TRABALHO DE MATEMÁTICA II

Tamanho: px
Começar a partir da página:

Download "TRABALHO DE MATEMÁTICA II"

Transcrição

1 TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / o Azul Questão 04 GRUPO 1 (FUVEST2010) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os algarismos 1, 2, 3, 4, 5 podem ser usados e um mesmo algarismo pode aparecer mais de uma vez. Contudo, supersticiosa, Maria não quer que sua senha contenha o número 13, isto é, o algarismo 1 seguido imediatamente pelo algarismo 3. De quantas maneiras distintas Maria pode escolher sua senha? 01) ) ) ) ) 555 RESOLUÇÃO: Número de casos possíveis: 5= 625 Número de casos favoráveis a que o algarismo 1 apareça seguido imediatamente do número 3: I) UM C D U Nº de casos possíveis ,2,4,5 1x1x1x4= ,3,4 ou 5 1,2,3,4 ou 5 1x1x4x5=20 II) UM C D U Nº de casos possíveis 1,2,3,4, ,2,3,4 ou 5 5x1x1x5= 25 III) UM C D U Nº de casos possíveis ,2,4, x4x1x1=4 2,3,4,5 1,2,3,4, x5x1x1=20 Num total de 74 casos favoráveis. Logo Maria pode escolher a sua senha de (625 74) = 551 Questão 31 (PUC RIO 2011) Em uma caixa há 3 meias azuis 5 meias pretas e 7 meias brancas. Qual o numero mínimo de meias que devemos retirar para garantir que tenhamos retirado pelo menos um par de meias da mesma cor? (A) 2 (B) 4 (C) 6 (D) 8 (E) 13 Resposta: (B) 4 RESOLUÇÃO Com três meias podemos ter uma de cada cor, mas com quatro haverá obrigatoriamente uma das três cores para a qual teremos pegado pelo menos duas meias.

2 GRUPO 2 Questão 08-(PUC MINAS 2009) As portas de acesso de todos os apartamentos de certo hotel são identificadas por meio de números ímpares formados com 3 elementos do conjunto M = {3, 4, 6, 7, 8}. Nessas condições, é correto afirmar que o número máximo de apartamentos desse hotel é: a) 24 b) 36 c) 44 d) 50 Para o número ser ímpar, o algarismo das unidades só poderá ser 3 ou 7) Então, Com o final sendo 3, restam 2 casas à serem preenchidas e 5 números. Então 5*5 = 25 Agora com o final valendo 7, restam 2 casas também, portanto 5*5 = 25 Somando as 2 possibilidades, = 50 Obs: O exercício não fala de algarismos distintos, por isso os números podem repetir. Questão 20- (UFJF 2009) De quantas maneiras podemos escolher 3 números naturais distintos dentre os inteiros de 1 a 20, de modo que a soma dos números escolhidos seja ímpar? a) 100 b) 360 c) 570 d) 720 e) 1140 de 1 a 20 ==> 10 números pares, 10, ímpares. para a soma de 3 números seja ímpar, a soma desses números devem ser: (par + par + ímpar) ou (ímpar + ímpar + ímpar) escolhemos três números impares = é igual, portanto, não precisa de ordem. então é uma combinação. "par + par + ímpar" ==> C10,2 * C10,1 = 450 "ímpar + ímpar + ímpar" ==> C10,3 = 120 logo, há = 570 maneira

