IA: Problemas de Satisfação de Restrições. Prof. Msc. Ricardo Britto DIE-UFPI

Tamanho: px
Começar a partir da página:

Download "IA: Problemas de Satisfação de Restrições. Prof. Msc. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br"

Transcrição

1 IA: Problemas de Satisfação de Restrições Prof. Msc. Ricardo Britto DIE-UFPI

2 Introdução Um PSR é definido por um conjunto de variáveis X 1, X 2,..., X n, e por um conjunto de restrições, C 1, C 2,..., C m. Cada variável X i tem um domínio D i nãovazio de valores possíveis. Cada restrição C i envolve algum subconjunto das variáveis e especifica as combinações de valores permitidos para aquele subconjunto.

3 Introdução Um estado do problema é definido por uma atribuição de valores a alguma ou a todas as variáveis. Uma atribuição que não viola nenhuma restrição é chamada atribuição consistente ou válida. Uma atribuição completa é aquela em que toda variável é mencionada. Uma solução para um PSR é uma atribuição completa que satisfaz todas as restrições. Alguns PSR também exigem uma solução que maximize uma função objetivo.

4 Exemplo: Coloração de Mapa Dado o mapa da Austrália, com seus estados e territórios. Colorir cada região de vermelho, verde ou azul de tal modo que nenhuma região vizinha tenha a mesma cor. Formulação: As variáveis representam as regiões: WA,NT, Q, NSW, V, SA e T. O domínio de cada variável é o conjunto {vermelho,verde, azul}; As restrições exigem que regiões vizinhas tenham cores distintas. WA NT ou (WA;NT) {(red; green); (red; blue); (green; red); (green; blue); }

5 Exemplo: Coloração de Mapa W

6 Exemplo: Coloração de Mapa

7 Grafo de Restrições Existem muitas soluções; É útil visualizar um PSR como um grafo de restrições, onde os nós do grafo correspondem a variáveis e os arcos correspondem as restrições.

8 Grafo de Restrições

9 Métodos de solução Formulação incremental. Formulação de estados completos.

10 Formulação Incremental Estado inicial: A atribuição vazia; Função sucessor: Um valor pode ser atribuído a qualquer variável, desde que ela não entre em conflito com variáveis atribuídas anteriormente; Teste do objetivo: A atribuição corrente é completa; Custo de caminho: Um custo constante (pode ser 1) para todo passo.

11 Formulação Incremental Toda solução deve ser uma atribuição completa, portanto, aparece na profundidade n se existem n variáveis. Por isso, a árvore de busca se estende até a profundidade n. Por essa razão, os algoritmos de busca em profundidade são populares para PSR.

12 Formulação de Estados Completos Todo estado é uma atribuição completa que pode ou não satisfazer às restrições. Neste caso costuma-se usar métodos de busca local.

13 Tipos de PSR PSR que envolve variáveis discretas e que tem domínios finitos. Exemplos: Coloração de mapas; 8 rainhas.

14 Tipos de PSR PSR que envolve variáveis discretas e que tem domínios infinitos. Exemplos: Conjunto de Inteiros (Programação Inteira)

15 Tipos de PSR PSR com domínios contínuos. São muito comum no mundo real e são amplamente estudados no campo da pesquisa operacional. Exemplos: O escalonamento de experimentos no telescópio Hubble exige sincronização muito precisa de observações. Programação linear (categoria mais conhecida).

16 Tipos de Restrições Restrições unárias Restrições binárias Todas as restrições citadas são do tipo absolutas, cuja violação elimina uma solução. Muitos PSR reais incluem restrições de preferência, indicando as soluções preferidas.

17 Busca com Retrocesso para PSR É uma busca em profundidade que escolhe valores para uma variável de cada vez e que efetua o retrocesso quando uma variável não tem valores restantes a serem atribuídos. Os métodos para PSR são de uso geral e não necessitam de funções heurísticas específicas do domínio.

18 Implementando Retrocesso para PSR

19 Exemplo 1 W

20 Exemplo 1

21 Melhorando a Eficiência da Busca com Retrocesso Que variável deve ser atribuída em seguida, e em que ordem seus valores devem ser experimentados? Quais são as implicações das atribuições de variáveis atuais para as outras variáveis não-atribuídas? Quando um caminho, a busca pode evitar repetir essa falha em caminhos subsequentes?

22 Valores Restantes Mínimos Selecionar qualquer variável não-atribuída raramente resulta numa busca eficiente. Uma das possibilidades é escolher a variável com o menor número de valores válidos. Esta heurística é chamada de valores restantes mínimos (VRM). Heurística de variável mais restrita ou de primeira falha. Esta heurística escolhe uma variável que tem a maior probabilidade de provocar uma falha ou seja, de podar a árvore de busca.

