Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha"

Transcrição

1 Otimização de Funções Não Lineares por Meio do Algoritmo Árvore da Montanha Amarildo de Vicente Colegiado do Curso de Matemática Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná Caixa Postal Cascavel PR Brasil Resumo. Este trabalho apresenta um algoritmo para otimização de funções não lineares positivas irrestritas. O funcionamento deste algoritmo é baseado no processo de reprodução de uma planta fictícia que se desenvolve em regiões montanhosas, razão pela qual está sendo denominado Algoritmo Árvore da Montanha. Experimentos inciais realizados com funções testes foram bem sucedidos, apresentado um bom desempenho do algoritmo citado. Palavras chaves. Otimização, algoritmo não determinístico, ponto de mínimo.. Informações Gerais A obtenção do ponto de máximo ou de mínimo global de uma função não linear é uma tarefa que pode exigir bastante esforço e, na busca de um processo eficiente para este fim, uma variedade muito grande de algoritmos foi produzida ao longo dos anos. Apesar disso, a busca por processos cada vez mais eficazes ainda é feita de forma intensa por um grande número de pesquisadores no mundo todo. Uma categoria de algoritmos que está sendo muito difundida é a de algoritmos não determinísticos, que geralmente simulam um fenômeno natural para obter o valor máximo ou mínimo de uma função. Dentre eles podem ser citados Genetic Algorithms [GOLDBERG, 989], Ant Colony Optimization [DORIGO, 996], Simulated Annealing [KIRKPATRICK, et al, 983], etc. Neste trabalho está sendo proposto um novo algoritmo desta natureza. Ele é baseado no processo de reprodução de uma planta fictícia que se desenvolve em regiões montanhosas. Durante sua florada o processo de polinização é feito por meio de insetos e, principalmente, pelo vento. O fato de o vento ser o principal agente polinizador se dá porque suas flores não são muito atrativas para a maioria dos insetos, pois possui uma quantidade muito pequena de néctar, e é pobre em coloração. Quando uma planta está em uma região alta, os grãos de pólen gerados por ela, em sua maioria, tendem a ser levados para as outras plantas que estão em partes mais baixas. Evidentemente uma parte deles é conduzida para partes mais altas, trabalho que é basicamente feito pelos Colegiado do Curso de Matemática - Unioeste - Cascavel 43

2 isentos, e outra parte fica retida na própria planta que os gerou. A Figura ilustra o exposto. Por causa destas características, a maioria das sementes produzidas cai nas partes mais baixas da montanha, fazendo com que as plantas mais novas nasçam nestas regiões. Com isso, de geração em geração a população de árvores tende a se concentrar nos vales, sem contudo deixar de existir plantas também nas regiões altas. A idéia do algoritmo é simular este comportamento para obter o ponto de mínimo global de uma função não linear positiva f. Direção do vento Grãos de pólen transportados pelo vento Grãos de pólen transportados por insetos Figura - Deslocamento de grãos de pólen 2. Descrição do Processo Sem prejuízo ao funcionamento do algoritmo será suposto o emprego da norma do máximo para delimitar a região de busca (uma bola fechada B(X 0, L) do R n ) e a norma euclidiana para avaliar as distâncias entre as árvores. Seja f uma função não linear positiva definida em B. A execução do algoritmo proposto para obter seu ponto de mínimo global pode ser sumarizada pelos 5 passos que seguem. ) Gere uma floresta contendo n árvores A i em B, cada uma delas tendo como atributos o centro (um ponto X i de B onde a árvore A i estará centrada) e altitude (a imagem de f em X i ). O valor de n deve ser ajustado de acordo com o problema a ser resolvido. Por exemplo, se uma função a ser minimizada possuir, digamos 0 variáveis, e outra possuir 20, é de se esperar que para a segunda função uma quantidade maior de árvores faça com que o processo convirja mais rapidamente. 2) Para as n árvores geradas calcule a matriz de distâncias D = [d ij ] nxn, onde d ij, é a distância da árvore A i até a árvore A j. Evidentemente o trajeto seguido pelos grãos de pólen serão os mais diversos possíveis, já que serão conduzidos pelo vento ou por insetos. Na impossibilidade de modelar estes percursos de um modo preciso é razoável Colegiado do Curso de Matemática - Unioeste - Cascavel 44

