 1.3. Volume

Leia mais

Capítulo 1. Fundamentos

Capítulo 1. Fundamentos Capítulo 1 Fundamentos A probabilidade moderna se baseia fortemente na Teoria da Medida e supomos durante esse curso que o leitor esteja bem familiarizado com conceitos tais como: Medida de Lebesgue, extensões

Leia mais

Notas de Aula. Medida e Integração

Notas de Aula. Medida e Integração Notas de Aula Medida e Integração Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx Universidade Federal de Minas Gerais (UFMG Notas de aula do curso Medida e Integração

Leia mais

O espaço das Ordens de um Corpo

O espaço das Ordens de um Corpo O espaço das Ordens de um Corpo Clotilzio Moreira dos Santos Resumo O objetivo deste trabalho é exibir corpos com infinitas ordens e exibir uma estrutura topológica ao conjunto das ordens de um corpo.

Leia mais

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1)

Começamos relembrando o conceito de base de um espaço vetorial. x = λ 1 x λ r x r. (1.1) CAPÍTULO 1 Espaços Normados Em princípio, os espaços que consideraremos neste texto são espaços de funções. Isso significa que quase todos os nossos exemplos serão espaços vetoriais de dimensão infinita.

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

Integrais de linha, funções primitivas e Cauchy Goursat

Integrais de linha, funções primitivas e Cauchy Goursat Integrais de linha, unções primitivas e Cauchy Goursat Roberto Imbuzeiro Oliveira 2 de Abril de 2015 1 Preliminares Nestas notas, U C sempre será um aberto, γ : [a, b] U uma curva retiicável e : U C, uma

Leia mais

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X.

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X. 1. Redes Quando trabalhamos no R n, podemos testar várias propriedades de um conjunto A usando seqüências. Por exemplo: se A = A, se A é compacto, ou se a função f : R n R m é contínua. Mas, em espaços

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Fabio Augusto Camargo

Fabio Augusto Camargo Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Introdução à Topologia Autor: Fabio Augusto Camargo Orientador: Prof. Dr. Márcio de Jesus Soares

Leia mais

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada:

Definimos a soma de seqüências fazendo as operações coordenada-a-coordenada: Aula 8 polinômios (Anterior: chinês. ) 8.1 séries formais Fixemos um anel A. Denotaremos por A N o conjunto de todas as funções de N = {, 1, 2,... } a valores em A. Em termos mais concretos, cada elemento

Leia mais

Laboratório Nacional de Computação Científica LNCC, Brasil URL: alm URL: alm/cursos/medida07.

Laboratório Nacional de Computação Científica LNCC, Brasil URL:  alm URL:  alm/cursos/medida07. Introdução à Medida e Integração Pós-graduação da EPGE FGV 1 Alexandre L. Madureira Laboratório Nacional de Computação Científica LNCC, Brasil URL: http://www.lncc.br/ alm URL: http://www.lncc.br/ alm/cursos/medida07.html

Leia mais

3 O Teorema de Ramsey

3 O Teorema de Ramsey 3 O Teorema de Ramsey Nesse capítulo enunciamos versões finitas e a versão infinita do Teorema de Ramsey, além das versões propostas por Paris, Harrington e Bovykin, que serão tratadas no capítulos subseqüentes.

Leia mais

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS

O TEOREMA ESPECTRAL PARA OPERADORES AUTO-ADJUNTOS O TEOEMA ESPECTAL PAA OPEADOES AUTO-ADJUNTOS Mariane Pigossi, oberto de A. Prado, Depto. de Matemática e Computação, FCT, UNESP, 19060-900, Presidente Prudente, SP E-mail: marianepigossi@gmail.com, robertoprado@fct.unesp.br

Leia mais

Givanildo Donizeti de Melo. Sobre a dimensão do quadrado de um espaço métrico compacto X de dimensão n e o conjunto dos mergulhos de X em R 2n

Givanildo Donizeti de Melo. Sobre a dimensão do quadrado de um espaço métrico compacto X de dimensão n e o conjunto dos mergulhos de X em R 2n Givanildo Donizeti de Melo Sobre a dimensão do quadrado de um espaço métrico compacto X de dimensão n e o conjunto dos mergulhos de X em R 2n São José do Rio Preto 2016 Givanildo Donizeti de Melo Sobre

Leia mais

Topologia Geral. Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita

Topologia Geral. Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita Topologia Geral Ofelia Alas Lúcia Junqueira Marcelo Dias Passos Artur Tomita Sumário Capítulo 1. Alguns conceitos básicos 5 Capítulo 2. Espaços topológicos 9 1. Espaços topológicos. Conjuntos abertos

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

ANÁLISE E TOPOLOGIA. 1 o semestre. Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas,