23 Exemplo 2 W

24 Exemplo 2

25 Heurística de Grau A heurística de VRM não ajuda de modo algum na escolha da primeira região a colorir na Austrália, porque inicialmente toda região tem três cores válidas. A heurística de grau tenta reduzir o fator de ramificação em escolhas futuras selecionando a variável envolvida no maior número de restrições sobre outras variáveis não-atribuídas.

26 Exemplo 3 W

27 Exemplo 3

28 Heurística de Grau SA será a variável escolhida, porque possui grau mais alto 5. Normalmente se usa a heurística de grau como critério de desempate na aplicação da heurística de valores restantes mínimos. Uma vez que uma variável foi selecionada, o algoritmo deve decidir pela ordem em que seus valores devem ser examinados.

29 Heurística de Valor Menos Restritivo Escolhe o valor que elimina o menor número possível de escolhas para as variáveis vizinhas no grafo de restrições. Exemplo: Atribuição parcial com WS = vermelho e NT = verde, próxima escolha é Q. Azul seria uma escolha ruim. Esta heurística escolheria o vermelho. Procura deixar uma maior flexibilidade para atribuições de variáveis subsequentes.

30 Exemplo 4 W

31 Exemplo 4

32 Verificação Prévia Até o momento consideramos as restrições sobre uma variável apenas no momento em que a variável é escolhida para atribuição. Observando algumas das restrições durante o processo de busca podemos reduzir drasticamente o espaço de busca.

33 Verificação Prévia Sempre que uma variável X é atribuída, o processo de verificação prévia examina cada variável não-atribuida Y que está conectada por uma restrição a X e exclui do domínio de Y qualquer valor que esteja inconsistente com o valor escolhido para X.

34 Exemplo 5 W

35 Exemplo 5

36 Propagação de Restrições Embora detecte muitas inconsistências, a verificação prévia não detecta todas elas. Exemplo: quando WN = vermelho e Q=verde tanto NT quanto SA serão forçadas a serem azuis. A verificação prévia não detecta esta inconsistência.

37 Propagação de Restrições A propagação de restrições é a expressão geral para indicar a propagação das implicações de uma restrição sobre uma variável para outras variáveis. Precisamos realizar a propagação a partir de WN e Q sobre NT e SA e depois sobre a restrição entre NT e SA para detectar a inconsistência.

38 Consistência de Arco Uma das formas de se implementar propagação de restrições é por meio de consistência de arcos. Dado os domínios atuais de SA e NSW, o arco de SA até NSW é consistente se, para todo valor de x de SA, existe valor y de NSW. O arco de SA até NSW é consistente. No entanto, o arco de NSW até SA não é consistente. Podemos torná-lo consistente eliminando azul do domínio de NWS.

39 Exemplo 6 W

40 Exemplo 6

41 Exemplo 6

42 Implementando Consistência de Arco

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF

Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF Inteligência Artificial Prof. Marcos Quinet Pólo Universitário de Rio das Ostras PURO Universidade Federal Fluminense UFF No capítulo anterior... Estratégias de busca auxiliadas por heurísticas (A*, BRPM)

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs) Procura com Retrocesso para CSPs Procura Local para CSPs Estrutura dos CSPs Problemas de Satisfação

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Laboratório de Pesquisa e Desenvolvimento Universidade Federal de Alfenas versão

Leia mais

Problemas de Satisfação de Restrições

Problemas de Satisfação de Restrições Problemas de Satisfação de Restrições Texto base: Stuart Russel e Peter Norving - Inteligência Artificial David Poole, Alan Mackworth e Randy Goebel - Computational Intelligence A logical approach junho/2007

Leia mais

Problemas de Satisfação de Restrições

Problemas de Satisfação de Restrições Computação Inteligente Problemas de Satisfação de Restrições Lucas Augusto Carvalho Mestrado em Ciência da Computação 2011.1 DCOMP - Universidade Federal de Sergipe 1 Conteúdo Problemas de Satisfação de

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Parte 2. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.

Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Parte 2. Prof. Humberto Brandão humberto@bcc.unifal-mg.edu. Projeto e Análise de Algoritmos Projeto de Algoritmos Tentativa e Erro Parte 2 Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br versão da aula: 0.3 Última aula teórica Algoritmo de Tentativa e Erro:

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 11 Problemas com Satisfação de Vínculos

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 11 Problemas com Satisfação de Vínculos Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 11 Problemas com Satisfação de Vínculos 1 Constraint Satisfaction Problems (CSP) Conceitos básicos Busca cega simples e refinada Busca heurística

Leia mais

Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições

Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições Inteligência Artificial (SI 214) Aula 5 Problemas de Satisfação de Restrições Prof. Josenildo Silva jcsilva@ifma.edu.br 2012 2012 Josenildo Silva (jcsilva@ifma.edu.br) Este material é derivado dos slides

Leia mais

Satisfação de Restrições. Capítulo 5 (disponível online)

Satisfação de Restrições. Capítulo 5 (disponível online) Satisfação de Restrições Capítulo 5 (disponível online) Sumário Problemas de Satisfação de Restrições (CSPs, do Inglês Constraint Satisfaction Problems ) Procura com Retrocesso para CSPs Procura Local

Leia mais

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com

Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Solução de problemas por meio de busca (com Python) Luis Martí DEE/PUC-Rio http://lmarti.com Python e AI (Re)-introdução ao Python. Problemas de busca e principais abordagens. Exemplos em Python Por que

Leia mais

Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3

Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.1, 3.2 e 3.3 Agentes de resolução de problemas Agentes reagvos não funcionam em ambientes para quais o número de regras condição-

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

PROGRAMAÇÃO LÓGICA POR RESTRIÇÕES NA RESOLUÇÃO DE PROBLEMAS

PROGRAMAÇÃO LÓGICA POR RESTRIÇÕES NA RESOLUÇÃO DE PROBLEMAS 3 PROGRAMAÇÃO LÓGICA POR RESTRIÇÕES NA RESOLUÇÃO DE PROBLEMAS A Programação Lógica por Restrições (PLR) corporiza um paradigma computacional que combina a natureza declarativa da programação em lógica

Leia mais

Sistemas Inteligentes Lista de Exercícios sobre Busca

Sistemas Inteligentes Lista de Exercícios sobre Busca Sistemas Inteligentes Lista de Exercícios sobre Busca 1) A* - Problema do metrô de Paris Suponha que queremos construir um sistema para auxiliar um usuário do metrô de Paris a saber o trajeto mais rápido

Leia mais

Aula 21: Roteamento em Redes de Dados

Aula 21: Roteamento em Redes de Dados Aula : Roteamento em Redes de Dados Slide Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC Rede de Pacotes PC PC PC PC Buffer Pacote Comutado Slide Roteamento

Leia mais

Respostas dos Exercícios Cap. 2 Russell & Norvig

Respostas dos Exercícios Cap. 2 Russell & Norvig Respostas dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Uma medida de desempenho e utilizada por um observador externo para avaliar o sucesso de um agente. Uma função de utilidade e utilizada por um

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

Problemas de Satisfação de Restrições 03/05/2012

Problemas de Satisfação de Restrições 03/05/2012 Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação Problemas de Satisfação de Restrições 03/05/2012 Prof. a Claudia Brandelero Rizzi claudia_rizzi@hotmail.com Roteiro

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Francisco José da Silva e Silva Laboratório de Sistemas Distribuídos (LSD) Departamento de Informática / UFMA http://www.lsd.ufma.br

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Unidade VI. Validação e Verificação de Software Teste de Software. Conteúdo. Técnicas de Teste. Estratégias de Teste

Unidade VI. Validação e Verificação de Software Teste de Software. Conteúdo. Técnicas de Teste. Estratégias de Teste Unidade VI Validação e Verificação de Software Teste de Software Profa. Dra. Sandra Fabbri Conteúdo Técnicas de Teste Funcional Estrutural Baseada em Erros Estratégias de Teste Teste de Unidade Teste de

Leia mais

Sistemas Distribuídos. Professora: Ana Paula Couto DCC 064

Sistemas Distribuídos. Professora: Ana Paula Couto DCC 064 Sistemas Distribuídos Professora: Ana Paula Couto DCC 064 Consistência e Replicação Capítulo 7 Agenda Razões para Replicação Replicação como técnica de escalabilidade Modelos de Consistência centrados

Leia mais

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear.

7 - Análise de redes Pesquisa Operacional CAPÍTULO 7 ANÁLISE DE REDES. 4 c. Figura 7.1 - Exemplo de um grafo linear. CAPÍTULO 7 7 ANÁLISE DE REDES 7.1 Conceitos Básicos em Teoria dos Grafos Diversos problemas de programação linear, inclusive os problemas de transporte, podem ser modelados como problemas de fluxo de redes.