3 que seja empregada a norma euclidiana para calcular tais distâncias. 3) Faça com que cada árvore A i produza uma quantidade k de grãos de pólens. Cada grão de pólen de uma árvore A i deve ser conduzido a outra árvore A j, i j, buscando sempre um favorecimento a tais árvores de acordo com o inverso do produto a(a j )d(a i, A j ), onde a(a j ) é a altitude da árvore A j e d(a i, A j ) é a distância da árvore A i até a Árvore A j. Esta distribuição de grãos de pólen pode ser feita por meio do processo conhecido como regra da roleta, que pode ser descrito como segue. n i) Faça S = d( A, A ) a( A j= i j j ) i j ii) Gere um número aleatório r em [0, ] e faça z = rs.. iii) Escolha como árvore sorteada a primeira árvore A t tal que d( A, A ) a( A t j= i j j ) i j z. Um grão de pólen pode ainda ficar retido na própria árvore que o gerou, mas neste caso não se pode usar o processo anteriormente descrito, já que d(a i,a i ) = 0. Neste caso é preciso estipular uma certa probabilidade de que isto ocorra. Por exemplo, pode-se usar uma distribuição de probabilidade uniforme e estipular que a probabilidade de que um grão de pólen fique retido seja de P, 0 P <. Quando P = 0 nenhum grão de pólen ficará retido. No caso de P = todos os grãos de pólen gerados ficariam retidos, o que não é interessante pois prejudicaria a convergência do algoritmo. Assim como o número de árvores, o valor de k deve ser ajustado de acordo com o problema a ser resolvido. 4) Uma vez gerados nk grãos de pólen (número de árvores pelo número de grãos gerados em cada uma delas), e feita a distribuição deles, suponha a produção de nk sementes e que estas vão produzir nk novas árvores. As sementes produzidas por uma árvore de centro X i vão germinar em uma bola B(X i, r), r > 0. O raio r deve ser fixado no início do processo e precisa ser reduzido gradativamente à medida que a sequência converge para um ponto estacionário. Dentre as nk novas plantas geradas mais as n que já existiam, deve-se escolher as n melhores para formar a nova floresta de pesquisa, descartando-se as demais. 5) Faça um teste de parada. Este teste pode ser o alcance de um número máximo de gerações pré-estabelecido. Pode-se também optar por parar quando todas as árvores da floresta tiverem se concentrado próximo de um único ponto, onde se supõe ser ponto de mínimo de f. Isto deve ocorrer quando as distâncias entre todos os pares de árvores forem menores que um valor ε > 0 estipulado. 3. Experimentação do algoritmo Com o propósito de ilustrar o funcionamento do algoritmo descrito considere-se a Colegiado do Curso de Matemática - Unioeste - Cascavel 45

4 função f dada por f(x, y) = 0.8x - cos(πx) + 0.8y - cos(πy) + 4 cujo valor mínimo é 2 e ocorre no ponto X = (0, 0). Para região de busca tomou-se o quadrado [-0, 0]x[-0, 0] e como configuração para os parâmetros do algoritmo foram tomadas 0 árvores (n = 0), 0 grãos de pólen gerados por planta (k = 0) e um total de 40 gerações. Na figura 2 a seguir estão apresentadas a população inicial gerada (quadro ), as quatro gerações subsequentes (quadros 2 a 5) e a população da 20 a. geração (quadro 6). 0 2,5 5 0, , ,5 ' () (2) (3) (4) (5) (6) Figura 2 Ilustração de convergência para uma população de vinte árvores Este comportamento pode ser verificado também na figura 3, que mostra como a sequência converge para a solução. Colegiado do Curso de Matemática - Unioeste - Cascavel 46