ANÁLISE E TOPOLOGIA. 1 o semestre. Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas, ANÁLISE E TOPOLOGIA 1 o semestre Estudaremos neste curso alguns dos conceitos centrais da análise matemática: números reais, derivadas, séries e integrais. 1. Espaços topológicos e métricos Todos estes

Leia mais

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos

Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras. Silvia Gonçalves Santos Generalizações do Teorema de Wedderburn-Malcev e PI-álgebras Silvia Gonçalves Santos Definição 1 Seja R um anel com unidade. O radical de Jacobson de R, denotado por J(R), é o ideal (à esquerda) dado pela

Leia mais

Teoria da medida e integral de Lebesgue

Teoria da medida e integral de Lebesgue nálise Matemática III Teoria da medida e integral de Lebesgue Manuel Guerra Conteúdo 1 Introdução 3 2 Noções básicas de teoria de conjuntos 5 2.1 Relações de pertença e de inclusão.............................

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

Notas de Aula. Análise Funcional

Notas de Aula. Análise Funcional Notas de Aula Análise Funcional Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do curso Análise Funcional

Leia mais

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra

Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

AULA. Corpo de raízes

AULA. Corpo de raízes META: Conceituar corpo de raízes de um polinômio sobre um corpo, determinar sua existência e unicidade e caracterizá-lo por meio de extensões finitas e normais. AULA 10 OBJETIVOS: Ao final da aula o aluno

Leia mais

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS.

A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. A DEFINIÇÃO AXIOMÁTICA DO CONJUNTO DOS NÚMEROS NATURAIS. SANDRO MARCOS GUZZO RESUMO. A construção dos conjuntos numéricos é um assunto clássico na matemática, bem como o estudo das propriedades das operações

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Professor: Carlos Eugênio da Costa Teoria Microeconômica II Monitor: Diego Santiago

Professor: Carlos Eugênio da Costa Teoria Microeconômica II Monitor: Diego Santiago Professor: Carlos Eugênio da Costa Teoria Microeconômica II - 2012 Monitor: Diego Santiago EPGE/FGV Introdução matemática 1 Introdução Esta introdução visa familiarizar o aluno com ferramentas matemáticas

Leia mais

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n

Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

1 Conjuntos enumeráveis

1 Conjuntos enumeráveis Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales de maio de 007. Conjuntos enumeráveis Denotamos por Q os numeros racionais, logo [0, ] Q, são os números racionais

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais

Instituto de Matemática e Estatística, UFF Abril de 2013

Instituto de Matemática e Estatística, UFF Abril de 2013 Instituto de Matemática e Estatística, UFF Abril de 2013 Sumário.... Hermann Grassmann Famoso em sua época como linguista, somente hoje é valorizado como matemático. Foi o primeiro a usar o método de prova

Leia mais

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;

Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita; META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar

Leia mais

Notações e revisão de álgebra linear

Notações e revisão de álgebra linear Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211

Leia mais

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO)

OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) ! #" $ %$!&'%($$ OS TEOREMAS DE JORDAN-HÖLDER E KRULL-SCHMIDT (SEGUNDA VERSÃO) Neste texto apresentaremos dois teoremas de estrutura para módulos que são artinianos e noetherianos simultaneamente. Seja

Leia mais

Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011

Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011 Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011 Questão 1. Sejam X, X conjuntos e φ : X X uma função. (a) (valor 1,25 pontos) Mostre que se A é uma σ-álgebra

Leia mais

x B A x X B B A τ x B 3 B 1 B 2

x B A x X B B A τ x B 3 B 1 B 2 1. Definição e exemplos. Bases. Dar uma topologia num conjunto X é especificar quais dos subconjuntos de X são abertos: Definição 1.1. Um espaço topológico é um par (X, τ) em que τ é uma colecção de subconjuntos

Leia mais

Notas de Teoria da Probabilidade e Processos Estocásticos

Notas de Teoria da Probabilidade e Processos Estocásticos Notas de Teoria da Probabilidade e Processos Estocásticos José Pedro Gaivão Resumo Estas notas destinam-se à disciplina de Teoria da Probabilidade e Processos Estocásticos do Mestrado de Matemática Financeira

Leia mais

3 A estrutura simplética do fluxo geodésico

3 A estrutura simplética do fluxo geodésico 3 A estrutura simplética do fluxo geodésico A partir do ponto de vista da mecânica classica, a geodésica é uma solução da equação de Euler-Lagrange considerando-se o lagrangeano L(x v) = 1 v 2 x O objetivo

Leia mais

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004

MAT Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 MAT 317 - Topologia Bacharelado em Matemática 2 a Prova - 27 de maio de 2004 1 Nome : Número USP : Assinatura : Professor : Severino Toscano do Rêgo Melo 2 3 4 5 Total Podem tentar fazer todas as questões.