Leia mais

CONCURSO PÚBLICO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI ANALISTA DE GESTÃO RESPOSTAS ESPERADAS PRELIMINARES

CONCURSO PÚBLICO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI ANALISTA DE GESTÃO RESPOSTAS ESPERADAS PRELIMINARES CELG DISTRIBUIÇÃO S.A EDITAL N. 1/2014 CONCURSO PÚBLICO ANALISTA DE GESTÃO ANALISTA DE SISTEMA ÊNFASE GOVERNANÇA DE TI RESPOSTAS ESPERADAS PRELIMINARES O Centro de Seleção da Universidade Federal de Goiás

Leia mais

CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro pauloac@ita.br

CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro pauloac@ita.br CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro pauloac@ita.br www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de

Leia mais

BC-0506: Comunicação e Redes Algoritmos em Grafos

BC-0506: Comunicação e Redes Algoritmos em Grafos BC-0506: Comunicação e Redes Algoritmos em Grafos Santo André, 2Q2011 1 Parte 1: Algoritmos de Busca Rediscutindo: Representações em Grafos Matriz de Adjacências Matriz de Incidências Lista de Adjacências

Leia mais

MELHORIA DA QUALIDADE e MASP (Prof. José Carlos de Toledo GEPEQ/DEP-UFSCar) 1. Introdução

MELHORIA DA QUALIDADE e MASP (Prof. José Carlos de Toledo GEPEQ/DEP-UFSCar) 1. Introdução MELHORIA DA QUALIDADE e MASP (Prof. José Carlos de Toledo GEPEQ/DEP-UFSCar) 1. Introdução A Melhoria da Qualidade é uma atividade que deve estar presente nas rotinas de toda a empresa. Isto significa que

Leia mais

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Um Sistema Gerenciador de Banco de Dados (SGBD) é constituído por um conjunto de dados associados a um conjunto de programas para acesso a esses

Leia mais

Estruturas de Dados Árvores

Estruturas de Dados Árvores Estruturas de Dados Árvores Prof. Eduardo Alchieri Árvores (introdução) Importância de estruturas unidimensionais ou lineares (vetores e listas) é inegável Porém, estas estruturas não são adequadas para

Leia mais

Gerenciamento de Riscos em Projetos. Parte 10. Gerenciamento de Projetos Espaciais CSE- 325. Docente: Petrônio Noronha de Souza

Gerenciamento de Riscos em Projetos. Parte 10. Gerenciamento de Projetos Espaciais CSE- 325. Docente: Petrônio Noronha de Souza Gerenciamento de Riscos em Projetos Parte 10 Gerenciamento de Projetos Espaciais CSE- 325 Docente: Petrônio Noronha de Souza Curso: Engenharia e Tecnologia Espaciais Concentração: Engenharia e Gerenciamento

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 14 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas Exponenciais - Algoritmos Exponenciais usando Tentativa e Erro - Heurísticas para

Leia mais

Métodos de Avaliação para Sites de Entretenimento. Fabricio Aparecido Breve Prof. Orientador Daniel Weller

Métodos de Avaliação para Sites de Entretenimento. Fabricio Aparecido Breve Prof. Orientador Daniel Weller Métodos de Avaliação para Sites de Entretenimento Fabricio Aparecido Breve Prof. Orientador Daniel Weller 1 Introdução O objetivo deste trabalho é verificar a eficiência da Avaliação com o Usuário e da

Leia mais

Figura 1.1: Exemplo de links patrocinados no Google

Figura 1.1: Exemplo de links patrocinados no Google 1 Links Patrocinados 1.1 Introdução Links patrocinados são aqueles que aparecem em destaque nos resultados de uma pesquisa na Internet; em geral, no alto ou à direita da página, como na Figura 1.1. Figura

Leia mais

Aula 03 - Modelagem em PPLIM

Aula 03 - Modelagem em PPLIM Thiago A. O. 1 1 Universidade Federal de Ouro Preto 1 Componentos do modelo 2 3 4 5 6 Componentes de uma modelagem matemática Elementos; Conjuntos; Parâmetros; Variáveis; Objetivo; Restições; Elementos

Leia mais

MÉTODOS DE RESOLUÇÃO DE PROBLEMAS EM IA. Busca em espaço de estados. Estados e Operadores. Jogo dos 8. Sumário. Exemplo: jogo dos 8

MÉTODOS DE RESOLUÇÃO DE PROBLEMAS EM IA. Busca em espaço de estados. Estados e Operadores. Jogo dos 8. Sumário. Exemplo: jogo dos 8 MÉTODOS DE RESOLUÇÃO DE PROBLEMAS EM IA Sumário busca em espaço de estados redução de problemas Busca em espaço de estados Exemplo: jogo dos 8 2 8 3 1 6 4 7 5 Jogo dos 8 Estados e Operadores Estado: uma