5 4,5 4 3,5 3 2,5 2,5 0,5 0 G2 G3 G4 G5 G6 G7 G8 G9 G0 G G2 G3 G4 G5 G6 G7 G8 G9 G20 G2 Figura 3 Altitude da mais alta árvore obtida em cada geração Para esta função, na 40 a. geração o resultado obtido com 6 casas decimais foi exato, isto é, o ponto de mínimo obtido foi X = ( , ). Na tabela a seguir estão apresentados os valores de mínimo obtidos para a função f ( X ) = i= 2 [.5 x i cos( πx i )] para vários valores de n (número de árvores). Para região de busca considerou-se a bola B(O, 0), onde O é a origem do R 0. O valor de k (número de grão de pólen) foi fixado em 0. A implementação do algoritmo foi feita na linguagem Pascal, sendo fixado randseed = 2. Tabela. Variação do mínimo de acordo com o número de árvores Número de árvores Mínimo 3,042 0,852 0,0557 0,004 0,0007 0,0006 0,0002 0, Análise dos Resultados Como se pode observar na Tabela, o parâmetro número de árvores é importante para a convergência da sequência de pontos gerada pelo algoritmo. Em testes realizados verificou-se igual importância para número de grãos de pólen produzidos por planta, para a região de busca e, evidentemente, para da função tratada. Um fato a ser notado, tanto na Tabela quanto na Figura 3, é que conforme a sequência se aproxima do ponto de mínimo o processo tende a ficar mais lento. Muito embora este fato seja indesejado, ele é comum na maioria dos algoritmos de otimização. Colegiado do Curso de Matemática - Unioeste - Cascavel 47

6 5. Conclusões Neste trabalho foi feita uma exemplificação do funcionamento do algoritmo Árvore da Montanha. Apesar de estar em fase de desenvolvimento, nos testes que até o momento foram realizados ele mostrou um bom desempenho. A expectativa é que ele possa ser aperfeiçoado e melhorado em um curto espaço de tempo. 6. Referências Bibliográficas BURDEN, R. L., FAIER, D. F. Análise Numérica, Ed. Thonson Learning, 2005, 736 p. DORIGO, M, MANIEZZO, V., COLORNI A. (996) Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics- Part B, 6():29-4. Disponível em Acesso em 06 de agosto de GOLDBERG, D. E. Genetic Algorithm in Search, Optimization and Machine Learning, Massachusetts, Addison Wesley, Co., 989, 432 p. KIRKPATRICK, S. GELATT JUNIOR, C. D., VECCHI, M. P. Optimization by Simulated Annealing, Science, v. 220, n. 4598, 983. Disponível em Acessado em set/2009. Colegiado do Curso de Matemática - Unioeste - Cascavel 48

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA Colônia de Formigas Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução O Experimento da Ponte Binária. Ant System Aplicado ao PCV. Elitist Ant System. Introdução Otimização colônia

Leia mais

A Otimização Colônia de Formigas

A Otimização Colônia de Formigas A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

A SOLUTION OF N-QUEENS PROBLEM BY GENETIC ALGORITHMS

A SOLUTION OF N-QUEENS PROBLEM BY GENETIC ALGORITHMS UMA SOLUÇÃO DO PROBLEMA DAS N RAINHAS ATRAVÉS DE ALGORITMOS GENÉTICOS A SOLUTION OF N-QUEENS PROBLEM BY GENETIC ALGORITHMS Eliane Vendramini de Oliveira Mestre em Engenharia Elétrica UNESP/ Ilha Solteira

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

1 Propriedades das Funções Contínuas 2

1 Propriedades das Funções Contínuas 2 Propriedades das Funções Contínuas Prof. Doherty Andrade 2005 Sumário 1 Propriedades das Funções Contínuas 2 2 Continuidade 2 3 Propriedades 3 4 Continuidade Uniforme 9 5 Exercício 10 1 1 PROPRIEDADES

Leia mais

APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS

APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS APLICAÇÃO DA METAHEURÍSTICA COLÔNIA DE FORMIGAS AO PROBLEMA DE ROTEAMENTO DE VEÍCULOS Mirlam Moro Lombardi e Jean Eduardo Glazar Departamento de Ciência da Computação Faculdade de Aracruz Uniaracruz {mirlam,

Leia mais

Algoritmos Genéticos

Algoritmos Genéticos UNIVERSIDADE PRESBITERIANA MACKENZIE Laboratório de Computação Natural LCoN I ESCOLA DE COMPUTAÇÃO NATURAL Algoritmos Genéticos Rafael Xavier e Willyan Abilhoa Outubro/2012 www.computacaonatural.com.br

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 1: Introdução Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013 Antes de

Leia mais

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto.