3 Questão 11- (UFMG 2010) GRUPO 3 Para montar a programação de uma emissora de rádio, o Programador musical conta com 10 músicas distintas, de diferentes estilos, assim agrupadas: 4 de MPB, 3 de Rock,3 de Pop. Sem tempo para fazer essa programação, ele decide que em cada um dos programas da emissora, serão tocadas, de forma aleatória, todas as 10 músicas. Assim sendo, é CORRETO afirmar que o número de programas distintos em que as músicas vão ser tocadas, agrupadas por estilo, é dado por: a) b) c) d) Resolução: Alternativa a) Temos 3 estilos de música, 3 grupos: MPB, Rock, Pop. Dentro de cada grupo, podemos ordenar as músicas de MPB 4! maneiras diferentes, as de Rock 3! diferentes e as de Pop 3! diferentes: Além disso, podemos permutar a ordem dos estilos de 3! Maneiras: Questão 27-(UEMG 2010) Observe a tirinha abaixo: A Mônica desafia seus amigos, numa brincadeira de cabo de guerra. Supondo que a posição da Mônica pode ser substituída por qualquer um de seus amigos, e que ela pode ocupar o outro lado, junto com os demais, mantendo-se em qualquer posição, o número de maneiras distintas que podem ocorrer nessa brincadeira será igual a

4 a) 60. b) 150. c) 600. d) 120. Resolução: No enunciado, entende-se que qualquer um dos amigos pode ocupar qualquer posição. Logo: P5 = 5! = 120 (5 amigos em 5 posições) GRUPO 4 Questão 13 (UFRN 2010) A figura ao lado mostra um quadro com sete lâmpadas fluorescentes, as quais podem estar acesas ou apagadas, independentemente umas das outras. Cada uma das situações possíveis corresponde a um sinal de um código. Nesse caso, o número total de sinais possíveis é a) 21 b) 42 c)128 d) 256 Resolução: 2 n = 2 7 = = 128 Questão 40 (UERJ 2010) Um cofre eletrônico possui um painel com dez teclas numéricas e pode ser aberto por meio da digitação, em qualquer ordem, de três teclas distintas dentre seis habilitadas previamente pelo fabricante. Considere n o número máximo de conjuntos distintos de três teclas que abrem o cofre. Na figura em destaque, as teclas azuis representam as habilitadas previamente. Se o fabricante reduzisse para cinco o número de teclas habilitadas, haveria entre elas um total de m conjuntos distintos de três teclas distintas para abrir o cofre. Calcule o valor de n m.

5 Resolução: Combinação simples C n,p = A n,p / P p C 6,3 = A 6,3 / P 3 C 6,3 = 6x5x4/3x2x1 C 6,3 = 20 C m,p = A m,p / P p C 5,3 = A 5,3 / P 3 C 5,3 = 5x4x3/3x2x1 C 5,3 = 10 C n,p C m,p = 10 Questão 16 (PUC-RS 2009) GRUPO 5 Em uma sala existem 10 pessoas, sendo 8 mulheres e 2 homens. O número de possibilidades de formar, com essas 10 pessoas, um grupo que contenha exatamente 3 mulheres e 2 homens é A) C 8,3 B) C 10,5 C) 2C 8,3 D) A 10,5 E) A 8,3 Resolução MULHERES HOMENS TOTAL C 8,3 = n!/ p!(n-p)! C 2,2 = n!/ p!(n-p)! 56x1 = C 8,3 = 8!/ 3!(8-3)! C 2,2 = 2!/ 2!(2-2)! 56 = C 8,3 = !/ 6.5! C 2,2 = 2/ 2. 0! C 8,3 C 8,3 = 8.7 C 2,2 = 1 C 8,3 = 56 RESPOSTA: letra A

6 Questão 22 (ENEM 2010) João mora na cidade A e precisa visitar cinco clientes, localizados em cidades diferentes da sua. Cada trajeto possível pode ser representado por uma sequência de 7 letras. Por exemplo, o trajeto ABCDEFA, informa que ele sairá da cidade A, visitando as cidades B, C, D, E e F nesta ordem, voltando para a cidade A. Além disso, o número indicado entre as letras informa o custo do deslocamento entre as cidades. A figura mostra o custo de deslocamento entre cada uma das cidades. Como João quer economizar, ele precisa determinar qual o trajeto de menor custo para visitar os cinco clientes. Examinando a figura, percebe que precisa considerar somente parte das sequências, pois os trajetos ABCDEFA e AFEDCBA têm o mesmo custo. Ele gasta 1min30s para examinar uma sequência e descartar sua simétrica, conforme apresentado. O tempo mínimo necessário para João verificar todas as sequências possíveis no problema é de A) 60 min. B) 90 min. C) 120 min. D) 180 min. E) 360 min. Resolução O número de sequências possíveis para visitar as 5 cidades é 5! = 120. Do enunciado, cada sequência possui uma única simétrica, que não precisa ser examinada. Assim, o número de sequências que João precisa verificar é 120/2 = 60. Desse modo, o tempo necessário é 1,5 60 = 90 minutos. Resposta = letra B..::FIM::..