Leia mais

fagury.com.br. PMBoK 2004

fagury.com.br. PMBoK 2004 Este material é distribuído por Thiago Fagury através de uma licença Creative Commons 2.5. É permitido o uso e atribuição para fim nãocomercial. É vedada a criação de obras derivadas sem comunicação prévia

Leia mais

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula

15.053 Quinta-feira, 14 de março. Introdução aos Fluxos de Rede Handouts: Notas de Aula 15.053 Quinta-feira, 14 de março Introdução aos Fluxos de Rede Handouts: Notas de Aula 1 Modelos de Rede Modelos de programação linear que exibem uma estrutura muito especial. Podem utilizar essa estrutura

Leia mais

Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados

Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados GA em Otimização Combinatorial Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados Problem a do Caixeiro Viajante Problem as de Planejamento

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

Mercados de Emparelhamento

Mercados de Emparelhamento Mercados de Emparelhamento Redes Sociais e Econômicas Prof. André Vignatti Aula Passada 1. Definições: grafos bipartidos e emparelhamentos perfeitos 2. Mercados com opções binárias (aceita ou não) Extensão

Leia mais

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT

Aula 20. Roteamento em Redes de Dados. Eytan Modiano MIT Aula 20 Roteamento em Redes de Dados Eytan Modiano MIT 1 Roteamento Deve escolher rotas para vários pares origem, destino (pares O/D) ou para várias sessões. Roteamento datagrama: a rota é escolhida para

Leia mais

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest )

Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Generalidades A metáfora Biológica Evolução via Selecção Natural (Darwin) - sobrevivem os mais aptos (fittest ) Operadores Genéticos (Mendel) - recombinação (crossover ) - mutação (mutation ) Algoritmos

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências

Leia mais

DSI é o processo cujo objetivo é introduzir mudanças num sistema de informação, com objetivo de melhorar o seu desempenho.

DSI é o processo cujo objetivo é introduzir mudanças num sistema de informação, com objetivo de melhorar o seu desempenho. - DSI DSI é o processo cujo objetivo é introduzir mudanças num sistema de informação, com objetivo de melhorar o seu desempenho. Preocupação: Problema técnicos Mudança na natureza e conteúdo do trabalho

Leia mais

Inteligência Artificial. Metodologias de Busca

Inteligência Artificial. Metodologias de Busca Inteligência Artificial Metodologias de Busca 1 Solução de problemas como Busca Um problema pode ser considerado como um objetivo Um conjunto de ações podem ser praticadas para alcançar esse objetivo Ao

Leia mais

Sumário. Comunicação Multicast. Soluções. Multicast. Application-Level Multicast. October 20, 2008 Algoritmos Epidémicos

Sumário. Comunicação Multicast. Soluções. Multicast. Application-Level Multicast. October 20, 2008 Algoritmos Epidémicos Sumário Comunicação Multicast Multicast Application-Level Multicast October 20, 2008 Algoritmos Epidémicos Comunicação Multicast Soluções Multicast designa o envio duma mensagem para múltiplos destinatários.

Leia mais

Concurso Logotipo do Curso de Tecnologia em Sistemas para Internet

Concurso Logotipo do Curso de Tecnologia em Sistemas para Internet Concurso Logotipo do Curso de Tecnologia em Sistemas para Internet Prezados, Seguem, o Logotipos pré-selecionados para votação. Analisem cada imagem bem como sua descrição e envie um e-mail contendo a

Leia mais

FINANÇAS AS EM PROJETOS DE TI

FINANÇAS AS EM PROJETOS DE TI FINANÇAS AS EM PROJETOS DE TI 2012 Material 2.1 Prof. Luiz Carlos Valeretto Jr. 1 Fundamentos de Risco e Retorno Se todos soubessem com antecedência qual seria o preço futuro de uma ação, o investimento

Leia mais

Arrendamento de espaço num armazém

Arrendamento de espaço num armazém Construção de Modelos de Programação Linear e Inteira 6 Arrendamento de espaço num armazém Uma empresa planeia arrendar espaço num armazém, sendo as suas necessidades para os próximos 5 meses as seguintes:

Leia mais

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS

3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3 ALGORITMOS GENÉTICOS : CONCEITOS BÁSICOS E EXTENSÕES VINCULADAS AO PROBLEMA DE MINIMIZAÇÃO DE PERDAS 3.1 - Conceitos Básicos Entendemos como algoritmo um conjunto predeterminado e bem definido de regras

Leia mais

Técnicas de Otimização Combinando Alocação de Banco de Capacitores e Reconfiguração de Rede Visando Minimização de Perdas Técnicas

Técnicas de Otimização Combinando Alocação de Banco de Capacitores e Reconfiguração de Rede Visando Minimização de Perdas Técnicas Universidade Estadual de Campinas - Unicamp Faculdade de Engenharia Elétrica e de Computação - FEEC Comissão de Pós-graduação - CPG IA342 Tópicos em Otimização de Sistemas Aluno: Antonio César Polo Matricula:

Leia mais

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri. Banco de Dados Processamento e Otimização de Consultas Processamento e Otimização de Consultas Banco de Dados Motivação Consulta pode ter sua resposta computada por uma variedade de métodos (geralmente) Usuário (programador) sugere uma estratégia para achar

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

ão: modelagem e técnicas

ão: modelagem e técnicas Curso de Especialização em Gestão Empresarial (MBA Executivo Turma 15) Disciplina: Pesquisa Operacional Prof. Dr. Álvaro José Periotto 3. Otimização ão: modelagem e técnicas de resolução Passando da daetapa

Leia mais

FACULDADE DE IMPERATRIZ - FACIMP BACHARELADO EM SISTEMAS DE INFORMAÇÃO ESTRUTURA DE DADOS 2. Vieira Lima Junior. Everson Santos Araujo

FACULDADE DE IMPERATRIZ - FACIMP BACHARELADO EM SISTEMAS DE INFORMAÇÃO ESTRUTURA DE DADOS 2. Vieira Lima Junior. Everson Santos Araujo 1 FACULDADE DE IMPERATRIZ - FACIMP BACHARELADO EM SISTEMAS DE INFORMAÇÃO ESTRUTURA DE DADOS 2 Vieira Lima Junior Everson Santos Araujo ALGORITMOS DE ORDENAÇÃO: estudo comparativo de diversos algoritmos

Leia mais

AULA 1 INTRODUÇÃO - ENGENHARIA DE SOFTWARE. Prof. Msc. Hélio Esperidião

AULA 1 INTRODUÇÃO - ENGENHARIA DE SOFTWARE. Prof. Msc. Hélio Esperidião AULA 1 INTRODUÇÃO - ENGENHARIA DE SOFTWARE Prof. Msc. Hélio Esperidião O QUE É UM ALGORITMO? É qualquer procedimento computacional bem definido que informa algum valor ou conjunto de valores como entrada

Leia mais

SISTEMAS DISTRIBUÍDOS

SISTEMAS DISTRIBUÍDOS SISTEMAS DISTRIBUÍDOS Comunicação coletiva Modelo Peer-to-Peer Slide 6 Nielsen C. Damasceno Introdução Os modelos anteriores eram realizado entre duas partes: Cliente e Servidor. Com RPC e RMI não é possível

Leia mais

Bancos de dados distribuídos Prof. Tiago Eugenio de Melo tiagodemelo@gmail.com. http://www.tiagodemelo.info

Bancos de dados distribuídos Prof. Tiago Eugenio de Melo tiagodemelo@gmail.com. http://www.tiagodemelo.info Bancos de dados distribuídos Prof. Tiago Eugenio de Melo tiagodemelo@gmail.com Última atualização: 20.03.2013 Conceitos Banco de dados distribuídos pode ser entendido como uma coleção de múltiplos bds

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

Redes de Computadores. Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos

Redes de Computadores. Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos Redes de Computadores Camada de Aplicação Teoria de Redes Complexas: Conceitos Básicos em Grafos Introdução Como as coisas estão conectadas? Redes! A network is a set of vertices or nodes provided with

Leia mais

Interconexão de Redes Parte 3. Prof. Dr. S. Motoyama

Interconexão de Redes Parte 3. Prof. Dr. S. Motoyama Interconexão de Redes Parte 3 Prof. Dr. S. Motoyama Protocolo de configuração dinâmica de host - DHCP DHCP proporciona uma estrutura para passar informação de configuração aos hosts (de maneira dinâmica

Leia mais

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO

01/05/2016. Danillo Tourinho Sancho da Silva, MSc ROTEIRIZAÇÃO TEORIA DOS GRAFOS MOTIVAÇÃO ROTEIRIZAÇÃO Danillo Tourinho Sancho da Silva, MSc TEORIA DOS GRAFOS MOTIVAÇÃO 1 MOTIVAÇÃO Por que estudar grafos? Importante ferramenta matemática com aplicação em diversas áreas do conhecimento Utilizados

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Ano III - Número 16. Versão 4.6.4

Ano III - Número 16. Versão 4.6.4 Versão 4.6.4 Sexta-feira, 08 de fevereiro de 2008 ÍNDICE 3 4 EDITORIAL NOVAS FUNCIONALIDADES 4 12 13 14 15 16 Novo Cronograma 4 5 5 6 7 8 8 9 9 10 10 Edição Rápida do Cronograma Recurso de Arrastar e Soltar

Leia mais

Paradigmas de Programação

Paradigmas de Programação Paradigmas de Programação Tipos de Dados Aula 5 Prof.: Edilberto M. Silva http://www.edilms.eti.br Prof. Edilberto Silva / edilms.eti.br Tipos de Dados Sistema de tipos Tipos de Dados e Domínios Métodos

Leia mais

Busca em Espaço de Estados

Busca em Espaço de Estados Busca em Espaço de Estados Jomi Fred Hübner jomi@inf.furb.br FURB / BCC Introdução 2 Agente orientado a meta O projetista não determina um mapeamento entre percepções e ações, mas determina que objetivo

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias.

Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Uso de SAS/OR para diminuir o tempo de resposta com um melhor posicionamento de ambulâncias. Fábio França 1, 1 Logical Optimization Rua Tanhaçu número 405, CEP 05679-040 São Paulo, Brasil fabio.franca@optimization.com.br

Leia mais

Metodologia de Gerenciamento de Projetos da Justiça Federal

Metodologia de Gerenciamento de Projetos da Justiça Federal Metodologia de Gerenciamento de Projetos da Justiça Federal Histórico de Revisões Data Versão Descrição 30/04/2010 1.0 Versão Inicial 2 Sumário 1. Introdução... 5 2. Público-alvo... 5 3. Conceitos básicos...

Leia mais

Árvores. Algoritmos e Estruturas de Dados 2005/2006

Árvores. Algoritmos e Estruturas de Dados 2005/2006 Árvores Algoritmos e Estruturas de Dados 2005/2006 Árvores Conjunto de nós e conjunto de arestas que ligam pares de nós Um nó é a raiz Com excepção da raiz, todo o nó está ligado por uma aresta a 1 e 1

Leia mais

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi Metodologias de Desenvolvimento de Sistemas Analise de Sistemas I UNIPAC Rodrigo Videschi Histórico Uso de Metodologias Histórico Uso de Metodologias Era da Pré-Metodologia 1960-1970 Era da Metodologia

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

Aula-17 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama

Aula-17 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama Aula-7 Interconexão de Redes IP (Internet Protocol) Prof. Dr. S. Motoyama Encaminhamento IP Exemplo de tabela de roteamento de R: Rede/Sub-rede Mácara de sub-rede Próximo salto 28.96.34.0 255.255.255.28

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) I Representação dos números, aritmética de ponto flutuante e erros em máquinas

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Figura 13.1: Um exemplo de árvore de diretório.

Figura 13.1: Um exemplo de árvore de diretório. 13. Árvores W. Celes e J. L. Rangel Nos capítulos anteriores examinamos as estruturas de dados que podem ser chamadas de unidimensionais ou lineares, como vetores e listas. A importância dessas estruturas

Leia mais

Sugestão de palavras chave para campanhas em motores de busca em arranque

Sugestão de palavras chave para campanhas em motores de busca em arranque Relatório Técnico FEUP Sugestão de palavras chave para campanhas em motores de busca em arranque João Albuquerque AdClick Ricardo Morla INESC TEC e FEUP Gabriel David INESC TEC e FEUP Rui Campos AdClick

Leia mais

Existe, mas não sei exibir!

Existe, mas não sei exibir! Existe, mas não sei exibir! Você já teve aquela sensação do tipo ei, isso deve existir, mas não sei exibir um exemplo quando resolvia algum problema? O fato é que alguns problemas existenciais são resolvidos

Leia mais

COBERTURA EM UMA REDE DE SENSORES SEM FIO

COBERTURA EM UMA REDE DE SENSORES SEM FIO COBERTURA EM UMA REDE DE SENSORES SEM FIO Vivian Lúcia Bittencourt Drumond Universidade Presidente Antônio Carlos Rodovia MG 368 KM 12 Colônia Rodrigo Silva Barbacena Minas Gerais Brasil viviandrumond@yahoo.com.br

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal?

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? Temos 5 grupos com 5 possibilidades cada uma, então: 5.5=25 casais Se fossem duplas: Teríamos 10

Leia mais

Jogos vs. Problemas de Procura

Jogos vs. Problemas de Procura Jogos Capítulo 6 Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas os movimentos que podem ser tomados pelo adversário Pontuação com sinais opostos O que

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho.

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho. Computação Paralela Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho Outubro 2005 Desenvolvimento de Aplicações Paralelas Uma Metodologia

Leia mais

Multiprocessamento. Sérgio Campos

Multiprocessamento. Sérgio Campos Multiprocessamento Sérgio Campos 1 / 19 Multiprocessamento Quem se importa? No mundo real multiprocessadores são comuns: PCs; LANs; Sistemas embutidos (porque?); Recursos podem ser modelados como processadores.

Leia mais

1 se n = 0 n (n 1)! se n 1

1 se n = 0 n (n 1)! se n 1 Recursão versus Iteração Problema: Cálculo de n! = n (n 1)... 1 int facti(int n) { int fac=n; while(n>0){ fac=fac*n; n--; } return fac; } [epd94, Cap. 5.13-15] Definição recursiva: n! = { 1 se n = 0 n

Leia mais

Princípio da Casa dos Pombos II

Princípio da Casa dos Pombos II Programa Olímpico de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 8 Princípio da Casa dos Pombos II Nesta aula vamos continuar praticando as ideias da aula anterior, aplicando o

Leia mais

Programação Inteira. Advertência

Programação Inteira. Advertência Departamento de Informática Programação Inteira Métodos Quantitativos LEI 2006/2007 Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento (snt@di.fct.unl.pt) Este material pode ser

Leia mais

Sistemas Distribuídos Aula 15

Sistemas Distribuídos Aula 15 Sistemas Distribuídos Aula 15 Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF 8. Tolerância a Falha

Leia mais

Eduardo C. Xavier. 24 de fevereiro de 2011

Eduardo C. Xavier. 24 de fevereiro de 2011 Reduções Eduardo C. Xavier Instituto de Computação/Unicamp 24 de fevereiro de 2011 Eduardo C. Xavier (IC/Unicamp) Reduções 24 de fevereiro de 2011 1 / 23 Programação Linear (PL) Vimos que na tentativa

Leia mais

Algoritmos e Estruturas de Dados 2

Algoritmos e Estruturas de Dados 2 Algoritmos e Estruturas de Dados 2 Unidade 1: Árvores binárias Rafael Beserra Gomes Universidade Federal do Rio Grande do Norte Material compilado em 21 de fevereiro de 201. Licença desta apresentação:

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

Estilos Arquiteturais. Estilos Arquiteturais. Exemplos de Estilos Arquiteturais. Estilo: Pipe e Filtros

Estilos Arquiteturais. Estilos Arquiteturais. Exemplos de Estilos Arquiteturais. Estilo: Pipe e Filtros Em geral sistemas seguem um estilo, ou padrão, de organização estrutural Os estilos diferem: nos tipos de componentes que usa na maneira como os componentes interagem com os outros (regras de interação)

Leia mais

Gerenciamento de Projeto: Planejando os Riscos. Prof. Msc Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

Gerenciamento de Projeto: Planejando os Riscos. Prof. Msc Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Gerenciamento de Projeto: Planejando os Riscos Prof. Msc Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Planejar o Gerenciamento dos Riscos. Identificar os Riscos Realizar a Análise Qualitativa

Leia mais

Processos de Design de IHC (Parte II)

Processos de Design de IHC (Parte II) Interface Homem/Máquina Aula 8 Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2011.1/tcc-00.184 Roteiro da Aula de Hoje

Leia mais

PESQUISA OPERACIONAL -OTIMIZAÇÃO COMBINATÓRIA PROBLEMAS DE OTIMIZAÇÃO EM REDES. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -OTIMIZAÇÃO COMBINATÓRIA PROBLEMAS DE OTIMIZAÇÃO EM REDES. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -OTIMIZAÇÃO COMBINATÓRIA PROBLEMAS DE OTIMIZAÇÃO EM REDES Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 6 do livro de Taha (2008): Otimização em Redes

Leia mais

TPref-SQL: uma linguagem de consultas para bancos de dados com suporte a preferências temporais

TPref-SQL: uma linguagem de consultas para bancos de dados com suporte a preferências temporais TPref-SQL: uma linguagem de consultas para bancos de dados com suporte a preferências temporais Autor: Marcos Roberto Ribeiro 1, Orientadora: Sandra Aparecida de Amo 1 1 Programa de Pós-Graduação em Ciência

Leia mais

Capítulo 4 - Roteamento e Roteadores

Capítulo 4 - Roteamento e Roteadores Capítulo 4 - Roteamento e Roteadores 4.1 - Roteamento Roteamento é a escolha do módulo do nó de origem ao nó de destino por onde as mensagens devem transitar. Na comutação de circuito, nas mensagens ou

Leia mais