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto. Respostas Estudo Dirigido do Capítulo 12 Image Segmentation" 1 Com suas palavras explique quais os problemas que podem ocorrer em uma segmentação global baseada em níveis de cinza da imagem. Que técnicas

Leia mais

Resultados Experimentais

Resultados Experimentais Capítulo 6 Resultados Experimentais Este capítulo é dedicado às avaliações experimentais do sistema CBIR. Os experimentos aqui realizados têm três objetivos principais: comparar os nossos resultados com

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Busca Estocástica Baseada em Planejamento para Maximizar Metas em Jogos de RTS

Busca Estocástica Baseada em Planejamento para Maximizar Metas em Jogos de RTS Busca Estocástica Baseada em Planejamento para Maximizar Metas em Jogos de RTS Autor:Thiago França Naves 1, Orientador: Carlos Roberto Lopes 1 1 Programa de Pós-Graduação em Ciência da Computação Universidade

Leia mais

Sistemas Inteligentes Lista de Exercícios sobre Busca

Sistemas Inteligentes Lista de Exercícios sobre Busca Sistemas Inteligentes Lista de Exercícios sobre Busca 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido

Leia mais

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Thatiane de Oliveira Rosa 1, Hellen Souza Luz 2 1 Curso de Sistemas de Informação Centro Universitário Luterano de Palmas (CEULP/ULBRA) Caixa

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Treinamento via Algoritmos Genéticos Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Inteligência de Enxame: ACO

Inteligência de Enxame: ACO Inteligência de Enxame: ACO! Otimização colônia de formigas é uma meta-heurística: «baseada em população «inspirada no comportamento forrageiro das formigas.! Muitas espécies de formigas são quase cegas.!

Leia mais

Algoritmos Genéticos (GA s)

Algoritmos Genéticos (GA s) Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de

Leia mais

Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento

Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento Relatório Trabalho Prático 2 : Colônia de Formigas para Otimização e Agrupamento Ramon Pereira Lopes Rangel Silva Oliveira 31 de outubro de 2011 1 Introdução O presente documento refere-se ao relatório

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL Física Experimental IV Lentes Delgadas Objetivo Determinar as distâncias focais de lentes delgadas convergentes e divergentes.

Leia mais

OBI2014 Caderno de Tarefas

OBI2014 Caderno de Tarefas OBI2014 Caderno de Tarefas Modalidade Programação Nível Júnior, Fase 2 30 de agosto de 2014 A PROVA TEM DURAÇÃO DE 3 HORAS Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2014 1 Instruções

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais

O método de Monte Carlo: algumas aplicações na Escola Básica

O método de Monte Carlo: algumas aplicações na Escola Básica 1 Universidade de São Paulo/Faculdade de Educação Seminários de Ensino de Matemática (SEMA-FEUSP) Coordenador: Nílson José Machado novembro/2009 O método de Monte Carlo: algumas aplicações na Escola Básica

Leia mais

Figura 1.1: Exemplo de links patrocinados no Google

Figura 1.1: Exemplo de links patrocinados no Google 1 Links Patrocinados 1.1 Introdução Links patrocinados são aqueles que aparecem em destaque nos resultados de uma pesquisa na Internet; em geral, no alto ou à direita da página, como na Figura 1.1. Figura

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

ROTEIRO DE RECUPERAÇÃO I ETAPA LETIVA CIÊNCIAS 5. o ANO/EF - 2015

ROTEIRO DE RECUPERAÇÃO I ETAPA LETIVA CIÊNCIAS 5. o ANO/EF - 2015 SOCIEDADE MINEIRA DE CULTURA MANTENEDORA DA PUC MINAS E DO COLÉGIO SANTA MARIA ROTEIRO DE RECUPERAÇÃO I ETAPA LETIVA CIÊNCIAS 5. o ANO/EF - 2015 Caro (a) aluno(a), É tempo de conferir os conteúdos estudados

Leia mais

O jogo da Árvore. A forma de mudança. O texto da Lição 6: O jogo da Árvore do livro. A Forma de Mudança

O jogo da Árvore. A forma de mudança. O texto da Lição 6: O jogo da Árvore do livro. A Forma de Mudança O jogo da Árvore A forma de mudança O texto da Lição 6: O jogo da Árvore do livro A Forma de Mudança De Rob Quaden e Alan Ticotsky Com Debra Lyneis Ilustrado por Nathan Walker Publicado pelo Creative Learning

Leia mais

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2. Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Classificação: Determinístico

Classificação: Determinístico Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Da mesma forma que sistemas os modelos de simulação podem ser classificados de várias formas. O mais usual é classificar os modelos

Leia mais

Inteligência de Enxames

Inteligência de Enxames Inteligência de Enxames André Ricardo Gonçalves andreric [at] dca.fee.unicamp.br www.dca.fee.unicamp.br/~andreric Sumário 1 Inteligência de Enxames p. 3 1.1 Ant Colony Optimization...........................

Leia mais

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil HERMANN CLAY DE ALMEIDA LEITE ENERGISA PARAIBA DISTRIBUIDORA DE ENERGIA S/A hermann@energisa.com.br

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

3 Método de Monte Carlo

3 Método de Monte Carlo 25 3 Método de Monte Carlo 3.1 Definição Em 1946 o matemático Stanislaw Ulam durante um jogo de paciência tentou calcular as probabilidades de sucesso de uma determinada jogada utilizando a tradicional

Leia mais

SEMINÁRIO . ORGANIZAÇÃO DO SEMINÁRIO.

SEMINÁRIO . ORGANIZAÇÃO DO SEMINÁRIO. SEMINÁRIO Seminário é um grupo de pessoas que se reúnem com o propósito de estudar um tema sob a direção de um professor ou autoridade na matéria. O nome desta técnica vem da palavra semente, indicando

Leia mais

CI165 Introdução. André Vignatti. 31 de julho de 2014

CI165 Introdução. André Vignatti. 31 de julho de 2014 Introdução 31 de julho de 2014 Antes de mais nada... Os slides de 6 aulas (introdução, insertion sort, mergesort, quicksort, recorrências e limitantes de ordenação) foram originalmente feitos pelos Profs.

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias.

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Fábio França 1, 1 Logical Optimization Rua Tanhaçu número 405, CEP 05679-040 São Paulo, Brasil fabio.franca@optimization.com.br

Leia mais

Análise estrutural do problema de programação da produção F3 r j, s ijk C max

Análise estrutural do problema de programação da produção F3 r j, s ijk C max Análise estrutural do problema de programação da produção F3 r j, s ijk C max Sânia da Costa Fernandes (UFG) saninha_fernandes@hotmail.com Tatiane Albuquerque Pires (UFG) tati_albuquerque_3@hotmail.com

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE MATEMÁTICA APLICADA À CONTABILIDADE Unidade II PREÇO E RECEITA TOTAL.1 Definição Receita é o valor em moeda que o produtor recebe pela venda de X unidades do produto produzido e vendido por ele. Consideremos

Leia mais

ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA

ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA 136 ALGORITMOS GENÉTICOS: UMA VISÃO EXPLANATÓRIA FILITTO, Danilo 1 Resumo: Os algoritmos Genéticos inspiram-se no processo de evolução natural e são utilizados para resolver problemas de busca e otimização

Leia mais

Dadas a base e a altura de um triangulo, determinar sua área.

Dadas a base e a altura de um triangulo, determinar sua área. Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação ana.santos@qi.edu.br Conceitos Preliminares

Leia mais

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014

PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA. 09/abril de 2014 PÓS GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS-PG-CFT INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA-INPA 09/abril de 2014 Considerações Estatísticas para Planejamento e Publicação 1 Circularidade do Método

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Possui como idéia central a divisão de um universo de dados a ser organizado em subconjuntos mais gerenciáveis.

Possui como idéia central a divisão de um universo de dados a ser organizado em subconjuntos mais gerenciáveis. 3. Tabelas de Hash As tabelas de hash são um tipo de estruturação para o armazenamento de informação, de uma forma extremamente simples, fácil de se implementar e intuitiva de se organizar grandes quantidades

Leia mais

- Computação Evolutiva -

- Computação Evolutiva - - Computação Evolutiva - Prof. Dr. Cícero Garrozi DEINFO - UFRPE PPGIA@UFRPE cicerog@gmail.com Site da disciplina: http://cicerog.blogspot.com Sumário Situando a Computação Evolucionária Metáfora principal

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria Prova de Conhecimentos Específicos Dados que podem ser necessários a algumas questões de Estatística: P (t > t α ) = α ν 0,05 0,025 15 1,753 2,131 16 1,746 2,120 28 1,791 2,048 30 1,697 2,042 (Valor: 1,4) Questão 1. Considere o seguinte

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

COMPUTAÇÃO GRÁFICA. Rasterização e Preenchimento de Regiões. MARCO ANTONIO GARCIA DE CARVALHO Fevereiro de 2009. Computação Gráfica

COMPUTAÇÃO GRÁFICA. Rasterização e Preenchimento de Regiões. MARCO ANTONIO GARCIA DE CARVALHO Fevereiro de 2009. Computação Gráfica COMPUTAÇÃO GRÁFICA Rasterização e Preenchimento de Regiões Objetivos Conhecer os fundamentos da construção de linhas e círculos Conhecer o modelo scan-line modelo de sementes para preenchimento de polígonos

Leia mais

CIÊNCIAS PROVA 4º BIMESTRE 7º ANO PROJETO CIENTISTAS DO AMANHÃ

CIÊNCIAS PROVA 4º BIMESTRE 7º ANO PROJETO CIENTISTAS DO AMANHÃ PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO CIÊNCIAS PROVA 4º BIMESTRE 7º ANO PROJETO CIENTISTAS DO AMANHÃ 2010 01. As fotografias

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL André Luis Trevisan Universidade Tecnológica Federal do Paraná andrelt@utfpr.edu.br Magna Natalia Marin Pires Universidade Estadual de Londrina

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução. Prof. Humberto Brandão humberto@dcc.ufmg.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução. Prof. Humberto Brandão humberto@dcc.ufmg.br Projeto e Análise de Algoritmos Projeto de Algoritmos Introdução Prof. Humberto Brandão humberto@dcc.ufmg.br aula disponível no site: http://www.bcc.unifal-mg.edu.br/~humberto/ Universidade Federal de

Leia mais

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x)

3. Limites. = quando x está muito próximo de 0: a) Vejamos o que ocorre com a função f ( x) . Limites Ao trabalhar com uma função nossa primeira preocupação deve ser o seu domínio (condição de eistência) afinal só faz sentido utilizá-la nos pontos onde esteja definida e sua epressão matemática

Leia mais

Simulação Estocástica

Simulação Estocástica Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes

3ª Lista de Exercícios Representação de dados com agregados: Arrays e Matrizes 1 Universidade Federal Fluminense Instituto de Computação Departamento de Ciência da Computação Programação de Computadores II Professores: Leandro A. F. Fernandes, Marcos Lage, Pedro Velloso 3ª Lista

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

DA INTERPOLAÇÃO SPLINE COMO TRAJETÓRIA DA FERRAMENTA NA MANUFATURA SUPERFÍCIES COMPLEXAS ATRAVÉS DE FERRAMENTAS DOE (DESING OF EXPERIMENTS)

DA INTERPOLAÇÃO SPLINE COMO TRAJETÓRIA DA FERRAMENTA NA MANUFATURA SUPERFÍCIES COMPLEXAS ATRAVÉS DE FERRAMENTAS DOE (DESING OF EXPERIMENTS) 18º Congresso de Iniciação Científica AVALIAÇÃO DA INTERPOLAÇÃO SPLINE COMO TRAJETÓRIA DA FERRAMENTA NA MANUFATURA SUPERFÍCIES COMPLEXAS ATRAVÉS DE FERRAMENTAS DOE (DESING OF EXPERIMENTS) Autor(es) MARCO

Leia mais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais

Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Uma Ferramenta para otimização em Engenharia Mecânica e aplicações na Fundição Eletromagnética de Metais Departamento de Engenharia Mecânica COPPE UFRJ STIC-AMSUD, Novembro de 2009 Conteúdo Preliminares

Leia mais

Pesquisa Sequencial e Binária. Introdução à Programação SI2

Pesquisa Sequencial e Binária. Introdução à Programação SI2 Pesquisa Sequencial e Binária Introdução à Programação SI2 3 Contexto Diferentes estratégias para pesquisa (busca) de um elemento específico em um conjunto de dados. Lista, array, coleção Operação importante,

Leia mais

2. Objetivos do Sistema

2. Objetivos do Sistema Desenvolvimento de Um Programa Interpretador e Resolvedor para Máquinas de Estado Finito Adriana Postal 1, Ana Paula Fredrich 1, Cassiano Cesar Casagrande 1, Evaristo Wychoski Benfatti 1, Josué Pereira

Leia mais

AULA 4 - ESPELHOS ESFÉRICOS

AULA 4 - ESPELHOS ESFÉRICOS AULA 4 - ESPELHOS ESFÉRICOS Meta: - Fazer que o estudante comece a pensar no ensino de ciências como algo orgânico que está em profunda transformação; - Fazer com que os alunos percebam, através de uma

Leia mais

APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS

APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS Bianca G. Giordani (UTFPR/MD ) biancaggiordani@hotmail.com Lucas Augusto Bau (UTFPR/MD ) lucas_bau_5@hotmail.com A busca pela minimização

Leia mais

Interface gráfica para compiladores gratuitos baseados em linha de comando disponíveis na internet

Interface gráfica para compiladores gratuitos baseados em linha de comando disponíveis na internet 1. Autores Interface gráfica para compiladores gratuitos baseados em linha de comando disponíveis na internet Luciano Eugênio de Castro Barbosa Flavio Barbieri Gonzaga 2. Resumo O custo de licenciamento

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

um experimento dedicado a estudar a composição de partículas primárias de raios cósmicos e interações hadrônicas de altas energias.

um experimento dedicado a estudar a composição de partículas primárias de raios cósmicos e interações hadrônicas de altas energias. Uma análise sobre diferentes parametrizações da atmosfera em simulações de chuveiros atmosféricos extensos de raios cósmicos Stefano Castro TOGNINI; Ricardo Avelino GOMES Instituto de Física Universidade

Leia mais

ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS

ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS EM CENÁRIOS DE ALTA LUMINOSIDADE ALUNO: MARCOS VINÍCIUS

Leia mais

Estudo comparativo do comportamento térmico de quatro sistemas de cobertura. Um estudo experimental para a reação frente ao calor.

Estudo comparativo do comportamento térmico de quatro sistemas de cobertura. Um estudo experimental para a reação frente ao calor. Estudo comparativo do comportamento térmico de quatro sistemas de cobertura. Um estudo experimental para a reação frente ao calor. Francisco Vecchia Departamento de Hidráulica e Saneamento Escola de Engenharia

Leia mais

Implementação de um módulo simulador de robôs baseado em Unity3D para o SimBot - Simulador de Robôs para Lego NXT.

Implementação de um módulo simulador de robôs baseado em Unity3D para o SimBot - Simulador de Robôs para Lego NXT. UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ Curso de Bacharelado em Ciência da Computação UNIOESTE - Campus de Cascavel MODELO PARA ELABORAÇÃO DE PROJETOS DE TRABALHO DE CONCLUSÃO DE CURSO 1. IDENTIFICAÇÃO

Leia mais

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO

CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO CAPÍTULO 1 INTRODUÇÃO 1.1 INTRODUÇÃO Em quase todas as nossas atividades diárias precisamos enfrentar filas para atender as nossas necessidades. Aguardamos em fila na padaria, nos bancos, quando trafegamos

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

MELHORAMENTO DE PLANTAS AUTÓGAMAS POR HIBRIDAÇÃO

MELHORAMENTO DE PLANTAS AUTÓGAMAS POR HIBRIDAÇÃO MELHORAMENTO DE PLANTAS AUTÓGAMAS POR HIBRIDAÇÃO 7 INTRODUÇÃO Vimos no capítulo anterior a utilização da seleção no melhoramento de espécies autógamas. O requisito básico para utilizarmos essa técnica

Leia mais

EN1002 Engenharia Unificada I. FORMAÇÃO DE EQUIPES Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

EN1002 Engenharia Unificada I. FORMAÇÃO DE EQUIPES Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas EN1002 Engenharia Unificada I FORMAÇÃO DE EQUIPES Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas Conteúdo da Apresentação Formas de comunicação em Projetos de Engenharia (PE) Interpretação

Leia mais

Interpolação de Curvas de Nível por Difusão de Calor

Interpolação de Curvas de Nível por Difusão de Calor Interpolação de Curvas de Nível por Difusão de Calor ROBERTO DE BEAUCLAIR SEIXAS LUIZ HENRIQUE DE FIGUEIREDO CLAUDIO ANTONIO DA SILVA IMPA Instituto de Matemática Pura e Aplicada VISGRAF Laboratório de

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário.

O trabalho pioneiro nesta área remonta a Ulam, que o teria inventado em 1946 ao estudar as possibilidades de ganhar no jogo de cartas Solitário. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Números aleatórios (NA) são elementos básicos necessários na simulação de quase todos os sistemas discretos. Eles podem ser utilizados

Leia mais

Projeto CONDIGITAL Portas da Matemática Guia do Professor

Projeto CONDIGITAL Portas da Matemática Guia do Professor Projeto CONDIGITAL Portas da Matemática Guia do Professor Página 1 de 7 Caro(a) professor(a) Guia do Professor A utilização de simulações digitais como objetos de aprendizagem tem sido difundida atualmente

Leia mais

CONHECENDO O ALGORITMO GARP. Adair Santa Catarina Curso de Informática Unioeste Campus de Cascavel PR

CONHECENDO O ALGORITMO GARP. Adair Santa Catarina Curso de Informática Unioeste Campus de Cascavel PR CONHECENDO O ALGORITMO GARP Adair Santa Catarina Curso de Informática Unioeste Campus de Cascavel PR INPE Set/2006 Roteiro Introdução Algoritmos Genéticos (AG) GMS e DesktopGARP Avaliação dos Modelos Ajustados

Leia mais

MODELAGEM E SIMULAÇÃO

MODELAGEM E SIMULAÇÃO MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Como Funciona a Simulação Introdução Assim como qualquer programa de computador,

Leia mais

ORIENTAÇÕES SOBRE A PROVA DISCURSIVA

ORIENTAÇÕES SOBRE A PROVA DISCURSIVA IF SUDESTE MG REITORIA Av. Francisco Bernardino, 165 4º andar Centro 36.013-100 Juiz de Fora MG Telefax: (32) 3257-4100 CONCURSO PÚBLICO PARA PROVIMENTO DE CARGO EFETIVO ORIENTAÇÕES SOBRE A PROVA DISCURSIVA

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Descritores de textura na análise de imagens de microtomografia computadorizada

Descritores de textura na análise de imagens de microtomografia computadorizada Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014. Descritores de textura na análise de imagens de microtomografia computadorizada Sandro R. Fernandes Departamento de Educação e Tecnologia, Núcleo de

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Consequências Interessantes da Continuidade

Consequências Interessantes da Continuidade Consequências Interessantes da Continuidade Frederico Reis Marques de Brito Resumo Trataremos aqui de um dos conceitos basilares da Matemática, o da continuidade no âmbito de funções f : R R, mostrando

Leia mais

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA 1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular

Leia mais

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO

EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO EXPERIMENTO N o 6 LENTES CONVERGENTES INTRODUÇÃO Ao incidir em uma lente convergente, um feixe paralelo de luz, depois de passar pela lente, é concentrado em um ponto denominado foco (representado por

Leia mais

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves

CAP 254 CAP 254. Otimização Combinatória. Professor: Dr. L.A.N. Lorena. Assunto: Metaheurísticas Antonio Augusto Chaves CAP 254 CAP 254 Otimização Combinatória Professor: Dr. L.A.N. Lorena Assunto: Metaheurísticas Antonio Augusto Chaves Conteúdo C01 Simulated Annealing (20/11/07). C02 Busca Tabu (22/11/07). C03 Colônia

Leia mais