TRABALHO DE MATEMÁTICA II

TRABALHO DE MATEMÁTICA II TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Amarelo Questão 04 FUVEST 2010 GRUPO 1 Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES A D C B D B C A B D A C C B A D Como pode cair no enem (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere

Leia mais

d) 4 032 e) 5 760 a) 1 5 b) 2 5 c) 3 4 d) 1 4 e) 1 2

d) 4 032 e) 5 760 a) 1 5 b) 2 5 c) 3 4 d) 1 4 e) 1 2 Permutação d) 4 032 e) 5 760 1. (Upe 2013) Seguindo a etiqueta japonesa, um restaurante tipicamente oriental solicita aos seus clientes que retirem seus calçados na entrada do estabelecimento. Em certa

Leia mais

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO 01) (Enem 2014 Adaptada) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON REVISÃO MATEMÁTICA 2º ANO 1 DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON 1. (Ufjf 2012) Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser

Leia mais

Disciplina: Matemática Data da entrega: 18/04/2015.

Disciplina: Matemática Data da entrega: 18/04/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Turma: 2ª série (ensino médio) Disciplina: Matemática Data da entrega: 18/04/2015. Observação: A lista deverá apresentar capa, enunciados e as

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2

Leia mais

Revisão de combinatória

Revisão de combinatória A UA UL LA Revisão de combinatória Introdução Nesta aula, vamos misturar os vários conceitos aprendidos em análise combinatória. Desde o princípio multiplicativo até os vários tipos de permutações e combinações.

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Exercícios de Matemática para o ENEM (Habilidades 2 e 4)

Exercícios de Matemática para o ENEM (Habilidades 2 e 4) Exercícios de para o ENEM (Habilidades 2 e 4) H2 Identificar padrões numéricos ou princípios de contagem 1. Doze times se inscreveram em um torneio de futebol amador. O jogo de abertura do torneio foi

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Analista do TRT/4ª Região

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Exercícios de Análise Combinatória ano: 2013

Exercícios de Análise Combinatória ano: 2013 Página1 Exercícios de Análise Combinatória ano: 2013 1. (Pucrj) Em uma sorveteria há sorvetes nos sabores morango, chocolate, creme e flocos. De quantas maneiras podemos montar uma casquinha com duas bolas

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

ARQUITETURA DE COMPUTADORES - CONCEITUAL

ARQUITETURA DE COMPUTADORES - CONCEITUAL Aula 01 04/08/2008 Universidade do Contestado UnC Sistemas de Informação Arquitetura de Computadores 2ª Fase Prof. Carlos Guerber ARQUITETURA DE COMPUTADORES - CONCEITUAL O QUE É O COMPUTADOR? Um computador

Leia mais

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo)

Questão do ENEM 1. Conclusão. Questão do ENEM 4. Caso o posto X encerre suas atividades, teremos: 1º caso (dois octógonos e um de outro tipo) Questão do ENEM 1 Consideremos uma combinação de dois tipos diferentes de ladrilhos em que um deles é, necessariamente, um octógono regular. Temos dois casos para análise: 1º caso (dois octógonos e um

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA QUESTÕES DISCURSIVAS AÁLISE COMBIATÓRIA ) (PUC-SP) O novo sistema de placas de veículos utiliza um grupo de 3 letras(dentre 6 letras ) e um grupo de 4 algarismos (por exemplo: ABC-03). Uma placa dessas

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 1) C 6) A 11) D 16) C 2) D 7) C 12) C 17) D 3) E 8) B 13) E 18) A 4) E 9) B 14)

Leia mais

I. Princípio Fundamental da Contagem (P.F.C.)

I. Princípio Fundamental da Contagem (P.F.C.) ANÁLISE OMBINATÓRIA A principal finalidade da Análise ombinatória é estabelecer métodos de contagem. I. Princípio Fundamental da ontagem (P.F..) O P.F.., ou princípio multiplicativo, determina o número

Leia mais

CENTRAL CONDOMÍNIO MASTER 48-96 - 160

CENTRAL CONDOMÍNIO MASTER 48-96 - 160 CENTRAL CONDOMÍNIO MASTER 48-96 - 160 Dicas para uma boa instalação : Para uma boa instalação é necessário usar aterramento inferior a 10 ohms, um filtro de linha ou um NO BREAK para garantir que nenhum

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco

Curso Wellington Matemática Arranjo e Combinação Prof Hilton Franco 1. A figura abaixo ilustra um bloco de massa igual a 8 kg, em repouso, apoiado sobre um plano horizontal. Um prato de balança, com massa desprezível, está ligado ao bloco por um fio ideal. O fio passa

Leia mais

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 2013 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 2º ANO 4º ALUNO 1. (Uerj 2014) Em um escritório, há dois porta-lápis: o porta-lápis

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Exercícios de Circuitos Combinacionais

Exercícios de Circuitos Combinacionais ORGANIZAÇÃO E ARQUITETURA DE COMPUTADORES I Exercícios de Circuitos Combinacionais FONTE: ENADE 2005 e 2008 Exercício 1 2 João, ao tentar consertar o módulo eletrônico de um carrinho de brinquedos, levantou

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 1) Qual das planificações abaixo não é a planificação de um cubo? Resposta: I Existem 11 planificações diferentes para o cubo, indicadas pelas letras A, B, C, D, E, F, G,

Leia mais

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis

Módulo de Probabilidade Miscelânea de Exercícios. Cálculo de Probabilidades. Professores Tiago Miranda e Cleber Assis Módulo de Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades a série E.M. Professores Tiago Miranda e Cleber Assis Probabilidade Miscelânea de Exercícios Cálculo de Probabilidades 1 Exercícios

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Espaços Amostrais Finitos

Espaços Amostrais Finitos EST029 Cálculo de Probabilidade I Cap. 2: Espaços Amostrais Finitos Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Espaços Amostrais Finitos Espaço amostral S = {a 1, a 2, a 3,..., a k } (finito)

Leia mais

Faça você mesmo: Instalação de LEDs nos botões do painel

Faça você mesmo: Instalação de LEDs nos botões do painel Faça você mesmo: Instalação de LEDs nos botões do painel Tutorial gentilmente cedido pelo DJCRD dos Kadetteiros.com Campinas/Grande ABC/Alto Tietê. Pessoal, abaixo o procedimento para substituir as lâmpadas

Leia mais

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275 A. Sistemas de Numeração. Para se entender a linguagem do computador (o Código de Máquina), é necessário conhecer um pouco da teoria dos números. Não é uma tarefa tão difícil quanto pode parecer. Sabendo-se

Leia mais

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal?

SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS. 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? SOLUÇÕES DOS EXERCÍCIOS PROPOSTOS 1. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal? Temos 5 grupos com 5 possibilidades cada uma, então: 5.5=25 casais Se fossem duplas: Teríamos 10

Leia mais

Portal Sindical. Manual Operacional Empresas/Escritórios

Portal Sindical. Manual Operacional Empresas/Escritórios Portal Sindical Manual Operacional Empresas/Escritórios Acesso ao Portal Inicialmente, para conseguir acesso ao Portal Sindical, nos controles administrativos, é necessário acessar a página principal da

Leia mais

OBI2013 Caderno de Soluções

OBI2013 Caderno de Soluções OBI2013 Caderno de Soluções Modalidade Iniciação Nível 1, Fase 1 18 de maio de 2013 Promoção: Patrocínio: Olimpíada Brasileira de Informática OBI2013 1 Gincana de Programação A SBC vai promover a primeira

Leia mais

De acordo com esse gráfico, é correto concluir que:

De acordo com esse gráfico, é correto concluir que: º SIMULADO ENEM LEONARDO DA VINCI 009) ) (Unifor CE) No gráfico a seguir, tem-se a evolução do Produto Interno Bruto (PIB) brasileiro nas duas últimas décadas do século XX, tomando como base o valor de

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

Criando Quiz com BrOffice.impress

Criando Quiz com BrOffice.impress Criando Quiz com BrOfficeimpress A ferramenta de apresentação possibilita o desenvolvimento de várias atividades interativas como: Sete erros Quiz (Perguntas/Respostas), Colocar em ordem objetos, alfabeto,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA ANÁLISE COMBINATÓRIA NA EDUCAÇÃO DE JOVENS E ADULTOS: UMA PROPOSTA DE ENSINO A PARTIR

Leia mais

Ao ligar o equipamento, você verá a mensagem abaixo, o objetivo dela é fazer a configuração mínima para LOGAR ao servidor da Internet.

Ao ligar o equipamento, você verá a mensagem abaixo, o objetivo dela é fazer a configuração mínima para LOGAR ao servidor da Internet. MANUAL DE OPERAÇÃO DO NET MACHINE VOCÊ NÃO NECESSITA MAIS DE UM COMPUTADOR PARA CONVERSAR COM ALGUÉM QUE ESTA NO MIRC NET MACHINE É UM PLACA ELETRÔNICA DE BAIXO CUSTO A PLACA TAMBEM PODE MANDAR E LER E-MAILS

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do TRT/4ª Região (Rio

Leia mais

Manual do programa EXPERT PARK Versão 1.x

Manual do programa EXPERT PARK Versão 1.x Manual do programa EXPERT PARK Versão 1.x Ifox Eletrônica Ltda página: 1 de 31 1 Índice 1 ÍNDICE...2 2 APRESENTAÇÃO...3 3 TELA PRINCIPAL...4 3.1 TELA DE CADASTRAMENTOS E RELATÓRIOS F9...4 3.1.1 CADASTRA

Leia mais

Problemas de Jogos e Tabuleiros

Problemas de Jogos e Tabuleiros Problemas de Jogos e Tabuleiros Professor Emiliano Augusto Chagas Para esquentar! 01) Duas crianças se revezam em turnos quebrando uma barra retangular de chocolate, com seis quadrados de altura e oito

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu lado concreto

Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu lado concreto Universidade Severino Sombra Fundamentos Teóricos e Metodologia de Matemática 1 1 Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II)

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II) 1 AULA ONZE: Análise Combinatória (Parte II) Olá, amigos! Tudo bem com vocês? Esta é nossa décima primeira aula, e ainda sequer chegamos à metade de nosso curso! Longo é o caminho do Raciocínio Lógico...

Leia mais

ENEM 2012 MATEMÁTICA PROVA AMARELA

ENEM 2012 MATEMÁTICA PROVA AMARELA ENEM 01 MATEMÁTICA PROVA AMARELA Questão 16 (Alternativa A) Cada resposta possível para o jogo deve conter um objeto, um personagem e um cômodo. Para cada um desses itens, temos 5, 6 e 9 possibilidades,

Leia mais

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

SISTEMA DE CONTROLE DE ACESSO SCANCHIP

SISTEMA DE CONTROLE DE ACESSO SCANCHIP SISTEMA DE CONTROLE DE ACESSO SCANCHIP MANUAL DO ADMINISTRADOR. Introdução O Controle de Acesso SCANCHIP foi desenvolvido visando à instalação da chamada com código (senha), cartão magnético ou biometria

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

EXERCÍCIOS - ANÁLISE COMBINATÓRIA

EXERCÍCIOS - ANÁLISE COMBINATÓRIA EXERCÍCIOS - ANÁLISE COMBINATÓRIA CONTAGEM 1) A cantina do meu colégio vende 4 tipos de salgados e 5 marcas de refrigerantes. De quantas formas distintas posso escolher meu lanche (um salgado e um refrigerante)?

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Digitação de Centros de Custo pela movimentação de produtos dos documentos fiscais (Pacotes: 3102,3103,3270,3271,3272).

Digitação de Centros de Custo pela movimentação de produtos dos documentos fiscais (Pacotes: 3102,3103,3270,3271,3272). Lista completa das atualizações JBCepil: Inovações: Digitação de Centros de Custo pela movimentação de produtos dos documentos fiscais (Pacotes: 3102,3103,3270,3271,3272). Disponibilizada no sistema nova

Leia mais

Controle de Ordem de Serviço

Controle de Ordem de Serviço Programação Customizada Personalizada Controle de Ordem de Serviço ACCESS+VBA Manual do Usuário www.theraprogramas.hd1.com.br Telefone: (11) 8048-7280 Tela Inicial Carregando os arquivos Escolha a Opção

Leia mais

Monitor de Rede Elétrica Som Maior Pro. Manual do Usuário Versão 3.9f

Monitor de Rede Elétrica Som Maior Pro. Manual do Usuário Versão 3.9f Monitor de Rede Elétrica Som Maior Pro Manual do Usuário Versão 3.9f 2 ÍNDICE PÁG. 1 APRESENTAÇÃO...03 2 DESCRIÇÃO DO EQUIPAMENTO...04 2.1 ROTINA INICIAL DE AVALIAÇÃO DA REDE ELÉTRICA...04 2.2 TROCA DE

Leia mais

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 1 Números As questões destas aulas foram retiradas ou adaptadas de provas das Olimpíadas Brasileiras de Matemática (OBM), fonte considerável

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos dos 10 e 11 anos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão

Leia mais

Exercícios de Microcontroladores -> Programas sequenciais

Exercícios de Microcontroladores -> Programas sequenciais Exercícios de Microcontroladores -> Programas sequenciais Prof. Gabriel Vinicios - www.gvensino.com.br Exercício 1: Cronômetro - Dificuldade: (3/5) No display, serão exibidos: minutos : segundos : décimos

Leia mais

II Torneio de Programação em LabVIEW

II Torneio de Programação em LabVIEW Desenvolvimento da Aplicação II Torneio de Programação em LabVIEW Seção I: Requisitos Gerais A aplicação submetida deverá atender, pelo menos, às exigências de funcionamento descritas na Seção II deste

Leia mais

Tutorial 5 Questionários

Tutorial 5 Questionários Tutorial 5 Questionários A atividade Questionário no Moodle pode ter várias aplicações, tais como: atividades de autoavaliação, lista de exercícios para verificação de aprendizagem, teste rápido ou ainda

Leia mais

DISCADORA DISC CELL 5

DISCADORA DISC CELL 5 DISCADORA DISC CELL 5 1- FUNCIONAMENTO: A discadora Disc Cell 5 é um aparelho eletrônico que disca para até 5 números, o intervalo entre cada discagem é de 5 segundos e cada chamada dura aproximadamente

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica. 15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 25 mai Permutação simples e anagramas 01. Resumo

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 01) O jogo da Mega-Sena consiste no sorteio de 6 números distintos entre 1 e 60. Um apostador escolhe 20 números distintos e faz todos os C 20,6 jogos possíveis de serem realizados com os 20 números.

Leia mais

Manual do usuário Vídeo Porteiro Sem Fio VPV-800

Manual do usuário Vídeo Porteiro Sem Fio VPV-800 Manual do usuário Vídeo Porteiro Sem Fio VPV-800 Atenção: Antes de operar o equipamento, leia o manual do usuário, qualquer dano causado decorrente de utilização errônea do mesmo implicará na perda imediata

Leia mais

PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001

PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001 PROVA BANCO DO BRASIL MAIO DE 2013 (FCC) TIPO 001 16. Após a finalização de um concurso de conhecimentos gerais, os dados foram organizados e apresentados em um infográfico, conforme abaixo. Sabe-se que,

Leia mais

Programadores e Problemas: Instruções. Introdução. Seu Objetivo. Configuração. Instruções do jogo equipe evolução 5/5/2006 v2.0

Programadores e Problemas: Instruções. Introdução. Seu Objetivo. Configuração. Instruções do jogo equipe evolução 5/5/2006 v2.0 Programadores e Problemas: Instruções Introdução Problemas e Programadores é um jogo educacional na área de engenharia de software. Ele é dirigido a estudantes que já têm conhecimento entre o básico e

Leia mais

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso.

Respostas de MAIO. A sequência é formada elevando-se ao quadrado os números 2,3,4... e somandolhes 2 em cada caso. Respostas de MAIO Dia 1: O menor número de ovos é 91. Dia 2: O nível da água baixa. No barquinho, a moeda desloca a mesma massa de água que a do barquinho, portanto, um volume maior que o da moeda. Na

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Aula 03: Sistemas de numeração Sistemas de numeração Sistemas de Numeração: conceitos, bases de numeração, número e numeral. Necessidade de representação em outras bases de

Leia mais

Pré-requisitos : FIS Implantada, Folha do Mês Finalizada Passo 1 Implantação da FIS

Pré-requisitos : FIS Implantada, Folha do Mês Finalizada Passo 1 Implantação da FIS GEO Pré-requisitos : FIS Implantada, Folha do Mês Finalizada Passo 1 Implantação da FIS FIS Significa Ficha de Implantação de Serviços, e nela podemos inserir de forma bem objetiva os dados do serviço

Leia mais

CENTRAL DE ALARME BRISA 8 VOZ / BRISA 8 SINAL

CENTRAL DE ALARME BRISA 8 VOZ / BRISA 8 SINAL CENTRAL DE ALARME BRISA 8 VOZ / BRISA 8 SINAL CARACTERÍSTICAS BÁSICAS 8 Zonas programáveis sendo 4 mistas, ou seja, com fio e sem fio e 4 com fio; 1 senha mestre; 1 senha de usuário; Entrada para teclado

Leia mais

Aula 8 Circuitos Integrados

Aula 8 Circuitos Integrados INTRODUÇÃO À ENGENHRI DE COMPUTÇÃO PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI ula Circuitos Integrados Introdução Portas Lógicas em Circuitos Integrados Implementação de Funções

Leia mais

Este documento consiste em 25 páginas. Elaborado por: Innova Tecnologia de Soluções. Liberado em Março de 2010.

Este documento consiste em 25 páginas. Elaborado por: Innova Tecnologia de Soluções. Liberado em Março de 2010. Manual do Usuário Este documento consiste em 25 páginas. Elaborado por: Innova Tecnologia de Soluções. Liberado em Março de 2010. Impresso no Brasil. Sujeito a alterações técnicas. A reprodução deste documento,

Leia mais

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente,

As leituras no voltímetro V e no amperímetro A, ambos ideais, são, respectivamente, 1. (Espcex (Aman) 015) Em um circuito elétrico, representado no desenho abaixo, o valor da força eletromotriz (fem) do gerador ideal é E 1,5 V, e os valores das resistências dos resistores ôhmicos são

Leia mais

CONCURSO PÚBLICO VESTIBULAR/2015

CONCURSO PÚBLICO VESTIBULAR/2015 ESCOLA DE GOVERNO PROFESSOR PAULO NEVES DE CARVALHO FUNDAÇÃO JOÃO PINHEIRO Governo de Minas Gerais CONCURSO PÚBLICO VESTIBULAR/2015 2ª ETAPA Provas abertas: Matemática, História e Redação em Língua Portuguesa.

Leia mais

ANPAD CURSO LÓGICA 2

ANPAD CURSO LÓGICA 2 01. Considerando verdadeiras as proposições Se João cometeu um grave delito, então ele sonegou impostos. e João não sonegou impostos., pode-se concluir que: a) João sonegou impostos b) João cometeu um

Leia mais

Manual do usuário (v 1.2.0) E-commerce

Manual do usuário (v 1.2.0) E-commerce Manual do usuário (v 1.2.0) E-commerce Sumário Acessando o sistema gerencial... 1 Enviando logomarca, banners e destaques... 1 Logomarca... 1 Destaques... 2 Banners... 3 Cadastrando produtos... 4 Embalagem...

Leia mais

PARA A CONSTRUÇÃO DOS GRÁFICOS

PARA A CONSTRUÇÃO DOS GRÁFICOS 1 PARA A CONSTRUÇÃO DOS GRÁFICOS Apresentamos dois materiais feitos por estudantes do Curso de Psicologia da Faculdade de Ciências Humanas e da Saúde para construção de gráficos. As instruções das páginas

Leia mais

T O M e P U L S O. Disca em linhas ECONÔMICAS. Discadora Telefônica

T O M e P U L S O. Disca em linhas ECONÔMICAS. Discadora Telefônica Discadora Telefônica T O M e P U L S O Disca em linhas ECONÔMICAS Disca em modo TOM e PULSO Disca para até 5 números Não perde memória em caso de falta de energia elétrica www.genno.com.br MAGADTDPTF05V1

Leia mais

Trabalho Computacional 2. Aplicativo para Gestão Financeira. Grupos: Os trabalhos devem ser feitos individualmente ou em duplas.

Trabalho Computacional 2. Aplicativo para Gestão Financeira. Grupos: Os trabalhos devem ser feitos individualmente ou em duplas. Programação Básica de Computadores Engenharia Mecânica Prof. Filipe Mutz 2016/1 Trabalho Computacional 2 Aplicativo para Gestão Financeira Data de Entrega: 06/07/2016. Pontuação: 10 pontos. Grupos: Os

Leia mais

Central de Alarme de Oito Zonas

Central de Alarme de Oito Zonas Central de Alarme de Oito Zonas R02 ÍNDICE CARACTERÍSTICAS GERAIS:... 3 CARACTERÍSTICAS TÉCNICAS:... 3 CONHECENDO A CENTRAL:... 4 COMO A CENTRAL FUNCIONA:... 4 COMO APAGAR A MEMÓRIA DA CENTRAL:... 4 COMO

Leia mais

A senha 001 de fábrica é 151515.

A senha 001 de fábrica é 151515. 1 2 Índice PROGRAMANDO USUÁRIOS...4 MODO DE PROGRAMAÇÃO DE SENHAS:...4 COMO CADASTRAR NOVOS USUÁRIOS:... 4 COMO DESABILITAR USUÁRIOS:... 4 ATIVANDO A CENTRAL...5 ATIVAR GERAL... 5 ATIVAÇÃO RÁPIDA...5 ATIVAR

Leia mais

TECLADO. (aula 1) O Teclado é um instrumento musical eletrônico, composto por teclas onde simulam sons de forma digital! Origem do Instrumento

TECLADO. (aula 1) O Teclado é um instrumento musical eletrônico, composto por teclas onde simulam sons de forma digital! Origem do Instrumento TECLADO (aula 1) O Teclado é um instrumento musical eletrônico, composto por teclas onde simulam sons de forma digital! Origem do Instrumento O Piano e o Órgão são os instrumentos musicais mais tradicionais

Leia mais