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Capítulo 2. Conjuntos Infinitos

Capítulo 2. Conjuntos Infinitos Capítulo 2 Conjuntos Infinitos Não é raro encontrarmos exemplos equivocados de conjuntos infinitos, como a quantidade de grãos de areia na praia ou a quantidade de estrelas no céu. Acontece que essas quantidades,

Leia mais

[À funç~ao d chama-se métrica e aos elementos de X pontos do espaço métrico; a condiç~ao (3) designa-se por desigualdade triangular.

[À funç~ao d chama-se métrica e aos elementos de X pontos do espaço métrico; a condiç~ao (3) designa-se por desigualdade triangular. Aula I - Topologia e Análise Linear 1 Espaços Métricos ESPAÇO MÉTRICO Um par (X, d) diz-se um espaço métrico se X for um conjunto e d : X X R + for uma aplicação que verifica as seguintes condições, quaisquer

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R

CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x

Leia mais

Análise Funcional MATEMÁTICA. Curso de pós-graduação lato sensu

Análise Funcional MATEMÁTICA. Curso de pós-graduação lato sensu MATEMÁTICA Curso de pós-graduação lato sensu Análise Funcional Carlos Alberto Raposo da Cunha Fábio Alexandre de Matos Guilherme Chaud Tizziotti Waliston Rodrigues Silva Universidade Aberta do Brasil Núcleo

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Leandro F. Aurichi de novembro de Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP

Leandro F. Aurichi de novembro de Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP Espaços Métricos Leandro F. Aurichi 1 30 de novembro de 2010 1 Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo, São Carlos, SP 2 Sumário 1 Conceitos básicos 5 1.1 Métricas...........................................

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

Uma condição necessária e suciente para integrabilidade de uma função real

Uma condição necessária e suciente para integrabilidade de uma função real Uma condição necessária e suciente para integrabilidade de uma função real Jonas Renan Moreira Gomes 1 e Fernanda S. P. Cardona (orientadora) 1 Instituto de Matemática e Estatística da Universidade de

Leia mais

g(s, X n s )ds + t f (s, X s ) 2 ds <, P-q.s. t f (s, X s )db s, t 0.

g(s, X n s )ds + t f (s, X s ) 2 ds <, P-q.s. t f (s, X s )db s, t 0. CHAPTER 3. INTEGRAIS ESTOCÁSTICOS 88 2. Quais são as propriedades destas soluções? 3. Como podemos resolver uma dada equação? O método usual para provar a existência de uma solução da equação diferencial

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição

Funções monótonas. Pré-Cálculo. Funções decrescentes. Funções crescentes. Humberto José Bortolossi. Parte 3. Definição. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Funções crescentes Funções

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

6. Frações contínuas como as melhores aproximações de um número real

6. Frações contínuas como as melhores aproximações de um número real 6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas

Leia mais

MAE GABARITO DA LISTA 2-04/10/2016

MAE GABARITO DA LISTA 2-04/10/2016 MAE5709 - GABARITO DA LISTA - 04/0/06 Exercício.7.5. Primeira Parte Seja P uma matriz de transição sobre um espaço de estados finito S. Mostre que uma distribuição π é invariante para P se e somente se

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

1 Tópicos em Análise Convexa

1 Tópicos em Análise Convexa Microeconomia II Monitoria do dia 06/05 Prof.: Victor F. Martins-da-Rocha Monitor: Vitor Farinha Luz 1 Tópicos em Análise Convexa A análise convexa constitui um dos grupos de resultados matemáticos com

Leia mais

Capítulo 0: Conjuntos, funções, relações

Capítulo 0: Conjuntos, funções, relações Capítulo 0: Conjuntos, funções, relações Notação. Usaremos Nat para representar o conjunto dos números naturais; Int para representar o conjunto dos números inteiros. Para cada n Nat, [n] representa o

Leia mais

Comprimento de Arco, o Número π e as Funções Trigonométricas

Comprimento de Arco, o Número π e as Funções Trigonométricas Comprimento de Arco, o Número π e as Funções Trigonométricas J. A. Verderesi Apresentaremos a seguir a medida de um ângulo como limite de poligonais inscritas e circunscritas à circunfêrencia unitária,

Leia mais

1 Determinantes, traços e o teorema espectral para operadores arbitrários

1 Determinantes, traços e o teorema espectral para operadores arbitrários Álgebra Linear e Aplicações - Lista para Segunda Prova Nestas notas, X, Y,... são espaços vetoriais sobre o mesmo corpo F {R, C}. Você pode supor que todos os espaços têm dimensão finita. (x, y) = (x,

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Alexandre L. Madureira

Alexandre L. Madureira Introdução à Análise Real 1 Alexandre L. Madureira Laboratório Nacional de Computação Científica LNCC, Brasil URL: http://www.lncc.br/ alm Fundação Getúlio Vargas FGV, Brasil 1 04 de junho de 2014 Prefácio.

Leia mais

Alexandre L. Madureira

Alexandre L. Madureira Introdução à Análise Real 1 Alexandre L. Madureira Laboratório Nacional de Computação Científica LNCC, Brasil URL: http://www.lncc.br/ alm Fundação Getúlio Vargas FGV, Brasil 1 04 de junho de 2014 Prefácio.

Leia mais

Conjuntos Abelianos Maximais

Conjuntos Abelianos Maximais Conjuntos Abelianos Maximais (Dedicado para meu filho Demetrius) por José Ivan da Silva Ramos (Doutor em Álgebra e membro efetivo do Centro de Ciências Exatas e Tecnológicas da Universidade Federal do

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

PARES DE SUBESPAÇOS EM R n. Luciana Cadar Chamone

PARES DE SUBESPAÇOS EM R n. Luciana Cadar Chamone PARES DE SUBESPAÇOS EM R n Luciana Cadar Chamone Monografia apresentada ao Departamento de Matemática do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como parte dos requisitos para

Leia mais

extensões algébricas.

extensões algébricas. META: Determinar condições necessárias e/ou suficientes para caracterizar extensões algébricas. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de: Reconhecer se uma dada extensão é algébrica. PRÉ-REQUISITOS

Leia mais

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números

MA21 (2015) - Teste - Gabarito comentado. Problema 1 (OBM 2005) Na sequência de números MA21 (2015) - Teste - Gabarito comentado Problema 1 (OBM 2005) Na sequência de números 1, a, 2, b, c, d,... dizemos que o primeiro termo é 1, o segundo é a, o terceiro é 2, o quarto é b, o quinto é c e

Leia mais

MAE Teoria da Decisão

MAE Teoria da Decisão MAE 0523 - Teoria da Decisão Fossaluza, V. 2 o semestre de 2015 Aula 01 - Programa Elementos de um problema de decisão Certeza e incerteza Probabilidade, utilidade e perda Maximização de utilidade esperada

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Teorema de Lagrange Subgrupos normais e grupos quociente

Introdução à Teoria de Grupos Grupos cíclicos Grupos de permutações Isomorfismos Teorema de Lagrange Subgrupos normais e grupos quociente Classes laterais Sejam G um grupo, H um subconjunto de G e a um elemento de G. Usamos as seguintes notações: ah = {ah h H} e Ha = {ha h H}. Definição (Classe lateral de H em G) Seja H um subgrupo do grupo

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE 1 LIMITE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br Definição 1.1 O limite

Leia mais

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2.

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2. UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA Quinta lista de Exercícios - Análise Funcional, período 2009.2. Professor:

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Análise III (Análise no IR n )

Análise III (Análise no IR n ) Análise III (Análise no IR n ) Notas de aulas André Arbex Hallack Agosto/2008 Índice 1 Noções Topológicas no IR n 1 1.1 O espaço vetorial IR n................................ 1 1.2 Seqüências......................................

Leia mais

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi

Conjuntos Numéricos Aula 6. Conjuntos Numéricos. Armando Caputi Conjuntos Numéricos Aula 6 Conjuntos Numéricos E-mail: armando.caputi@ufabc.edu.br Página: http://professor.ufabc.edu.br/~armando.caputi Sala 549-2 - Bloco A - Campus Santo André Conjuntos Numéricos Aula

Leia mais

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1 Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago

Capítulo 1. Os Números. 1.1 Notação. 1.2 Números naturais não nulos (inteiros positivos) Última atualização em setembro de 2017 por Sadao Massago Capítulo 1 Os Números Última atualização em setembro de 2017 por Sadao Massago 1.1 Notação Números naturais: Neste texto, N = {0, 1, 2, 3,...} e N + = {1, 2, 3, }. Mas existem vários autores considerando

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

O Teorema da Curva de Jordan

O Teorema da Curva de Jordan UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Trabalho de Conclusão de Curso A Relatório Final O Teorema da Curva de Jordan Aluna: Laís Alegria

Leia mais

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução)

Grafos e Algoritmos Raimundo Macêdo. Teorema de Hall (Prova por Indução) Grafos e Algoritmos Raimundo Macêdo Teorema de Hall (Prova por Indução) Teorema de Hall (teorema do casamento, 1935) Seja G uma grafo bipartide V = X U Y, então G contém um emparelhamento que satura todos

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais